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Introduction

Numerical linear algebra has always been a “universal” tool
in science and engineering. Its focus has changed over the
years to tackle “new challenges”

1940s–1950s: Major issue: the flutter problem in aerospace
engineering. Focus: eigenvalue problem.

ä Then came the discoveries of the LR and QR algorithms,
and the package Eispack followed a little later

1960s: Problems related to the power grid promoted what
we know today as general sparse matrix techniques.

Late 1980s – 1990s: Focus on parallel matrix computations.
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Late 1990s: Big spur of interest in “financial computing” [Fo-
cus: Stochastic PDEs]

ä Then the stock marked tanked .. and the interest disap-
peared .

Recent/Current: Google page rank, data mining, problems
related to internet, knowledge discovery, bio-informatics, ...

Observations:

ä New forces are starting to reshape numerical linear algebra

ä Numerical analysts are often becoming “data analysts”, or
“bio-informaticians...”
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Introduction: What is data mining?

ä Common goal of data mining methods: to extract
meaningful information or patterns from data. Very broad
area – includes: data analysis, machine learning, pattern
recognition, information retrieval, ...

ä Main tools used: linear algebra; graph theory; approxima-
tion theory; optimization; ...

ä In this talk: brief overview with emphasis on dimension
reduction techniques. interrelations between techniques, and
graph theory tools.
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Major tool of Data Mining: Dimension reduction

ä Goal is not just to reduce computational cost but to:

• Reduce noise and redundancy in data

• Discover ‘features’ or ‘patterns’ (e.g., supervised learning)

ä Techniques depend on application: Preserve angles? Pre-
serve distances? Maximize variance? ..
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The problem of Dimension Reduction

ä Given d � m find a mapping

Φ : x ∈ Rm −→ y ∈ Rd

ä Mapping may be explicit [typically linear], e.g.:

y = V Tx

ä Or implicit (nonlinear)

Practically:

Given: X ∈ Rm×n.
Want: a low-dimensional repre-
sentation Y ∈ Rd×n of X
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Linear Dimensionality Reduction

Given: a data set X = [x1, x2, . . . , xn], and d the dimen-
sion of the desired reduced space Y = [y1, y2, . . . , yn].

Want: A linear transformation from X to Y

v T
d

m

m

d

n

n

X

Y

x

y

i

i

X ∈ Rm×n

V ∈ Rm×d

Y = V >X
→ Y ∈
Rd×n

ä m-dimens. objects (xi) ‘flattened’ to d-dimens. space (yi)

Constraint: The yi’s must satisfy certain properties

ä Optimization problem
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Example 1: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example 2: Digit images (a random sample of 30)
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2-D ’reductions’:
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Basic linear dimensionality reduction: PCA

ä We are given points
in Rn and we want to
project them in Rd. Best
way to do this?
ä i.e.: find the best axes
for projecting the data
ä Q: “best in what
sense”?
ä A: maximize variance
of new data

ä Principal Component Analysis [PCA]
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ä Recall yi = V Txi, where V is m × d orthogonal

ä Need to maximize over all orthogonal m × d matrices V :∑
i ‖yi − 1

n

∑
j yj‖2

2 = · · · = Tr
[
V >X̄X̄>V

]
Where: X̄ = X(I − 1

n
11T) == origin-recentered version of X

ä Solution V = { dominant eigenvectors } of the covariance
matrix == Set of left singular vectors of X̄

ä Solution V also minimizes ‘reconstruction error’ ..∑
i

‖xi − V V Txi‖2 =
∑

i

‖xi − V yi‖2

ä Also maximizes [Korel and Carmel 04]
∑

i,j ‖yi − yj‖2
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Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items
of the same subset are most similar and those of two different
subsets most dissimilar.

Superhard
Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Basic technique: K-means algorithm [slow but effective.]

ä Example of application : cluster bloggers by ‘social groups’
(anarchists, ecologists, sports-fans, liberals-conservative, ... )
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Sparse Matrices viewpoint

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A
sends frequent e-mails to user B’]
ä Adjacency Graph repre-
sented by a sparse matrix

ä Goal: find ordering so blocks
are as dense as possible:

ä Advantage of this viewpoint: need not know # of clusters

ä Use ‘blocking’ techniques for sparse matrices
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each
item of a given set, find a
mechanism to classify an
unlabelled item into either
the “A” or the “B” class.

?

?
ä Many applications.

ä Example: distinguish SPAM and non-SPAM messages

ä Can be extended to more than 2 classes.
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Linear

classifier

Linear classifiers: Find a hyperplane which best separates the
data in classes A and B.
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A harder case:
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Linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.

ä and L = [l1, · · · , ln] the labels either +1 or -1.

ä 1st Solution: Find a vector v
such that vTxi close to li ∀i
ä Common solution: SVD to
reduce dimension of data [e.g.
2-D] then do comparison in this
space. e.g. A: vTxi ≥ 0 , B:
vTxi < 0

v

[Note: v principal axis drawn below where it should be]
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Linear Discriminant Analysis (LDA)

Define “between scatter”: a measure of how well separated
two distinct classes are.

Define “within scatter”: a measure of how well clustered items
of the same class are.

ä Goal: to make “between scatter” measure large, while
making “within scatter” small.

Idea: Project the data in low-dimensional space so as to
maximize the ratio of the “between scatter” measure over
“within scatter” measure of the classes.
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Let µ = mean
of X, and µ(k) =
mean of the k-th
class (of size nk).
Define:

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T .

H

GLOBAL CENTROID 

CLUSTER CENTROIDS

H
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ä Project set on
a one-dimensional
space spanned by
a vector a.
Then:

aTSBa =
c∑

i=1

nk|aT(µ(k) − µ)|2,

aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT(xi − µ(k))|2

ä LDA projects the data so as
to maximize the ratio of these two
numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector associated with the largest eigen-
value of:

SBui = λiSWui .
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LDA – Extension to arbitrary dimension

ä Would like to project in d dimensions –

ä Normally we wish to maxi-
mize the ratio of two traces:

Tr [UTSBU ]

Tr [UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Difficulty: Hard to maximize. See Bellalij & YS (in progress)

ä Common alternative: Solve
instead the (easier) problem:

max
UTSWU=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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Face Recognition – background

Problem: We are given a database of images: [arrays of
pixel values]. And a test (new) image.

ÿ ÿ ÿ ÿ ÿ ÿ

↖ ↑ ↗

Question: Does this new image correspond to one of those
in the database?
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Difficulty Positions, Expressions, Lighting, ...,

Eigenfaces: Principal Component Analysis technique

ä Specific situation: Poor images or delib-
erately altered images [‘occlusion’]
ä See real-life examples – [international
man-hunt]
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Eigenfaces

– Consider each picture as a (1-D) column of all pixels

– Put together into an array A of size # pixels×# images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD of A and perform comparison with any test image
in low-dim. space

– Similar to LSI in spirit – but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)
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Tests: Face Recognition

Tests with 2 well-known data sets:

ORL 40 subjects, 10 sample images each – example:

# of pixels : 112 × 92 TOT. # images : 400

AR set 126 subjects – 4 facial expressions selected for each
[natural, smiling, angry, screaming] – example:

# of pixels : 112 × 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD
ORL dataset
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GRAPH-BASED TECHNIQUES



Graph-based methods
ä Start with a graph of data. e.g.:
graph of k nearest neighbors (k-NN
graph)
Want: Do a projection so as to pre-

serve the graph in some sense

ä Define a graph Laplacean:

L = D − W

x

x
j

i

y
i

y
j

e.g.,: wij =

{
1 if j ∈ Ni

0 else D = diag

dii =
∑
j 6=i

wij


with Ni = neighborhood of i (excl. i)
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The Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

FEM(Y ) =
n∑

i,j=1

wij‖yi−yj‖2 subject to Y DY > = I .

Notes:
1. Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-D data)
2. Note: Min instead of Max as in PCA
[counter-intuitive]
3. Above problem uses original data
indirectly through its graph

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D − W )Y >]

.

ä Solution (sort eigenvalues increasingly):

(D − W )ui = λiDui ; yi = u>
i ; i = 1, · · · , d

ä An n × n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I − W )ui = λiui ; yi = u>
i ; i = 1, · · · , d
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A unified view

ä Most techniques lead to one of two types of problems
First :

ä Y results directly
from computing eigen-
vectors
ä LLE, Eigenmaps, ...

min Y ∈ Rd×n

Y Y > = I

Tr
[
Y MY >]

Second:
ä Low-Dimens. data:
Y = V >X
ä G == identity, or
XDX>, or XX>

min V ∈ Rm×d

V > G V = I

Tr
[
V >XMX>V

]

Observation: 2nd is just a projected version of the 1st.
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Graph-based methods in a supervised setting

ä Subjects of training set are known (labeled). Q: given a test
image (say) find its label.
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↖ ↑ ↗

Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the
graph to use class labels. Idea: Build G so that nodes in the
same class are neighbors. If c = # classes, G consists of c
cliques.

ä Matrix W is block-
diagonal
ä Note:
rank(W ) = n − c.

W =


W1

W2

W3

W4

W5


ä Can be used for LPP, ONPP, etc..

ä Recent improvement: add repulsion Laplacean [Kokiopoulou,
YS 09]
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ELECTRONIC STRUCTURE CALCULATIONS



Electronic structure and Schrödinger’s equation

ä Determining matter’s electronic structure can be a major
challenge:

Number of particules is large [a macroscopic amount
contains ≈ 1023 electrons and nuclei] and the physical
problem is intrinsically complex.

ä Solution via the many-body Schrödinger equation:

HΨ = EΨ

ä In original form the above equation is very complex
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ä Hamiltonian H is of the form :

H = −
∑

i

~2∇2
i

2Mi

−
∑

j

~2∇2
j

2m
+

1

2

∑
i,j

ZiZje
2

| ~Ri − ~Rj|

−
∑
i,j

Zie
2

| ~Ri − ~rj|
+

1

2

∑
i,j

e2

|~ri − ~rj|

ä Ψ = Ψ(r1, r2, . . . , rn, R1, R2, . . . , RN) depends on co-
ordinates of all electrons/nuclei.

ä Involves sums over all electrons / nuclei and their pairs

ä Note: ∇2
iΨ is Laplacean of Ψ w.r.t. variable ri. Represents

kinetic energy for i-th particle.
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Several approximations/theories used

ä Born-Oppenheimer approximation: Neglect motion of nu-
clei [Much heavier than electrons]

ä Replace many electrons by one electron systems: each
electron sees only average potentials from other particles

ä Density Functional Theory [Hohenberg-Kohn ’65]: Observ-
ables determined by ground state charge density

ä Consequence: An equation of the form[
−

h2

2m
∇2 + v0(r) +

∫
ρ(r′)

|r − r′|
dr′ +

δExc

δρ

]
Ψ = EΨ

ä v0 = external potential, Exc = exchange-correlation energy
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Kohn-Sham equations → nonlinear eigenvalue Pb

[
−

1

2
∇2 + (Vion + VH + Vxc)

]
Ψi = EiΨi, i = 1, ..., no

ρ(r) =

no∑
i

|Ψi(r)|2

∇2VH = −4πρ(r)

ä Both Vxc and VH, depend on ρ.

ä Potentials & charge densities must be self-consistent.

ä Broyden-type quasi-Newton technique used

ä Typically, a small number of iterations are required

ä Most time-consuming part: diagonalization
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Real-space Finite Difference Methods

ä Use High-Order Finite Difference Methods [Fornberg &
Sloan ’94]

ä Typical Geometry = Cube – regular structure.

ä Laplacean matrix need not even be stored.

Order 4 Finite Differ-
ence Approximation: x

yz
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The physical domain
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Computational code: PARSEC; Milestones
• PARSEC = Pseudopotential Algorithm for Real Space Elec-

tronic Calculations

• Sequential real-space code on Cray YMP [up to ’93]

• Cluster of SGI workstations [up to ’96]

• CM5 [’94-’96] Massive parallelism begins

• IBM SP2 [Using PVM]

• Cray T3D [PVM + MPI] ∼ ’96; Cray T3E [MPI] – ’97

• IBM SP with +256 nodes – ’98+

• SGI Origin 3900 [128 processors] – ’99+

• IBM SP + F90 - PARSEC name given, ’02

• PARSEC released in ∼ 2005.
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Diagonalization

Note:
Standard packages (ARPACK) do not take ad-
vantage of specificity of problem: self-consistent
loop, large number of eigenvalues, ...

Observations made: for efficiency it is important to

ä Focus on eigen-space - not individual eigenvectors.
ä Take outer (SCF) loop into account

ä Future: eigenvector-free or basis-free methods or

ä .. ‘spectrum slicing’ methods
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CHEBYSHEV FILTERING



Chebyshev Subspace iteration

ä Main ingredient: Chebyshev filtering

Given a basis [v1, . . . , vm], ’fil-
ter’ each vector as

v̂i = pk(A)vi

ä pk = Low deg. polynomial. Enhances wanted eigencompo-
nents

The filtering step is not used
to compute eigenvectors ac-
curately ä

SCF & diagonalization loops
merged
Important: convergence still
good and robust −1 −0.5 0 0.5 1
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0.2
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Deg. 8 Cheb. polynom., on interv.: [−11]
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Main step:

Previous basis V = [v1, v2, · · · , vm]
↓

Filter V̂ = [p(A)v1, p(A)v2, · · · , p(A)vm]
↓

Orthogonalize [V, R] = qr(V̂ , 0)

ä The basis V is used to do a Ritz step (basis rotation)

C = V TAV → [U, D] = eig(C) → V := V ∗ U

ä Update charge density using this basis.

ä Update Hamiltonian — repeat

ä In effect: Nonlinear subspace iteration
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ä Main advantages: (1) very inexpensive, (2) uses minimal
storage (m is a little ≥ # states).

ä 3-term recurrence of Chebyshev polynommial exploited to
compute pk(A)v.

Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky,
Parallel Self-Consistent-Field Calculations with Chebyshev Fil-
tered Subspace Iteration, Phy. Rev. E, vol. 74, p. 066704
(2006).

[See http://www.cs.umn.edu/∼saad]
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Chebyshev Subspace iteration - experiments

ä A large calculations: Si9041H1860, using 48 processors.

Hamiltonian size=2, 992, 832, Num. States= 19, 015.

# A ∗ x # SCF total eV /atom 1st CPU total CPU
4804488 18 -92.00412 102.12 hrs. 294.36 hrs

Pol deg. = 17 For first iteration, 8 for CheFS.

ä Calculation done in ∼ 2006.
ä In 1997 could do: Si525H276

ä Took a few days [48 h. cpu] on
64PE - Cray T3D.
ä Now 2 hours on 1 PE.
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Data mining for materials: Materials Informatics

ä Huge potential in exploiting two trends:

1 Enormous improvements in efficiency and capabilities in
computational methods for materials

2 Recent progress in data mining techniques

ä For example, cluster materials into classes according to
properties, types of atomic structures (‘point groups’) ...

ä Current practice: “One student, one alloy, one PhD” →
Slow pace of discovery

ä Data Mining: help speed-up process - look at more promis-
ing alloys
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Materials informatics at work. Illustrations
ä 1970s: Data Mining “by hand”: Find coordinates
to cluster materials according to structure
ä 2-D projection from physical knowledge

see: J. R. Chelikowsky, J. C.
Phillips, Phys Rev. B 19 (1978).
ä ‘Anomaly Detection’:
helped find that compound Cu
F does not exist
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Example 1: [Norskov et al., ’03, ...]

• Use of genetic algorithms to ‘search’ through database of
binary materials. Lead to discovery of a promising catalytic
material with low cost.

Example 2 : [Curtalano et al. PRL vol 91, 1003]

ä Goal: narrow search to do fewer
electronic structures calculations
ä 55 binary metallic alloys consid-
ered in 114 crystal structures
ä Observation: Energies of different
crystal structures are correlated
ä Use PCA: 9 dimensions good
enough to yield OK accuracy –

Alloys
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tr
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ct
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14
) 

(55) 

energies
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Conclusion

ä Many, many, interesting New matrix problems related to the
new economy and new emerging scientific fields:

1 Information technologies [learning, data-mining, ...]

2 Computational Chemistry / materials science

3 Bio-informatics: computational biology, genomics, ..

ä Important: Many resources for data-mining available on-
line: repositories, tutorials, Very easy to get started

ä Materials informatics very likely to become a major force
ä For a few recent papers and pointers visit my web-site at

www.cs.umn.edu/∼saad
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When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

Thank you !
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