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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful
information or patterns from data. Very broad area – in-
cludes: data analysis, machine learning, pattern recognition,
information retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation
theory; optimization; ...

ä In this talk: emphasis on dimension reduction techniques
and the interrelations between techniques

Padua 06/07/18 p. 2



Introduction: a few factoids

ä We live in an era increasingly shaped by ‘DATA’

• ≈ 2.5× 1018 bytes of data created in 2015

• 90 % of data on internet created since 2016

• 3.8 Billion internet users in 2017.

• 3.6 Million Google searches worldwide / minute (5.2 B/day)

• 15.2 Million text messages worldwide / minute

ä Mixed blessing: Opportunities & big challenges.

ä Trend is re-shaping & energizing many research areas ...

ä ... including : numerical linear algebra
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Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

• Discover important ‘features’ or ‘paramaters’

The problem: Given: X = [x1, · · · , xn] ∈ Rm×n, find a

low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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ä Φ may be linear : yj = W>xj, ∀j, or, Y = W>X

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Basics: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä SolutionW = { dominant eigenvectors } of the covariance
matrix≡ Set of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄
replaced by X.
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Unsupervised learning

“Unsupervised learning” : meth-
ods do not exploit labeled data
ä Example of digits: perform a 2-D
projection
ä Images of same digit tend to
cluster (more or less)
ä Such 2-D representations are
popular for visualization
ä Can also try to find natural clus-
ters in data, e.g., in materials
ä Basic clusterning technique: K-
means
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Example: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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DIMENSION REDUCTION EXAMPLE: INFORMATION RETRIEVAL



Information Retrieval: Vector Space Model

ä Given: a collection of documents (columns of a matrix A)
and a query vector q.

ä Collection represented by an m × n term by document
matrix with aij = LijGiNj

ä Queries (‘pseudo-documents’) q are represented similarly
to a column
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Vector Space Model - continued

ä Problem: find a column of A that best matches q

ä Similarity metric: cos of angle between a column of A and
q

|qTA(:, j)|
‖q‖2 ‖A(:, j)‖2

ä To rank all documents we need to compute

s = qTA

ä s = similarity (row) vector

ä Literal matching – not very effective.
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Common approach: Use the SVD

ä Need to extract intrinsic information – or underlying “seman-
tic” information –

ä LSI: replace A by a low rank approximation [from SVD]

A = UΣV T → Ak = UkΣkV
T
k

ä Uk : term space, Vk: document space.

ä New similarity vector: sk = qT Ak = qTUkΣkV
T
k

ä Called Truncated SVD or TSVD in context of regularization

ä Main issues: 1) computational cost 2) Updates
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Use of polynomial filters

Idea: ReplaceAk byAφ(ATA), where φ == a filter function

Consider the step-
function (Heaviside):

φ(x) =

{
0, 0 ≤ x ≤ σ2

k

1, σ2
k ≤ x ≤ σ2

1

ä This would yield the same result as with TSVD but...

ä ... Not easy to use this function directly

ä Solution : use a polynomial approximation to φ ... then

ä .... sT = qTAφ(ATA) , requires only Mat-Vec’s

* See: E. Kokiopoulou & YS ’04

Padua 06/07/18 p. 18



IR: Use of the Lanczos algorithm (J. Chen, YS ’09)

ä Lanczos algorithm = Projection method on Krylov subspace
Span{v,Av, · · · , Am−1v}

ä Can get singular vectors with Lanczos, & use them in LSI

ä Better: Use the Lanczos vectors directly for the projection

ä K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a
Lanczos run for each query [expensive].

ä Proposed: One Lanczos run- random initial vector. Then
use Lanczos vectors in place of singular vectors.

ä In short: Results comparable to those of SVD at a much
lower cost.
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Background: The Lanczos procedure

ä Let A an n× n symmetric matrix

ALGORITHM : 1 Lanczos

1. Choose vector v1 with ‖v1‖2 = 1. Set β1 ≡ 0, v0 ≡ 0
2. For j = 1, 2, . . . ,m Do:
3. αj := vTj Avj
4. w := Avj − αjvj − βjvj−1

5. βj+1 := ‖w‖2. If βj+1 = 0 then Stop
6. vj+1 := w/βj+1

7. EndDo

ä Note: Scalars βj+1, αj, selected so that vj+1 ⊥ vj, vj+1 ⊥
vj−1, and ‖vj+1‖2 = 1.
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Background: Lanczos (cont.)

ä Lanczos
recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Let Vm = [v1, v2, · · · , vm]. Then we have:

V T
mAVm = Tm =


α1 β2

β2 α2 β2
. . . . . . . . .

βm−1 αm−1 βm
βm αm


ä In theory {vj}’s are orthonormal. In practice need to re-
orthogonalize
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Tests: IR

Information
retrieval
datasets

# Terms # Docs # queries sparsity
MED 7,014 1,033 30 0.735
CRAN 3,763 1,398 225 1.412
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Average query times

Med dataset
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Average retrieval precision

Med dataset
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Supervised learning

We now have data that is ‘labeled’

ä Example: (health sciences) ‘malignant’- ’non malignant’

ä Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

ä Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’
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d

a b g
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Supervised learning

We now have data that is ‘labeled’

ä Example: (health sciences) ‘malignant’- ’non malignant’

ä Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

ä Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each
item of a given set, find a
mechanism to classify an
unlabelled item into either
the “A” or the “B" class.

?

?
ä Many applications.

ä Example: distinguish SPAM and non-SPAM messages

ä Can be extended to more than 2 classes.
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Another application:
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample
and training samples

ä Get the k nearest neighbors
(here k = 8)

ä Predominant class among
these k items is assigned to the
test sample (“∗” here)
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Supervised learning: Linear classification

Linear classifiers: Find
a hyperplane which best
separates the data in
classes A and B.
ä Example of applica-
tion: Distinguish between
SPAM and non-SPAM e-
mails Linear

classifier

ä Note: The world in non-linear. Often this is combined with
Kernels – amounts to changing the inner product
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A harder case:
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Simple linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.

ä and L = [l1, · · · , ln] the labels either +1 or -1.

ä 1st Solution: Find a vector u
such that uTxi close to li, ∀i
ä Common solution: SVD to re-
duce dimension of data [e.g. 2-D]
then do comparison in this space.
e.g. A: uTxi ≥ 0 , B: uTxi < 0

v

[For clarity: principal axis u drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e.,
one that can ‘discriminate’ well between classes

ä Define “between scatter”: a measure of how well separated
two distinct classes are.

ä Define “within scatter”: a measure of how well clustered
items of the same class are.

ä Objective: make “between scatter” measure large and “within
scatter” small.

Idea: Find projector that maximizes the ratio of the “between
scatter” measure over “within scatter” measure
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Define:

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T

Where:

• µ = mean (X)
• µ(k) = mean (Xk)
• Xk = k-th class
• nk = |Xk|

H

GLOBAL CENTROID 

CLUSTER CENTROIDS

H

X
3

1
X

µ

X
2
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ä Consider 2nd
moments for a vec-
tor a:

aTSBa =
c∑
i=1

nk |aT(µ(k) − µ)|2,

aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT(xi − µ(k))|2

ä aTSBa ≡ weighted variance of projected µj’s

ä aTSWa ≡ w. sum of variances of projected classes Xj’s

ä LDA projects the data so as to maxi-
mize the ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector associated with the largest eigen-
value of: SBui = λiSWui .
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LDA – Extension to arbitrary dimensions

ä Criterion: maximize the ratio
of two traces:

Tr [UTSBU ]

Tr [UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

ä ... alternative: Solve instead
the (‘easier’) problem:

max
UTSWU=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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LDA – Extension to arbitrary dimensions (cont.)

ä Consider the original
problem:

max
U ∈ Rn×p, UTU=I

Tr [UTAU ]

Tr [UTBU ]

Let A,B be symmetric & assume that B is semi-positive
definite with rank(B) > n− p. Then Tr [UTAU ]/Tr [UTBU ]
has a finite maximum value ρ∗. The maximum is reached for a
certain U∗ that is unique up to unitary transforms of columns.

ä Consider
the function:

f(ρ) = max
V TV=I

Tr [V T(A− ρB)V ]

ä Call V (ρ) the maximizer for an arbitrary given ρ.

ä Note: V (ρ) = Set of eigenvectors - not unique
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ä Define G(ρ) ≡ A− ρB and its n eigenvalues:

µ1(ρ) ≥ µ2(ρ) ≥ · · · ≥ µn(ρ) .

ä Clearly:

f(ρ) = µ1(ρ) + µ2(ρ) + · · ·+ µp(ρ) .

ä Can express this differently. Define eigenprojector:

P (ρ) = V (ρ)V (ρ)T

ä Then:
f(ρ) = Tr [V (ρ)TG(ρ)V (ρ)]

= Tr [G(ρ)V (ρ)V (ρ)T ]

= Tr [G(ρ)P (ρ)].
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ä Recall [e.g.
Kato ’65] that:

P (ρ) =
−1

2πi

∫
Γ

(G(ρ)− zI)−1 dz

Γ is a smooth curve containing the p eivenvalues of interest

ä Hence: f(ρ) =
−1

2πi
Tr
∫

Γ
G(ρ)(G(ρ)− zI)−1 dz = ...

=
−1

2πi
Tr
∫

Γ
z(G(ρ)− zI)−1 dz

ä With this, can prove :

1. f is a non-increasing function of ρ;
2. f(ρ) = 0 iff ρ = ρ∗;
3. f ′(ρ) = −Tr [V (ρ)TBV (ρ)]
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Can now use Newton’s method.

ä Careful when defining V (ρ): define the eigenvectors so the
mapping V (ρ) is differentiable.

ρnew = ρ−
Tr [V (ρ)T(A− ρB)V (ρ)]

−Tr [V (ρ)TBV (ρ)]
=

Tr [V (ρ)TAV (ρ)]

Tr [V (ρ)TBV (ρ)]

ä Newton’s method to find
the zero of f ≡ a fixed
point iteration with:

g(ρ) =
Tr [V T(ρ)AV (ρ)]

Tr [V T(ρ)BV (ρ)]
.

ä Idea: Compute V (ρ) by a Lanczos-type procedure

ä Note: Standard problem - [not generalized]→ inexpensive

ä See T. Ngo, M. Bellalij, and Y.S. 2010 for details
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GRAPH-BASED TECHNIQUES



Multilevel techniques in brief

ä Divide and conquer paradigms as well as multilevel methods
in the sense of ‘domain decomposition’

ä Main principle: very costly to do an SVD [or Lanczos] on
the whole set. Why not find a smaller set on which to do the
analysis – without too much loss?

ä Tools used: graph coarsening, divide and conquer –

ä For text data we use hypergraphs
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Multilevel Dimension Reduction

Main Idea: coarsen for
a few levels. Use the
resulting data set X̂ to
find a projector P from
Rm to Rd. P can be used
to project original data or
new data
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ä Gain: Dimension reduction is done with a much smaller set.
Hope: not much loss compared to using whole data
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Making it work: Use of Hypergraphs for sparse data
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Left: a (sparse) data set of n entries in Rm represented by a
matrix A ∈ Rm×n

Right: corresponding hypergraph H = (V,E) with vertex set
V representing to the columns of A.
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ä Hypergraph Coarsening uses column matching – similar to
a common one used in graph partitioning

ä Compute the non-zero inner product 〈a(i), a(j)〉 between
two vertices i and j, i.e., the ith and jth columns of A.

ä Note: 〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij.

Modif. 1: Parameter: 0 < ε < 1. Match two vertices, i.e.,
columns, only if angle between the vertices satisfies:

tan θij ≤ ε

Modif. 2: Scale coarsened columns. If i and j matched and
if ‖a(i)‖0 ≥ ‖a(j)‖0 replace a(i) and a(j) by

c(`) =

(√
1 + cos2 θij

)
a(i)
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ä Call C the coarsened matrix obtained from A using the
approach just described

Lemma: Let C ∈ Rm×c be the coarsened matrix of A
obtained by one level of coarsening of A ∈ Rm×n, with
columns a(i) and a(j) matched if tan θi ≤ ε. Then

|xTAATx− xTCCTx| ≤ 3ε‖A‖2
F ,

for any x ∈ Rm with ‖x‖2 = 1.

ä Very simple bound for Rayleigh quotients for any x.

ä Implies some bounds on singular values and norms - skipped.
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Tests: Comparing singular values
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and TIME (right).
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Low rank approximation: Coarsening, random sampling, and
rand+coarsening. Err1 = ‖A−HkH

T
kA‖F ; Err2= 1

k

∑
k
|σ̂i−σi|
σi

Dataset n k c Coarsen Rand Sampl

Err1 Err2 Err1 Err2

Kohonen 4470 50 1256 86.26 0.366 93.07 0.434

aft01 8205 50 1040 913.3 0.299 1006.2 0.614

FA 10617 30 1504 27.79 0.131 28.63 0.410

chipcool0 20082 30 2533 6.091 0.313 6.199 0.360

brainpc2 27607 30 865 2357.5 0.579 2825.0 0.603

scfxm1-2b 33047 25 2567 2326.1 – 2328.8 –

thermomechTC 102158 30 6286 2063.2 – 2079.7 –

Webbase-1M 1000005 25 15625 – – 3564.5 –
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LINEAR ALGEBRA METHODS: EXAMPLES



Updating the SVD (E. Vecharynski and YS’13)

ä In applications, data matrix X often updated

ä Example: Information Retrieval (IR), can add documents,
add terms, change weights, ..

Problem

Given the partial SVD of X, how to get a partial SVD of Xnew

ä Will illustrate only with update of the form Xnew = [X,D]
(documents added in IR)
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Updating the SVD: Zha-Simon algorithm

ä Assume A≈UkΣkV
T
k and AD = [A,D] , D ∈ Rm×p

ä Compute Dk = (I − UkUT
k )D and its QR factorization:

[Ûp, R] = qr(Dk, 0), R ∈ Rp×p, Ûp ∈ Rm×p

Note: AD≈[Uk, Ûp]HD

[
Vk 0
0 Ip

]T
; HD ≡

[
Σk U

T
kD

0 R

]
ä Zha–Simon (’99): Compute the SVD of HD & get approxi-
mate SVD from above equation

ä It turns out this is a Rayleigh-Ritz projection method for the
SVD [E. Vecharynski & YS 2013]

ä Can show optimality properties as a result
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Updating the SVD

ä When the number of updates is large this becomes costly.

ä Idea: Replace Ûp by a low dimensional approximation:

ä Use Ū of the form Ū = [Uk, Zl] instead of Ū = [Uk, Ûp]

ä Zl must capture the range of Dk = (I − UkUT
k )D

ä Simplest idea : best rank–l approximation using the SVD.

ä Can also use Lanczos vectors from the Golub-Kahan-Lanczos
algorithm.
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An example

ä LSI - with MEDLINE collection: m = 7, 014 (terms), n =
1, 033 (docs), k = 75 (dimension), t = 533 (initial # docs),
nq = 30 (queries)

ä Adding blocks of 25 docs at a time

ä The number of singular triplets of (I−UkUT
k )D using SVD

projection (“SV”) is 2.

ä For GKL approach (“GKL”) 3 GKL vectors are used

ä These two methods are compared to Zha-Simon (“ZS”).

ä We show average precision then time
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ä Experiments show: gain in accuracy is rather consistent
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ä Times can be significantly better for large sets
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Conclusion

ä Interesting new matrix problems in areas that involve the
effective mining of data

ä Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

ä Many online resources available

ä Huge potential in areas like materials science though inertia
has to be overcome

ä To a researcher in computational linear algebra : big tide of
change on types or problems, algorithms, frameworks, culture,..

ä But change should be welcome



When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

ä In the words of Lao Tzu:

If you do not change directions, you may end-up where you
are heading

Thank you !

ä Visit my web-site at www.cs.umn.edu/~saad
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