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Introduction

Numerical linear algebra has always been a “universal” tool
In science and engineering. lts focus has changed over the
years to tackle “new challenges”

1940s—1950s: Major issue: the flutter problem in aerospace
engineering. Focus: eigenvalue problem.

» Then came the discoveries of the LR and QR algorithms,
and the package Eispack followed a little later

1960s: Problems related to the power grid promoted what
we know today as general sparse matrix techniques.

Late 1980s — 1990s: Focus on parallel matrix computations.

Late 1990s: Big spur of interest in “financial computing” [Fo-
cus: Stochastic PDESs]
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» Then the stock market tanked .. and numerical analysts
returned to more mundaine basics

Recent/Current: (Google page rank, data mining, problems
related to internet technology, knowledge discovery, bio-informatics,
nano-technology, ...

» Major new factor: Synergy between disciplines.

Example: Discoveries in materials (e.g. semi conductors
replacing vacuum tubes in 1950s) lead to faster computers,
which in turn lead to better physical simulations..

» What about data-mining and materials?
» Potential for a perfect union...
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Electronic structure

» Quantum mechanics: Single biggest scientific achievement
of 20th century. See
Thirty years that shook physics, George Gamov, 1966

» “There is plenty of room at the bottom” [Feynman, 1959]
— started the era of nanotechnology [making materials with
specific properties.]

see http.//www.zyvex.com/nanotech/feynman.html|

» Examples of applications: Superhard materials, supercon-
ductors, drug design, efficient photovoltaic cells, ...

» All these need as a basic tool: computational methods to
determine electronic structure.
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Electronic structure and Schrodinger’s equation

» Basic and essential tool for simulations at the nano-scale.

» Determining matter’s electronic structure can be a major
challenge:

Number of particules is large [a macroscopic amount
contains ~ 102 electrons and nuclei] and the physical
problem is intrinsically complex.

» Solution via the many-body Schrodinger equation:

HY = EV

» In its original form the above equation is very complex
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» Hamiltonian H is of the form :

h2v2 h2V2 1 VAVA
H = — § j ©
Rl
Z Zie Z

» U = W(ry,re, ..., n, R, Ra,..., RN) depends on co-
ordinates of all electrons/nuclei.

» Involves sums over all electrons / nuclei and their pairs

» Note: VZ?\II Is Laplacean of W w.r.t. variable r;. Represents
Kinetic energy for 2-th particle.
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A hypothetical calculation: | [with a “naive approach’]

» 10 Atoms each having 14 electrons [Silicon]
» ... atotal of 15*10= 150 particles

» ... Assume each coordinate will need 100 points for dis-
cretization..

» ... you will get

100 x 100 X --- x 100 = 100"°
part.1 part.2 part.150

|

o
-
-
X
e
-
=
X

# Unknowns

» Methods based on this basic formulation are limited to a
few atoms — useless for real compounds.
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The underlying physical laws necessary for the mathemati-
cal theory of a large part of physics and the whole chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable
that approximate practical methods of applying quantum
mechanics should be developed, which can lead to the
explanation of the main features of complex atomic systems
without too much computations. Dirac, 1929

» In 1929 quantum mechanics was basically understood

» Today the “desire” to have approximate practical methods
s still alive

CSE Colloquium 11/09/09



Several approximations/theories used

» Born-Oppenheimer approximation: Neglect motion of nu-
clei [Much heavier than electrons]

» Replace many electrons by one electron systems: each
electron sees only average potentials from other particles

» Density Functional Theory [Hohenberg-Kohn '65]: Observ-
ables determined by ground state charge density

» (Consequence: Equation of the form

2

h 2
2m

» v, = external potential, E,. = exchange-correlation energy
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Kohn-Sham equations — nonlinear eigenvalue Pb

YYVYVYY

1
—EVZ + (Won + Vg + Vwc)] v, = Ez\Ilzaz =1,...,m,

p(r) = ) |T:(r))

V*Vyg = —4np(r)

Both V... and Vz, depend on p.

Potentials & charge densities must be self-consistent.
Broyden-type quasi-Newton technique used

Typically, a small number of iterations are required
Most time-consuming part: diagonalization
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Real-space Finite Difference Methods

» Use High-Order Finite Difference Methods [Fornberg &
Sloan '94]

» Typical Geometry = Cube — regular structure.
» Laplacean matrix need not even be stored.

Z
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The physical domain
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Computational code: PARSEC; Milestones

e PARSEC =Pseudopotential Algorithm for Real Space Elec-
tronic Calculations

e Sequential real-space code on Cray YMP [up to "93]
e Cluster of SGI workstations [up to '96]

e CM5 ['94-'96]

¢ IBM SP2 [Using PVM]

e Cray T3D [PVM + MPI] ~ '96; Cray T3E [MPI] -’97
e IBM SP with +256 nodes — 98+

e SGI Origin 3900 [128 processors] — 99+

e IBM SP + F90 - name given, ‘02

e PARSEC released in ~ 2005.

CSE Colloquium 11/09/09






Diagonalization via Chebyshev filtering

Given a basis [vy, ..., vy, fil-
ter’ each vector as

» pi = Low deg. polynomial. Dampens unwanted compo-
nents

» Filtering step not used to S 1 A OOy G N7 [ )
compute eigenvectors accu- 1 *
rately

» In effect: SCF & diagonal-
ization loops merged
Convergence well preserved

U; = pr(A)v;

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky,
Phys. Rev. E, vol. 74, p. 066704 (2006).
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Chebyshev Subspace iteration - experiments

» A large calculation: Sig9941 H1se0, USing 48 processors [SGl
Altix, ltanium proc., 1.6 GHZz]

» Hamiltonian size=2, 992, 832, Num. States= 19, 015.

# A xx # SCF total eV /atom| 1st CPU | total CPU
4804488 18 -92.00412 102.12 hrs.|294.36 hrs

» (Calculation done in ~ 2006.

» Largest one done in 1997: St595Ho76

» Took a few days [48 h. cpu] on 64PE - Cray T3D.
» Now 2 hours on 1 PE ()
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Introduction: What is data mining?

» Common goal of data mining methods: to extract
meaningful information or patterns from data. Very broad
area — includes: data analysis, machine learning, pattern
recognition, information retrieval, ...

» Main tools used: linear algebra; graph theory; approxima-
tion theory; optimization,; ...

» |In this talk: brief overview with emphasis on dimension
reduction techniques. interrelations between techniques, and
graph theory tools.
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Major tool of Data Mining: Dimension reduction

» (Goal is not just to reduce computational cost but to:

e Reduce noise and redundancy in data
e Discover ‘features’ or ‘patterns’ (e.g., supervised learning)

» Techniques depend on application: Preserve angles? Pre-
serve distances? Maximize variance? ..
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The problem of Dimension Reduction

» Given d < m find a mapping

d:x cR™ — y € R

» Mapping may be explicit [typically linear], e.g.:

y:VT:L'

»  Or implicit (nonlinear)

Practically: |

Given: X € R™*x",
Want: a low-dimensional repre-
sentation Y € R¥*X" of X

R

-
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Linear Dimensionality Reduction

Given: adataset X = [x1,x3,...,2x,], and d the dimen-
sion of the desired reduced space Y = [y1, Y25+« Yn]-

Want: A linear transformation from X toY

X ‘. X E Ran
m | \ VvV c Rde
. Y =V'X
dI vT Y Vi |4 Id . % c
o Ran

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)
Constraint: The y;’'s must satisfy certain properties
»  Optimization problem

CSE Colloquium 11/09/09



)
3
e
=
=
=
S
¥
S
S
S
Q
~
S
&
=
=
N
<
B

Example 1

Original Data in 3-D

CSE Colloquium 11/09/09



2-D ‘reductions’: |
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2-D ‘reductions’:

PCA - digits: 0 —— 4 LLE - digits: 0 — 4
6 0.15¢
X + 0
4 X x 1| 0.1¢f
%
x O 21505}
2 Xx A3
x )| of
or x
~0.05} Y
x X -t"
21 &x *
X X % _01 I ;& + + +i
e XX X% +
-4 ; -0.15F ¥°
-6 ' ' ' ' -0.2 ' ' ' '
-10 -5 0 5 10 -0.2 -0.1 0 0.1 0.2
K-PCA - digits: 0 —— 4 ONPP - digits : 0 —— 4
0.2¢ 0.1¢
x X + 0
015 ¥R « 1| 0057
% XX x .
0.1f XX XREA o 2| o
KR A 3
0.05} 4|-0.05¢
()] - -0.1t
-0.05¢ -0.15¢
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o
-0.15 : : : ' -0.25 ; ; ; %
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-3
x 10
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Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items
of the same subset are most similar and those of two different
subsets most dissimilar.

Photovoltaic
Superhard

Superconductors
: Catalytic

Multi-ferroics Thermo-electric

®
Ferromagnetic

» Basic technique: K-means algorithm [slow but effective.]

» Example of application : cluster bloggers by ‘social groups’
(anarchists, ecologists, sports-fans, liberals-conservative, ... )
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Sparse Matrices viewpoint

* Joint work with J. Chen

» Communities modeled by an ‘affinity’ graph [e.g., 'user A
sends frequent e-mails to user B’]
» Adjacency Graph repre- » Goal: find ordering so blocks
are as dense as possible:

sented by a sparse matrix
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» Advantage of this viewpoint: need not know # of clusters

Example of application | Data set from :

http://www-personal.umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orienta-
tions [2004 US presidentual election]

» ‘Communities’; liberal vs. conservative

» Graph: 1,490 vertices (blogs) : first 758: liberal, rest:
conservative.

» Edge: 1 — 7 : a citation between blogs z and 3

» Blocking algorithm (Density theshold=0.4): subgraphs [note:
density = | E|/|V'|2.] » Smaller subgraph: conservative blogs,
larger one: liberals
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each L
item of a given set, finda =
mechanism to classify an
unlabelled item into either
the “A” or the “B” class. o

l)

» Many applications.
» Example: distinguish SPAM and non-SPAM messages
» (Can be extended to more than 2 classes.
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Linear classifiers

» Find a hyperplane which best separates the data in classes
A and B.

Linear
classifier
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A harder case: |

Spectral Bisection (PDDP)
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» Use kernels to transform



Projection with Kernels —— 0% = 2.7463
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Fisher’s Linear Discriminant Analysis (LDA)

Define “between scatter”. a measure of how well separated
two distinct classes are.

Define “within scatter”: a measure of how well clustered items
of the same class are.

» (Goal: to make “between scatter” measure large, while
making “within scatter” small.

ldea: Project the data in low-dimensional space so as to
maximize the ratio of the “between scatter” measure over
“within scatter” measure of the classes.
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Let 4 = mean c
of X, and pu®) = Sp = an(ﬂ(k) — H)(M(k) — )t

mean of the k-th k=1

class (of size ny). Sy = >* >* (z; — 'u(k))(wi . “(k))T.
Define: b1 . € X,

B CLUSTER CENTROIDS
% GLOBAL CENTROID
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» Project set on

T _ T/, (k) _ 2
a one-dimensional @ Spa = Z"’f'a (e )%

space spanned by o
a vector a. a,TSWa = Z Z IaT(CUz' — H(k))|2
Then k=1x; € X,

» LDA projects the data so as
to maximize the ratio of these two max
numbers:

alSpa

a alSwa

» Optimal a = eigenvector associated with the largest eigen-
value of:
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LDA — in d dimensions

» Criterion: maximize the ra- Tr [UTSU]
tio of two traces: Tr [UTswU]

» Constraint: UTU = I (orthogonal projector).
» Reduced dimensiondata: Y = UTX.
Common viewpoint: hard to maximize, therefore ...

» ... alternative: Solve instead max Tr [UT SpU]
the (‘easier’) problem: UTSwU=I

» Solution: largest eigenvectors of Spu; = A\;Swu; .

CSE Colloquium 11/09/09



Trace ratio problem

* Joint work with Thanh Ngo and Mohamed Bellalij
» Main point: trace ratio can be maximized inexpensively

Let f(p) = maxy yry—y Trace[U' (A — pB)U| |

And let U (p) the maximizer of above trace.

» Then, under some mild assumptions on A and B :

1) Optimal p for trace ratio is a zero of f

2) f'(p) = —Trace[U(p)" BU(p)]
3) f is a decreasing function

+ Newton’s method to find zero __ TriueTAu(p)]

amounts to a fixed point iteration: Prew = Tr 1y (p)TBU (o))
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» Idea: Compute U (p) by an inexpensive Lanczos procedure
» Note: Standard problem - [not generalized] — cheap..
» Recent papers advocated similar or related techniques

[1] C. Shen, H. Li, and M. J. Brooks, A convex programming
approach to the trace quotient problem. In ACCV (2) — 2007.

[2] H. Wang, S.C. Yan, D.Xu, X.O. Tang, and T. Huang. Trace
ratio vs. ratio trace for dimensionality reduction. In /EEE Con-
ference on Computer Vision and Pattern Recognition, 2007

[3] S. Yan and X. O. Tang, “Trace ratio revisited” Proceedings
of the European Conference on Computer Vision, 2006.
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Background: The Lanczos procedure

ALGORITHM : 1. Lanczos

1. Choose an initial vector vy of norm unity.
Set,ﬁl =0,v9=0

2. Fory =1,2,...,m Do:

3. o = (wj, v;)

4. W, = A’Uj — ;U5 — /ijj—l

5. ,Bj_|_1 = ||’UJJ||2 /f,Bj_|_1 = 0 then St0,0
6. vjt1 3= w;i/Bit

/. EndDo

» In first few steps of Newton: rough approximation needed.
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Information Retrieval: Vector Space Model

» Given: a collection of documents (columns of a matrix A)
and a query vector q.

» (Collection represented by an m X n term by document
matrix with a;; — LzJGzNJ

» Queries (‘pseudo-documents’) g are represented similarly
to a column
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Vector Space Model - continued

» Problem: find a column of A that best matches q

» Similarity metric: angle between the column and q - Use
cosines:

[c'q|
ellzllqll2
» To rank all documents we need to compute

s = Alq

» s = similarity vector.
» Literal matching — not very effective.
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Common approach: Use the SVD

» Need to extract intrinsic information — or underlying “se-
mantic” information —

» LSl replace A by a low rank approximation [from SVD]
A=UXV' — A,=UXV'

» U, : term space, V.. document space.
» New similarity vector: s, = Al q = VX UL
» Main issues: 1) computational cost 2) Updates
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Use of polynomial filters

* Joint work with E. Kokiopoulou

The idea: Replace A, by Ap(ATA), where ¢ is a certain
filter function

Consider the step-function (Heaviside function:)

] 0, O<a:<0'k
¢(w)_{1 o, < x < o}

» This would yield the same result as with TSVD buit...
» ... Not easy to use this function directly

» Solution : use a polynomial approximation to ¢

» Note: |s? = gt A¢p(AT A)|, requires only Mat-Vec’s
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Polynomial filters - examples

Approach: Approximate
a piecewise polynom.
by a polynomial in least-
squares sense

» |deal for situations where data must be explored once or a
small number of times only —

» Details skipped — see:

E. Kokiopoulou and YS, Polynomial Filtering in Latent Seman-
tic Indexing for Information Retrieval, ACM-SIGIR, 2004.
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IR: Use of the Lanczos algorithm

* Joint work with Jie Chen

» Lanczos is good at catching large (and small) eigenvalues:
can compute singular vectors with Lanczos, & use them in LS|

» (Can do better: Use the Lanczos vectors directly for the
projection..

» Related idea: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].
Use Lanczos bidiagonalization.

» Use a similar approach — But directly with A AT or AT A.
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IR: Use of the Lanczos algorithm (1)

» Let A € R™*™. Apply the Lanczos procedure to M =
AAT. Result:

Q. AATQL = Ty

with ;. orthogonal, T}, tridiagonal.
» Define s; = orth. projection of Ab on subspace span{Q;}
» s, can be easily updated from s;_1:

si = si—1 + qiq; Ab.
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IR: Use of the Lanczos algorithm (2)

» |t n < m it may be more economial to apply Lanczos to
M = AT A whichis n X n. Result:
QL ATAQ, =T

» Define:
L = AQinrba

» Project b first before applying A to result.
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» Theory well understood: works well because Lanczos pro-
duces good approximations to dominant sing. vectors

Advantages of Lanczos over polynomial filters:
(1) No need for eigenvalue estimates
(2) Mat-vecs performed only in preprocessing

Disadvantages:

(1) Need to store Lanczos vectors;

(2) Preprocessing must be redone when A changes.

(3) Need for reorthogonalization — expensive for large k.
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Information
retrieval MED
datasets CRAN

# Terms # Docs # queries sparsity

7,014 1,033 30 0.735
3,763 1,398 225 1.412

Preprocessing times
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Average query times

Med dataset

x10° Med

T
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Average retrieval precision

Med dataset Cran dataset
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In summary:
» Results comparable to those of SVD ...
» .. at a much lower cost.

Thanks:

» Helpful tools and datasets widely available. We used TMG
[developed at the U. of Patras (D. Zeimpekis, E. Gallopoulos)]

CSE Colloquium 11/09/09



Face Recognition — background

Problem: We are given a database of images: [arrays of
pixel values]. And a test (new) image.

(.. (.. (.. (.. (.. (..
§ & § § § g

~N T 7

Question: Does this new image correspond to one of those
in the database?
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Difficulty | Positions, Expressions, Lighting, ...,

Eigenfaces: Principal Component Analysis technique

» Specific situation: Poor images or delib-
erately altered images [‘occlusion’]

» See real-life examples — [international
man-hunt]
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— Consider each picture as a (1-D) column of all pixels
— Put together into an array A of size # _pixels X #_1mages.

HEEEE N -

‘/—/
A

— Do an SVD of A and perform comparison with any
In low-dim. space

— Similar to LSl in spirit — but data is not sparse.
Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample | |mages each — example:

# of pixels : 112 x 92 TOT. # images : 400

AR set 126 subjects — 4 facial expressions selected for each
[natural, smiling, angry, screaming] — example:

WY

# of pixels : 112 x 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD
ORL dataset AR dataset

ORL AR
1 T T T T T 1 T T T T T ! .
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iterations iterations

Vertical axis shows average error rate. Horizontal = Subspace
dimension
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Graph-based methods

» Start with a graph of data. e.g.:
graph of k nearest neighbors (k-NN
graph)

Want: | Do a projection so as to pre-
serve the graph in some sense

» Define a graph Laplacean:

L=D-W
_J1ifg e N; L -
e.g., w”_{() olse D = diag dm—;ww
- Jz -

with IN; = neighborhood of z (excl. 2)
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Example: The Laplacean eigenmaps

Laplacean Eigenmaps [Belkin & Niyogi'02] *minimizes*

Fem(Y) = Z wi;||lyi —y;||* subjectto YDY' =T

1,7=1

Notes:

1. Motivation: if ||x; — ;|| is small
(orig. data), we want ||y; — y;|| to be
also small (low-dim. data)

2. Note: Min instead of Max as in PCA
[counter-intuitive]

3. Above problem uses original data
indirectly through its graph

CSE Colloquium 11/09/09



» Problem translates to:

min T [Y(D—-W)Y'] .
Y € Ran
YDY T =1

» Solution (sort eigenvalues increasingly):

(D — W)u; = A\jDu; ; yz:u;ra 1=1,---,d

» Ann X n sparse eigenvalue problem [In ‘'sample’ space]

» Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I — W)u; = Aju ; yz:u;ra 1=1,---,d
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* Joint work with Efi Kokiopoulou and J. Chen
» Most techniques lead to one of two types of problems

First :

» Y results directly min  Tr [YMY ']
from computing eigen- Y € Raxn

vectors { YY' =1

» LLE, Eigenmaps, ...

Second:

» Low-Dimens. data: min Tr [V XMX'V]
vV — V—I—X VvV c Rde

» G == identity, or {VT GV =1

XDX ", orxXXx"

Observation: 2nd is just a projected version of the 1st.
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Computing k-nn graphs

| < hyperplane

* Joint work with J. Chen and H. R. Fang

» Main idea: Divide and Conquer
» 2-nd smallest eigenvector roughly !@hyperplane
separates set in two. '

» Recursively divide + handle interface
with care

» Again exploit Lanczos!

X3 Xo

» Cost: O(n'*), § depends on parameters. Less than
O (n?) but higher than O(n log n)

» C-implementation [J. Chen] publically available [GPL]
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Graph-based methods in a supervised setting

» Subjects of training set are known (labeled). Q: given a test
image (say) find its label.

& & 9 9 9 9
S S S N AN bV
& & T & 2 @ % Y Y N3
& & S S NG @ L & g &
Q Q %) ) %) @

Q¢ N N N N
o (2 (0 (2 (2 (2 (2

§ § 3 § § 3 ¢

& &

nS AS

QO QO
Q Q Q Q Q &
N N N N < ood &
(. (. (. (. (.

§ § 3§ § %

Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the
graph to use class labels. Idea: Build GG so that nodes in the
same class are neighbors. If ¢ = # classes, G consists of ¢

cliques.

» Matrix W is block-diagonal

» Note: rank(W) =n — c.
» (Can be used for LPP, ONPP, etc..
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Repulsion Laplaceans

* Joint work with E. Kokiopoulou ('09)

» |dea: Create repulsion forces (energies) between items that
are close but *not* in the same class.

ORL —- TrainPer—Class=5

Class1 Class 2
osal! 9 ¢ laplace
=v-fisher
082r = —&¢onpp-R
Class3 L 7 olpp,

! ! ! !
10 20 30 40 50 60 70 80 90 100
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Data mining for materials: Materials Informatics

» Huge potential in exploiting two trends:

1 Enormous improvements in efficiency and capabilities in
computational methods for materials

2 Recent progress in data mining techniques

» For example, cluster materials into classes according to
properties, types of atomic structures (‘point groups’) ...

» Current practice: “One student, one alloy, one PhD” —
Slow pace of discovery

» Data Mining: help speed-up process - look at more promis-
iIng alloys
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Materials informatics at work. Illustrations

» 1970s: Data Mining “by hand”: Find coordinates
to cluster materials according to structure
» 2-D projection from physical knowledge

ro =[rs (A) + rp(A)]-[rs(B) + rp(B)]

CN STRUCTURE
8 ¢ CESIUM CHLORIDE
6 v ROCK SALT v
40 4 © WURTZITE
4 + ZINCBLENDE Y csce
| 3 x GRAPHITE v ecsar
OCTET v v eCsT
3ol COMPOUNDS v v
: AN g8-N v v v?
v v
v v
v our() Y
20+ v . .
v v v
v v v 7= ——AgF
0® ° - AgCS
10~ 0© '5 cuct—=—+¥ g
. y——AgBr
+Q CuBr —
T cur—+""AdI
BN + 1+ ++
00 X + +
C +
A | | I L
000 050 1.00 1.50

tr = [rp(A)- rs(A)] + [rp(B)- rs(B)]

2.00

see: J. R. Chelikowsky, J. C.
Phillips, Phys Rev. B 19 (1978).
» ‘Anomaly Detection’:
helped find that compound Cu
F does not exist
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Example 1: | [Norskov et al., 03, ...]

e Use of genetic algorithms to ‘search’ through database of
binary materials. Lead to discovery of a promising catalytic
material with low cost.

Example 2 : |[Curtalano et al. PRL vol 91, 1003]

» Goal: narrow search to do fewer Alloys (55)
electronic structures calculations

» 55 binary metallic alloys consid-
ered in 114 crystal structures

» Observation: Energies of different
crystal structures are correlated

» Use PCA: 9 dimensions good
enough to yield OK accuracy —

energies

Structures (114)
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Conclusion

» Many, many, interesting New matrix problems related to the
new economy and new emerging scientific fields:

II Information technologies [learning, data-mining, ...]

EI Computational Chemistry / materials science

EI Bio-informatics: computational biology, genomics, ..

» |Important: Many resources for data-mining available on-
line: repositories, tutorials, Very easy to get started

» Materials informatics very likely to become a major force
» For a few recent papers and pointers visit my web-site at

WWW.CSs.umn.edu/~saad
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When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

Thank you ! \
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