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To Owe Axelsson:

Happy birthday!



Introduction

Numerical linear algebra has always been a “universal” tool
In science and engineering. Its focus has changed over the
years to tackle “new challenges”

1940s—1950s: Major issue: the flutter problem in aerospace
engineering. Focus: eigenvalue problem.

» Then came the discoveries of the LR and QR algorithms,
and the package Eispack followed a little later

1960s: Problems related to the power grid promoted what
we know today as general sparse matrix techniques.

Late 1980s — 1990s: Focus on parallel matrix computations.
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Late 1990s: Big spur of interest in “financial computing” [Fo-
cus: Stochastic PDESs]

» Then the stock marked tanked .. and the interest disap-
peared .

Recent/Current: Google page rank, data mining, problems
related to internet, knowledge discovery, bio-informatics, ...

Observations:
» New forces are starting to reshape numerical linear algebra

» Numerical analysts are often becoming “data analysts”, or
“bio-informaticians...”
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Introduction: What is data mining?

» Common goal of data mining methods: to extract
meaningful information or patterns from data. Very broad
area — includes: data analysis, machine learning, pattern
recognition, information retrieval, ...

» Main tools used: linear algebra; graph theory; approxima-
tion theory; optimization,; ...

» |In this talk: brief overview with emphasis on dimension
reduction techniques. interrelations between techniques, and
graph theory tools.
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Major tool of Data Mining: Dimension reduction

» (Goal is not just to reduce computational cost but to:

e Reduce noise and redundancy in data
e Discover ‘features’ or ‘patterns’ (e.g., supervised learning)

» Techniques depend on application: Preserve angles? Pre-
serve distances? Maximize variance? ..
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The problem of Dimension Reduction

» Given d < m find a mapping

d:x cR™ — y € R

» Mapping may be explicit [typically linear], e.g.:

y:VT:L'

»  Or implicit (nonlinear)

Practically: |

Given: X € R™*x",
Want: a low-dimensional repre-
sentation Y € R¥*X" of X

R

-
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Linear Dimensionality Reduction

Given: adataset X = [x1,x3,...,2x,], and d the dimen-
sion of the desired reduced space Y = [y1, Y25+« Yn]-

Want: A linear transformation from X toY

X . X 6 Rmx'n,
m | \ VvV c Rde
" Y =V'X
al| vT Y Vl” d . Y ¢
N Ran

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)
Constraint: The y;’'s must satisfy certain properties
»  Optimization problem
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Example 1

Original Data in 3-D
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2-D ‘reductions’: |
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2-D ‘reductions’:

PCA - digits: 0 —— 4

LLE - digits: 0 — 4
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Basic linear dimensionality reduction: PCA

» We are given points
In R™ and we want to
project them in R%. Best
way to do this?

» |.e.: find the best axes
for projecting the data

» Q: “pbest in what
sense”?

»  A: maximize variance
of new data

» Principal Component Analysis [PCA]
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» Recall y; = V1Tz;, where V is m x d orthogonal
» Need to maximize over all orthogonal m X d matrices V.

Yillyi— 33 uillz = =T [V XXV

Where: X = X (I — %1 11) == origin-recentered version of X

» Solution V' = { dominant eigenvectors } of the covariance
matrix == Set of left singular vectors of X

» Solution V also minimizes ‘reconstruction error’ ..

D Mz = VViez|?* = lewz Vyill®

)

> Also maximizes [Korel and Carmel 04] 3, - [|y; — ;|?
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Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items
of the same subset are most similar and those of two different
subsets most dissimilar.

Photovoltaic
Superhard

Superconductors
: Catalytic

Multi-ferroics Thermo-electric

®
Ferromagnetic

» Basic technique: K-means algorithm [slow but effective.]

» Example of application : cluster bloggers by ‘social groups’
(anarchists, ecologists, sports-fans, liberals-conservative, ... )
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Sparse Matrices viewpoint

» Communities modeled by an ‘affinity’ graph [e.g., 'user A
sends frequent e-mails to user B’]

» Adjacency Graph repre- » Goal: find ordering so blocks
sented by a sparse matrix  are as dense as possible:

': o’ ‘. % 8 g ‘o L ] o‘: "oo (® 000 L4 R e :-‘ ° :‘. S e o i o.i e o .'

?':.'-:.;:?. .:: .&.'.‘3;..0'.{.- ... s ..:-: s .. :::" ‘.} "':..:. .....'0. e ¥ 'o'::.’ *o° ;.:.' .; o |
° A - ‘o L o ,° ‘..’ o.:’.o hd »

.3.* ;.. ..%o.. ..:'..:'.. .'o.ﬂ' L 4 ;. 'o’ '..' 1§ .c.::-‘&: . o '...o % ooe ....:: o o e ° ‘.7

g S R T e AT Sribdls

s (8 T Bt Tt e
.'-0:0.‘.1""' -. ..i. '.'a:.o‘!. “.. "'.'. .oo .:. ’3.0'.;. 3$.:c' ® o *

»‘. ¢ e “?... ° ) .o. 0.‘- :.;!'.'u..‘o:r. .. ° '."'o o o »‘.'... o’ .:. h; "%‘. [ % %, o %

00 . % oo A e o3 oo o ".. R ° 8, . :o.o ° 0

,"'..‘o.:*n :. : ".o..-:.:...'t ': ;g{i‘.t s 'l :. ..ﬁ... : % ";. 1y :..%';. " 8.::.‘ (i .:.

] ° w§Pe .l ° % %
AL R Lo RN LTS R L o 2les, o -.’" oo LA
>.:. ° ﬁf.. p ) ':-. ; .'....o o> "o'?-... ° .'w.o% o %8 " L o %

oo ool o o, . %00 ® oo L ° o s °
o o or L 3 - 00 % ° ° o b
PG :.'a;v.,'i‘.%z*" X ";":";".:% RN "i’g":l e .1 O
L4 o o 505 o eos 8 1% ¢ 3%, Coe c°,
IR LI T SRR DA MRl 1o - i terarTa D Sal "'3"',.5;.:..-. %
T o f T Rbegt e sl Db . % TP MR+ "r‘%"lc
> 8% ™o : N ....0:0 o.: .8° °o=. ‘::... ’:.' '... 4 o '0". « % ?'-!:. s
-C. .-.ﬁ.-"(' ;‘-."‘p ;' o 5,"-,.‘3.'-':. .'; R ‘. ..l' % 3'.-3"
T E A A B Y U ¥ S v ST
c'-.- AT R A %
“.o..' .‘ .'i'.  x 1Y .'. Adhad '5 ®e%°®  ° ° oﬁmo 0% o

> Advantage of this viewpoint: need not know # of clusters
» Use ‘blocking’ techniques for sparse matrices
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each L
item of a given set, finda =
mechanism to classify an
unlabelled item into either
the “A” or the “B” class. o

l)

» Many applications.
» Example: distinguish SPAM and non-SPAM messages
» (Can be extended to more than 2 classes.
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Linear
classifier

Linear classifiers: Find a hyperplane which best separates the
data in classes A and B.
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A harder case: |

Spectral Bisection (PDDP)
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» Use kernels to transform



Projection with Kernels —— 0% = 2.7463
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Linear classifiers

» Let X = [xy,-- ,x,] be the data matrix.
» and L = [ly,--- ,1,] the labels either +1 or -1.

» 1st Solution: Find a vector v
such that v!'x; close to 1; V1

» Common solution: SVD to
reduce dimension of data [e.gQ.
2-D] then do comparison in this
space. e.g. A:vlz;, > 0, B:
vix, <0

[Note: v principal axis drawn below where it should be]

Roznov, 06-22-2009



Linear Discriminant Analysis (LDA)

Define “between scatter”. a measure of how well separated
two distinct classes are.

Define “within scatter”: a measure of how well clustered items
of the same class are.

» (Goal: to make “between scatter” measure large, while
making “within scatter” small.

ldea: Project the data in low-dimensional space so as to
maximize the ratio of the “between scatter” measure over
“within scatter” measure of the classes.

Roznov, 06-22-2009



Let 4 = mean c
of X, and pu®) = Sp = an(ﬂ(k) — H)(M(k) — )t

mean of the k-th k=1

class (of size ny). Sy = >* >* (z; — 'u(k))(wi . “(k))T.
Define: b1 . € X,

B CLUSTER CENTROIDS
% GLOBAL CENTROID
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» Project set on

T _ T/, (k) _ 2
a one-dimensional @ Spa = Z"’f'a (e )%

space spanned by o
a vector a. a,TSWa = Z Z IaT(CUz' — H(k))|2
Then k=1x; € X,

» LDA projects the data so as
to maximize the ratio of these two max
numbers:

alSpa

a alSwa

» Optimal a = eigenvector associated with the largest eigen-
value of:
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LDA - Extension to arbitrary dimension

» Would like to project in d dimensions —

» Normally we wish to maxi- Ir [UTSpU]
mize the ratio of two traces: Tr [uTswU|

» Constraint: UTU = I (orthogonal projector).
» Reduced dimensiondata: Y = U'X.
Difficulty: Hard to maximize. See Bellalij & YS (in progress)

» Common alternative: Solve max Tr [UTSRU]
instead the (easier) problem: UTSwU=I

» Solution: largest eigenvectors of Spu; = A\;Swu; .

Roznov, 06-22-2009



Face Recognition — background

Problem: We are given a database of images: [arrays of
pixel values]. And a test (new) image.

(.. (.. (.. (.. (.. (..
§ & § § § g

~N T 7

Question: Does this new image correspond to one of those
in the database?
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Difficulty | Positions, Expressions, Lighting, ...,

Eigenfaces: Principal Component Analysis technique

» Specific situation: Poor images or delib-
erately altered images [‘occlusion’]

» See real-life examples — [international
man-hunt]

Roznov, 06-22-2009



— Consider each picture as a (1-D) column of all pixels
— Put together into an array A of size # _pixels X #_1mages.

HEEEE N -

‘/—/
A

— Do an SVD of A and perform comparison with any
In low-dim. space

— Similar to LSl in spirit — but data is not sparse.
Idea: replace SVD by Lanczos vectors (same as for IR)

Roznov, 06-22-2009



Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample | |mages each — example:

# of pixels : 112 x 92 TOT. # images : 400

AR set 126 subjects — 4 facial expressions selected for each
[natural, smiling, angry, screaming] — example:

WY

# of pixels : 112 x 92 # TOT. # images : 504

Roznov, 06-22-2009



Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD
ORL dataset AR dataset
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1 T T T T T 1 T T T T T ! .
ﬁ —lanczos — lanczos
]
090 - - -tsvd 0Y)- - - -tsvd
1
s 0.8
07k 0.7
@ )
© L § 0.6
—_ 0.6[ 1 =
5 o
= =
D o5 [ 0.5
o S
@ s
o 041 3 04l
© ©
0.3 03|
0.2 0.2
0.1 0.1
0 I === I L L L L L 0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
iterations iterations

Vertical axis shows average error rate. Horizontal = Subspace
dimension
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Graph-based methods

» Start with a graph of data. e.g.:
graph of k nearest neighbors (k-NN
graph)

Want: | Do a projection so as to pre-
serve the graph in some sense

» Define a graph Laplacean:

L=D-W
_J1ifg e N; L -
e.g., w”_{() olse D = diag dm—;ww
- Jz -

with IN; = neighborhood of z (excl. 2)
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The Laplacean eigenmaps approach

Laplacean Eigenmaps "minimizes®

Fem(Y) = Z wi;||lyi—y;]|? subjectto YDY' =T.

1,7=1

Notes:

1. Motivation: if ||x; — ;|| is small
(orig. data), we want ||y; — y;|| to be
also small (low-D data)
2. Note: Min instead of Max as in PCA
[counter-intuitive]
3. Above problem uses original data
indirectly through its graph

Roznov, 06-22-2009



» Problem translates to:

min T [Y(D—-W)Y'] .
Y € Ran
YDY T =1

» Solution (sort eigenvalues increasingly):

(D — W)u; = A\jDu; ; yz:u;ra 1=1,---,d

» Ann X n sparse eigenvalue problem [In ‘'sample’ space]

» Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I — W)u; = Aju ; yz:u;ra 1=1,---,d

Roznov, 06-22-2009



» Most techniques lead to one of two types of problems

First :

> Y results directly min  Tr [YMY']
from computing eigen- Y € Raxn

vectors { YY' =1

» LLE, Eigenmaps, ...

Second:

» Low-Dimens. data: min Tr [V XMX'V]
Y =V'X V € Rmxd

> G == identity, or {VT GV =1

XDXT, or XX'

Observation: 2nd is just a projected version of the 1st.
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Graph-based methods in a supervised setting

» Subjects of training set are known (labeled). Q: given a test
image (say) find its label.

T Q0 9 (2] (2] 9
> 2 & a8 & & & & ¢
S & S S NG N L & g e

Q Q (%) ) %) %)

g v

& &
F &

ood Q& & N N N N

Q Q Q Q
N N N N <
.. (o (o

¥

G
G
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VG

Question: Find label (best match) for test image.
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Methods can be adapted to supervised mode by building the
graph to use class labels. Idea: Build GG so that nodes in the
same class are neighbors. If ¢ = # classes, G consists of ¢
cliques.

» Matrix W is block- ( Wi \
diagonal w:
» Note: W = Ws -
rank(W) =n — c. \ 4

W )

» (Can be used for LPP, ONPP, etc..

» Recent improvement: add repulsion Laplacean [Kokiopoulou,
YS 09]
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Electronic structure and Schrodinger’s equation

» Determining matter’s electronic structure can be a major
challenge:

Number of particules is large [a macroscopic amount
contains =~ 102’ electrons and nuclei] and the physical
problem is intrinsically complex.

» Solution via the many-body Schrodinger equation:

HY = EV

» In original form the above equation is very complex

Roznov, 06-22-2009



» Hamiltonian H is of the form :

h2v2 h2v2 1 77 ;e*

Z

2|

—Z

|75 _"°.7|

» U = W(ry,re, ..., n, R, Ra,..., RN) depends on co-
ordinates of all electrons/nuclei.

» Involves sums over all electrons / nuclei and their pairs

» Note: VZ?\II Is Laplacean of W w.r.t. variable r;. Represents
Kinetic energy for 2-th particle.
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Several approximations/theories used

» Born-Oppenheimer approximation: Neglect motion of nu-
clei [Much heavier than electrons]

» Replace many electrons by one electron systems: each
electron sees only average potentials from other particles

» Density Functional Theory [Hohenberg-Kohn '65]: Observ-
ables determined by ground state charge density

» (Consequence: An equation of the form

h? r’ OF,.
——V2-|-Uo()-|-/ Pyt 4
|"°—"°| 6p

v =FEWV

» g = external potential, E,. = exchange-correlation energy
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Kohn-Sham equations — nonlinear eigenvalue Pb

YYVYVYY

||
s
<
\.S
||
S

1 2
_EV _|_ (‘/tion _I' VH _|_ V:cc) \Ilz

p(r) = > |®i(r)|?

V*Vyg = —4np(r)

Both V.. and Vg, depend on p.

Potentials & charge densities must be self-consistent.
Broyden-type quasi-Newton technique used

Typically, a small number of iterations are required
Most time-consuming part: diagonalization
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Real-space Finite Difference Methods

» Use High-Order Finite Difference Methods [Fornberg &
Sloan '94]

» Typical Geometry = Cube — regular structure.
» Laplacean matrix need not even be stored.

Z
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The physical domain
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Computational code: PARSEC; Milestones

e PARSEC =Pseudopotential Algorithm for Real Space Elec-
tronic Calculations

e Sequential real-space code on Cray YMP [up to "93]
e Cluster of SGI workstations [up to '96]

e CM5 [94-'96]

¢ IBM SP2 [Using PVM]

e Cray T3D [PVM + MPI] ~ '96; Cray T3E [MPI] -’97
e IBM SP with +256 nodes — 98+

e SGI Origin 3900 [128 processors] — 99+

e IBM SP + F90 - name given, ‘02

e PARSEC released in ~ 2005.

Roznov, 06-22-2009



Diagonalization

Note:

Standard packages (ARPACK) do not take ad-
vantage of specificity of problem: self-consistent
loop, large number of eigenvalues, ...

Observations made: |for efficiency it is important to

» Focus on eigen-space - not individual eigenvectors.
» Take outer (SCF) loop into account

» Future: eigenvector-free or basis-free methods or
» .. ‘spectrum slicing” methods

Roznov, 06-22-2009






Chebyshev Subspace iteration

» Main ingredient: Chebyshev filtering

Given a basis [vy, ..., vy], fil-
ter’ each vector as

» p; = Low deg. polynomial. Enhances wanted eigencompo-
nents

v; = pr(A)v;

Deg. 8 Cheb. polynom., on interv.: [-11]

The filtering step is not used | .
to compute eigenvectors ac- .. |:
curately »
SCF & diagonalization loops .| ||
merged ’
Important: convergence still
good and robust

Roznov, 06-22-2009



Main step: |

Previous basis V' = (v, Vg, , U]
!

Filter V = [p(A)v1, p(A)vg, - -+, p(A)vp]
1

Orthogonalize [V, R] = qr(V,0)
» The basis V is used to do a Ritz step (basis rotation)
C=VT'AV - [U,D] =eig(C) =V :=V U

» Update charge density using this basis.
» Update Hamiltonian — repeat

» In effect: Nonlinear subspace iteration

Roznov, 06-22-2009



» Main advantages: (1) very inexpensive, (2) uses minimal
storage (m is a little > # states).

» 3-term recurrence of Chebyshev polynommial exploited to
compute pi(A)v.

Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Chelikowsky,
Parallel Self-Consistent-Field Calculations with Chebyshev Fil-
tered Subspace lteration, Phy. Rev. E, vol. 74, p. 066704
(2006).

[See http://www.cs.umn.edu/~saad]
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Chebyshev Subspace iteration - experiments

» A large calculations: S19941 H1sg0, USINg 48 processors.
Hamiltonian size=2, 992, 832, Num. States= 19, 015.

#Axax

# SCF

total eV /atom

1st CPU

total CPU

4804488

18

-92.00412

102.12 hrs.

294.36 hrs

Pol_deg. = 17 For first iteration, 8 for CheFS.

» (Calculation done in ~ 2006.
» In 1997 could do: St595 Ho7g
» Took a few days [48 h. cpu] on
64PE - Cray T3D.
» Now 2 hours on 1 PE.
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Data mining for materials: Materials Informatics

» Huge potential in exploiting two trends:

1 Enormous improvements in efficiency and capabilities in
computational methods for materials

2 Recent progress in data mining techniques

» For example, cluster materials into classes according to
properties, types of atomic structures (‘point groups’) ...

» Current practice: “One student, one alloy, one PhD” —
Slow pace of discovery

» Data Mining: help speed-up process - look at more promis-
iIng alloys

Roznov, 06-22-2009



Materials informatics at work. Illustrations

» 1970s: Data Mining “by hand”: Find coordinates
to cluster materials according to structure
» 2-D projection from physical knowledge

ro =[rs (A) + rp(A)]-[rs(B) + rp(B)]

CN STRUCTURE
8 ¢ CESIUM CHLORIDE
6 v ROCK SALT v
40 4 © WURTZITE
4 + ZINCBLENDE Y csce
| 3 x GRAPHITE v ecsar
OCTET v v eCsT
3ol COMPOUNDS v v
: AN g8-N v v v?
v v
v v
v our() Y
20+ v . .
v v v
v v v 7= ——AgF
0® ° - AgCS
10~ 0© '5 cuct—=—+¥ g
. y——AgBr
+Q CuBr —
T cur—+""AdI
BN + 1+ ++
00 X + +
C +
A | | I L
000 050 1.00 1.50

tr = [rp(A)- rs(A)] + [rp(B)- rs(B)]

2.00

see: J. R. Chelikowsky, J. C.
Phillips, Phys Rev. B 19 (1978).
» ‘Anomaly Detection’:
helped find that compound Cu
F does not exist
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Example 1: | [Norskov et al., 03, ...]

e Use of genetic algorithms to ‘search’ through database of
binary materials. Lead to discovery of a promising catalytic
material with low cost.

Example 2 : |[Curtalano et al. PRL vol 91, 1003]

» Goal: narrow search to do fewer Alloys (55)
electronic structures calculations

» 55 binary metallic alloys consid-
ered in 114 crystal structures

» Observation: Energies of different
crystal structures are correlated

» Use PCA: 9 dimensions good
enough to yield OK accuracy —

energies

Structures (114)
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Conclusion

» Many, many, interesting New matrix problems related to the
new economy and new emerging scientific fields:

II Information technologies [learning, data-mining, ...]

EI Computational Chemistry / materials science

EI Bio-informatics: computational biology, genomics, ..

» |Important: Many resources for data-mining available on-
line: repositories, tutorials, Very easy to get started

» Materials informatics very likely to become a major force
» For a few recent papers and pointers visit my web-site at

WWW.Cs.umn.edu/~saad
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When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

Thank you ! \
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