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Early days..

The idea of solving large systems by linear equa-
tions by iterative methods is certainly not new, dat-
ing back to at least Gauss (1823). Later Southwell
(1946) and his school gave real impetus to the use
of iterative methods (...)
... The basis for much of the present activity in this
area of numerical analysis concerned with cyclic
iterative methods is a series of papers by Frankel
(1950), Geiringer (1949), Reich (1949), Stein and
Rosenberg (1948), and Young (1950), all of which
appeared when digital computers were emerging
with revolutionary force.

Richard Varga, 1962
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What is Relaxation?

ä Term likely introduced by Southwell (1940s)

ä To solve: Ax = b View as a collection of equations:

aix = βi (ai = i-th row)

ä Residual: r = b−Ax.

Relaxation: Modify i-th component of x into
x
(new)
i := xi + δi so that: r(new)

i = 0.

ai(x+ δei) = βi −→ δ =
ri

aii

ä Do this in a certain order ...
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ä Southwell’s method (1945) : select for i the one correspond-
ing to the largest entry in r each time

ä ‘cyclic’ iterations – term ’stationary’ used by Young (1950s):
cycle through the components.. Gauss-Seidel, Jacobi, ..

ä ‘chaotic’ or ‘asynchronous’ iterations
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Gauss letter to Gerling (1823)

[source: Math. Tables and other aids to computation, vol. 5, #
36 (Oct. 1951). Translation due to G. Forsythe]
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Ends letter with:

... Almost every evening I make a new edition of the tableau,
wherever there is easy improvement. Against the monotony of
the surveying business, this is always a pleasant entertainment;
one can also see immediately whether anything doubtful has
crept in, what still remains to be desired, etc. I recommend this
method to you for imitation. You will hardly ever again eliminate
directly, at least not when you have more than 2 unknowns.
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Ends letter with:

... Almost every evening I make a new edition of the tableau,
wherever there is easy improvement. Against the monotony of
the surveying business, this is always a pleasant entertainment;
one can also see immediately whether anything doubtful has
crept in, what still remains to be desired, etc. I recommend this
method to you for imitation. You will hardly ever again eliminate
directly, at least not when you have more than 2 unknowns.
The indirect procedure can be done while half asleep, or
while thinking about other things.

ä Recommends this iterative scheme (indirect elimination)
over Gaussian elimination for systems of order >2 (!!)

ä We will contrast this with other recommendations later!
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ä Alston Householder [1964]
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Matrix form of relaxation methods

ä Consider the decomposition A = D − E − F

D

−F

−E

D = diag(A), −E = strict
lower part of A and −F its
strict upper part.

ä Gauss-Seidel amounts to: (D − E)x(k+1) = Fx(k) + b

[Decomposition used: A = (D − E) − F ]

ä Jacobi iteration: Dx(k+1) = (E + F )x(k) + b

[Decomposition used: A = D − (E + F )]
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Over-relaxation (Young and others) is based on the decom-
position:

ωA = (D − ωE)− (ωF + (1− ω)D)

→ successive overrelaxation, (SOR):

(D − ωE)x(k+1) = [ωF + (1− ω)D]x(k) + ωb

ä Up to the early 1980s, this was the state of the art

ä Young-Frankel theory: Over-relaxation - Best ω (turned out
to be > 1)...

ä Two major books: R. Varga (1962) and D. Young (1971)
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Young man: “Go Iterative”

Great survey.. Original title “Solving Linear
Equations is not trivial” B
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ä Something new on the Horizon: Conjugate gradient.

It is my hope, on the other hand, to arouse
the mathematician’s interest by showing (sec. 2)
the diversity of approaches to the solution of (1),
and by mentioning (secs. 3 to 6) some problems
associated with selected iterative methods. The
newest process on the roster, the method of con-
jugate gradients, is outlined in sec. 7. Sec. 8
touches on the difficult general subject of errors
and "condition," while a few words are hazarded
in sec. 9 about the effect of machines on methods.

George Forsythe, 1953

ä George Forsthye (1917-1972) - Joined Stanford in 1957
(Math) - founded the CS dept. there (1965)
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A word on chaotic iterations...

ä Very early impact of the vision of parallel processing –

ä Ostrowski [1955] “free steering” Schechter [1959] “block
chaotic”

ä Chazan-Miranker’s paper [1969] :

“The problem of chaotic relaxation was suggested to the authors by J.
Rosenfeld who has conducted extensive numerical experiments with chaotic
relaxation [J. Rosenfeld (1967)]. Rosenfeld found that the use of more
processors decreased the computation time for solving the linear sys-
tem. (...) The chaotic form of the relaxation eliminated considerable
programming and computer time in coordinating the processors and the
algorithm. His experiments also exhibited a diminution in the amount of
overrelaxation allowable for convergence in a chaotic mode."
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ä Grenoble/Besançon school:

ä J-C. Miellou [1975]

ä Francois Robert [discrete
iterations]

ä P. Spiteri, P. Bahi, Charnay,
Musy, ...,

ä Ideas were ahead of their time by a generation.

ä Chaos is back: Dongarra et al [2012, 2015], D. Szyld &
Frommer (2000), Garay, Magoules, Szyld, (2017), Elhadded,
Garay, Magoules, Szyld, (2017), ..

ä ’Chaotic’→ ‘Asynchronous’ [sounds better]
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Meanwhile on the opposite camp....

ä Major advances on direct methods for sparse matrices.

ä 1960s – Introduction of link between sparse matrices and
graphs [Seymour Parter, 1961]

ä Graphs played a major role thereafter

ä Fill-ins and paths [Rose-Tarjan Theorem, 1975]

ä Elimination Trees [YSMP group at Yale, late 1970s]

ä Packages: YSMP, SPARSPAK.

ä *Major* contribution: book by George and Liu (1981)
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Huge progress of direct solvers

ä Traced progress from 1970s to late 1980s.



ä To this day the two sides are in competition

ä Some applications dominated by direct solvers...

... and others by iterative techniques.
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Not always clear that iterative methods were worth a try:

ä Bodewig [1956] says that they were:
“... nearly always too slow (except when the matrix
approaches a diagonal matrix), for most problems
they do not converge at all, they cannot easily
be mechanised and so they are more appropriate
for computing by hand than for computing by
machines, and they do not take advantage of the
situation when the equations are symmetric” .

ä Only potential advantage he saw over direct methods:
“Rounding errors do not accumulate, they are
restricted to the last operation” .
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ä David M. Young says (1st chapter of his book, 1971):

The use of direct methods even for solving very
large problems has received increased attention
recently (see for example Angel, 1970). In some
cases their use is quite appropriate. However,
there is the danger that if one does not properly
apply iterative methods in some cases one will
incorrectly conclude that they are not effective and
that direct methods must be used. It is hoped that
this book will provide some guidance (...)

• David M. Young Jr. [1923–2008]
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A comparison from the other side (George & Liu’s book)

1.3 Iterative versus direct methods (...) The
above remarks should make it clear that unless
the question of which class of methods should
be used is posed in a quite narrow and well
defined context, it is either very complicated or
impossible to answer. [...gives reference to Varga
and Young and says no books on direct solvers]
In addition, there are situations where it can be

shown quite convincingly that direct methods are
far more desirable than any conceivable iterative
scheme

ä Do not mention the relative ineffectiveness of direct solvers
for large 3D problems [though it is clear it was known]
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Nested dissection: cost for a regular mesh

ä In 2-D consider an n× n problem, N = n2

ä In 3-D consider an n× n× n problem, N = n3

2-D 3-D
space (fill) O(N logN) O(N4/3)

time (flops) O(N3/2) O(N2)

ä Significant difference in complexity between 2-D and 3-D

ä See George & Liu’s book [1981]

ä *Very* common misconception: 3-D problems are harder
just because they are bigger. In fact they are intrinsically harder.
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DEMO



Direct solution of two systems of size N = 122, 500

First: Laplacean on a 350× 350 grid (2D);

Second: Laplacean on a 50× 50× 49 grid (3D)

ä Pattern of similar [much smaller] coefficient matrices.
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As an example of the magnitude of problems
that have been successfully solved on digital
computers by cyclic iterative methods, the Bet-
tis Atomic Power laboratory of the Westinghouse
Electric Corporation had in daily use in 1960 a
two-dimensional program which would treat as a
special case, Laplacean-type matrix equations of
order 20,000. adds a footnote: ... Even more
staggering is Bettis’ use of a 3-Dimens. program
called “TNT-1”, which treats coupled matrix equa-
tions of order 108,000.

ä State of the art in 1960 was a 20,000 × 20,000 Laplace
equation.

ä Could do this in seconds on a Laptop about 15 years ago.

ICERM 09/27/18 p. 24



One-dimensional projection processes

ä Steepest descent: Cauchy [1847]. But Kantorovitch [1945]
introduced it in the form we know today for linear systems for
SPD matrices:

minx
1
2
xTAx− bTx

ä Cimmino’s method [1938] and Kaczmarz’s method [1937]
were also ‘Line-search’ type methods in the direction of a rowT

or a column of A.

ä All these techniques can be viewed as one-dimensional
projection processes
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One-dimensional projection processes

ä Write: x̃ := x+ αd

ä Let r = b−Ax, r̃ = b−Ax̃.

Then write ‘Petrov-Galerkin’
condition:

r̃ ⊥ e→ r −Ad ⊥ e

→ α = (r,e)
(Ad,e)
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ä Steepest descent: d = e = r

ä Minimal residual d = r, e = Ar

ä Residual norm steepest descent d = r, e = ATr [SD for
normal equations

ä Kaczmarz method: d = ATei, e = ei for i = 1, · · · , n.

ä Kaczmarz method equivalent to Gauss-Seidel for

AATu = b with (x = ATu)

ä Very popular in the 70s for Computer Tomography [ART
method]

ä Cimmino’s method == Jacobi method for ATAx = ATb
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Polynomial iteration

ä One-dim projection methods and Richardson iterations are
of the form

xk+1 = xk + βkdk

ä Frankel [1950] considers a ’second-order’ iteration:

xk+1 = xk + βkdk where dk = rk − αkdk−1

ä With constant coefficients−→ Chebyshev iteration.

ä General form is similar to that of Conjugate Gradients

ä Many papers adopted an ‘approximation theory’ viewpoint
[Lanczos, ’52]
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Krylov methods take off: The CG algorithm

ä Magnus Hestenes [UCLA] and Eduard
Stiefel [ETH, Zürich] developed the method of
Conjugate Gradient independently

M. Hestenes

Article:
Methods of conjugate gradients for solving
linear systems, Nat. Bur. Standards, 1952.

E. Stiefel



ä Lanczos developed a similar method [differ-
ent notation and viewpoint:]
Solution of systems of linear equations by min-
imized iterations, Nat. Bur. Standards (1952)
C. Lanczos

ä In effect a minimal residual (MR) method, implemented with
the Lanczos procedure.

ä Note: Same journal - Lanczos came out in July ’52, Hestenes
and Stiefel in Dec. ’52.

ä CG: Single most important advance in the 1950s - not too
well received initially
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ä Viewed as an unstable, direct method.

ä Engeli [1959]: viewed it as iterative it takes 2n or 3n to
‘converge’

ä ... until the early 1970s : paper by John Reid + analysis by
Kaniel

ä With preconditionining [Meijerink and van der Vorst, ’77] the
combination IC (Incomplete Cholesky) and CG became a de
facto iterative solver for SPD case.
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A mystery: why not other acceleration?

ä Acceleration techniques: Richardson, Aitken, then

ä Shanks, Wynn’s ε- algorithm (Brezinski et al, Sidi, ...)

...were available but not used much by researchers in iterative
methods

ä Related methods often provided examples to developers
of extrapolation algorithms [e.g., Wynn [1956] test with Gauss-
Seidel]

ä Forsythe mentions them briefly in his 1953 survey

ä Recent work: C. Brezinski, M. Redivo-Zaglia tested sev-
eral extrapolation algorithms applied to Kaczmarz iteration (To
appear).
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Krylov methods: the ‘nonsymmetric’ period

ä Lanczos [MR paper 1952] : shows a method that is essen-
tially the BiCG algorithm - then says : let us restrict our attention
to symmetric case ... (Normal eqns.) A pity!

ä Forward to 1976: Fletcher introduces BiCG – From here:
CGS [Sonneveld, 1989] Bi-CGSTAB [van der Vorst, 1992], QMR,
TFQMR [Freund, 1991], ....
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Krylov methods: the ‘nonsymmetric’ period

ä Lanczos [MR paper 1952] : shows a method that is essen-
tially the BiCG algorithm - then says : let us restrict our attention
to symmetric case ... (Normal eqns.) A pity!

ä Forward to 1976: Fletcher introduces BiCG – From here:
CGS [Sonneveld, 1989] Bi-CGSTAB [van der Vorst, 1992], QMR,
TFQMR [Freund, 1991], ....

ä “Orthogonal projection” track: ORTHOMIN [Vinsome, 1976],
GCR [Axelsson, Vinsome, Eisenstat Elman & Schultz, ] [OR-
THODIR, ORTHORES, Young et al.], GMRES [YS-Schultz 1986],
....

ä + Theory [Faber Manteuffel theorem, 1984], Convergence
[Eisenstat-Elman-Schultz, 1983], Greenbaum-Strakos, ...
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What is a projection method?

• Initial Problem: b−Ax = 0

• Given two subspaces K and L of RN define the approxi-
mate problem:

Find x̃ ∈ K such that b−Ax̃ ⊥ L

• Leads to a small linear system (‘projected problem’)

• Typically: sequence of projection steps are applied

• With a nonzero initial guess x0, the approximate problem is

Find x̃ ∈ x0 +K such that b−Ax̃ ⊥ L
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Two important particular cases.

1. L = AK . Then ‖b−Ax̃‖2 = minz∈K ‖b−Az‖2
→ class of minimal residual methods: CR, GCR, ORTHOMIN,
GMRES, CGNR, ...

2. L = K → class of Galerkin or orthogonal projection meth-
ods. When A is SPD then ‖x∗ − x̃‖A = min

z∈K
‖x∗ − z‖A

ä CG and the Minimized Iteration method of Lanczos are
projection methods on the Krylov subspace:

Km = span{r0, Ar0, · · · , Am−1r0}

ä Hence the link with polynomials (Lanczos)
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Preconditioning

ä Idea of preconditioning quite old – Golub & O’Leary (1989)
trace term ’preconditioning’ back to Turing [1948] – and Forsythe
[1953] uses the term explicitly: With the concept of “Ill con-
ditioned” systems Ax = b goes the idea of “preconditioning”
them. Gauss [1823] and Jacobi [1845] made early contributions
to this subject.”

ä Wachpress seems first to use preconditioned CG - using
ADI preconditioner [1963]

ä Cesari [1937] also used polynomial preconditioning to speed-
up Richardson iteration.

ä Polynomial preconditioning suggested by Lanczos [1952]
and Stiefel [1959] for CG/CG-like schemes.
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The rise of ILU and ICCG

ä Early work on incomplete factorizations:

* Buleev [1960], Oliphant [1962]

* Stone (SIP method) [1968], Dupont Kendall Rachford [1968]

* Axelsson [generalized SSOR method] [1972]

A = (D̃ − L)D̃−1(D̃ − U)

* Similar idea by Dupont Kendall Rachford [1968]

ä All these methods discussed splittings and worked on sten-
cils for Finite Difference matrices...

ä Then came IC / ILU [general sparse matrices]

ICERM 09/27/18 p. 38



Preconditioning: the impact of ICCG

ä Incomplete Cholesky Conjugate Gradient (ICCG) paper ap-
peared in 1977 (Math. Comp). Work done much earlier

ä Paper had a tremendous impact in following years.
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40 years of ICCG

The ‘Preconditioning 2015’
conference banquet featured
a dinner speech by Koos
Meijerink and Henk van
der Vorst titled “40 years of
preconditioning”.

* Time for a commercial: Preconditioning 2019 will be in
Minneapolis July 1-3, 2019.

[see www.cs.umn.edu/~saad/Precon19]
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Preconditioning

ä Level-of-fill ILU developed (independently) by people from
applications in reservoir simulations [Watts,..]

ä Most successful preconditioners: those developed specifi-
cally for the application [from the PDE or physics – e.g., MG,
AMG, DD methods, ...]

ä For general sparse matrices: many ideas/methods [Approx-
imate inverses, Benzi-Meyer, Grote-Huckle-..,] Multilevel ILU
[Bank,YS-Zhang, ....]

• ‘(One sided) Row reordering: put largest entries on diagional
[idea from sparse direct solution methods] Duff+ Koster [ 2001].

• Complex shifts: Erlangga Osterlee Vuik [2006], Beawens et
al [2000?]

ICERM 09/27/18 p. 41



How does an industrial preconditioner look like today?

A: A mixture of
ä AMG for solving Poisson-like
components
ä ILU for some other parts / fall-
back option
ä Domain Decompositon ideas,...
ä GPU-specific parts
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In a nutshell ...

Relaxation Gauss ( 1820s) Jacobi, Seidel (1870s)
Nekrasov (1890s), Dedekind (1900)
Southwell (1940s), Ostrowski, Young (1950s),
Varga (1950s), ...

Multigrid Federenko (1964), Brandt (1970s)
CG/ Hesteness-Stiefel (1952s), Lanczos (1952),
CG-like Fletcher (1976), ..
Nonsymm. Vinsome (orthomin, gcr, 1976), Young (1980s),
Krylov Elman & al. (1980s), YS (1986, GMRES)

Sonneveld (CGS, 1980), van der Vorst
(Bicgstab, 1990s), QMR, TFQMR (Freund, 1990s)

Precond- Oliphant Buleev (1960s), DKR (1968),
itioning SIP (1967), SSOR-like (Evans, Axelsson)

IC/ILU (van der Vorst 1977), ...
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What has changed in past 4 decades?

ä Research still active: Preconditioners for some types of
problems [Helmholtz, Maxwell, Structures,...], parallel imple-
mentations,

ä Less active: accelerators, ..

ä Numerical analysis and Numerical Linear Algebra has is
gradually disapperaring from computer science departments

ä Topics no longer present in CS &Math. departments: sparse
matrix techniques, sparse direct solvers, preconditioners, multi-
grid, ...

ä *but* these may reappear in other areas.... e.g. computa-
tional statistics, ...,
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What next?

ä By and large, past solution techniques (iterative and direct)
were aimed at solving PDEs

ä Driven in part by demand: Aerospace & Automobile ind., ...

Q: What new demands show up at the horizon?

A: See titles at any meeting on ‘computational X’ and you will
observe that in quite a few talks ‘computational’ is replaced by
‘machine learning’

ä Linear systems→matrix functions, approximating inverses,
random sampling, online SVD, SVD updates, fast QR, ....
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ä Other ideas can be adapted .. For example Peaceman-
Rachford’s ADI [1955] gave rise to ADMM – a great success.

ä Similarly, Steepest Descent gave rise to ‘Stochatic Gradient
Descent’ (SGD) = a basic algorithm in Deep-learning.

ä ... and stochastic variants of the Kaczmarz method are
showing up [e.g. D Needell, R Ward, N Srebro - 2014, ...]

ä Note: asynchronous iterations can be viewed as a form of
stochastic relaxaxion – see analysis by J. C. Strikwerda [2002]

ä Important new consideration: randomness

ä In this context: CG - and related methods no longer work;
Standard optimality (e.g. CG, GMRES) does not help.
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Change should be welcome

ä In the words of “Who moved my cheese?” [Spencer John-
son, 2002]:

If you do not change, you can become extinct !

The quicker you let go of old cheese, the sooner
you find new cheese
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Further reading: (historical surveys)

1 O. Axelsson. A survey of preconditionied iterative methods
for linear systems of algebraic equations. BIT, 25:166–187,
1985.

2 G. E. Forsythe. Solving linear algebraic equations can be
interesting. Bull. Amer. Math. Soc., 59:299–329, 1953.

3 G. H. Golub and D. P. O’Leary. Some history of the
conjugate gradient and Lanczos algorithms: 1948-1976.
SIAM review, 31:50–102, 1989.

4 Y. Saad and H. A. van der Vorst. Iterative solution of linear
systems in the 20th century. Journal of Computational and
Applied Mathematics, 123:1–33, 2000.
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