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Abstract

In an era where Artificial Intelligence is permeating virtuallly every single field
of science and engineering, it is becoming critical for Numerical Linear Algebra
specialists to start exploring the main ingredients of deep learning and to find
ways to contribute to its advancement. What is fascinating is that Numerical
Linear Algebra (NLA) is at the core of Machine Learning (ML) and Artificial
Intelligence (AI). All AI methods rely essentially on four ingredients: data, opti-
mization methods, statistical intuition, and linear algebra. The very first step
of any neural network model is to convert the problem into one that can be
exploited by numerical methods, employing optimization techniques. The task of
this first step is to map words or sentences into tokens which are then embedded
into Euclidean spaces. From there on, the models refer to vectors and matrices.
The goal of this article is to describe the main ingredients of deep learning meth-
ods with an emphasis of a linear algebra viewpoint. The article will describe deep
neural networks, the idea of multilayer perceptrons, and the notion of ‘attention’
which is a key ingredient in large language models but also in other machine
learning applications. A big part of the discussion will be devoted to methods
that exploit graphs in neural networks, e.g., Graph Neural Networks (GNNs).
The paper concludes with remarks on the future of numerical linear algebra in
the era of AI.
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1 Introduction

The progress that is predicted in Artificial Intelligence for the coming decade is truly
staggering. The article [1] summarizes the evolution of AI in recent years (from GPT-2
to GPT-4) and concludes that “Artificial General Intelligence (AGI) by 2027 is strik-
ingly plausible”. The author elaborates by predicting that “by 2027, models will be
able to do the work of an AI researcher/engineer”. The narrative laid out in the arti-
cle is rather compelling and seems to be corroborated by other authors, see, e.g., [2]
a book authored by a co-founder of the pioneering AI company DeepMind. The rapid
advancement in AI has caught the world off-guard, prompting researchers, corpora-
tions, and governments to a fierce competition for super-intelligence. The same article
[1] also highlights the challenges on the horizon, such as issues related to available
data (the “data wall”) and states that one of the key components to progress is new
algorithms. “... current architectures and training algorithms are still very rudimen-
tary, and it seems that much more efficient schemes should be possible.” According
to the author, what has been accomplished in algorithms so far has been to “pick the
many obvious low-hanging fruits”. This provides a unique opportunity for researchers
in Numerical Linear Algebra (NLA) to participate in the progress of AI.

We note that the NLA community as a whole has been rather slow in embracing
AI research. This is rather surprising when considering that almost all the important
recent contributions to improved AI algorithms are rooted in simple NLA ideas. For
example the LoRA work [3] has had a huge impact because it enables practitioners
to cut down training (and inference) costs by orders of magnitude without sacrificing
accuracy - but the idea exploits a simple low-rank approximation. Similarly, the work
on ‘Linear Attention’ [4] exploits a clever idea based on approximating a nonlinear
mapping by a linear one, reducing the cost from O(n2) to O(n). The key idea is
again grounded in NLA. There are a number of similar techniques most of which were
contributed by AI specialists. It is quite likely that big gains in performance may be
achieved if we were able to bring more elaborate NLA techniques than those currently
in use by specialists in the field.

The article will be mostly a survey of known methods in AI with the primary
goal of unraveling the linear algebra aspects of deep learning. Our primary goal is
not to provide a comprehensive coverage of the field which is very broad, but rather
to focus on a few ideas that played a major role and that shaped AI in recent years.
Thus, after covering deep neural networks and multilayer perceptrons, we will describe
the idea of ‘attention’ which is a key ingredient in large language models but also
in other machine learning applications. In addition, a big part of our discussion will
be devoted to methods that exploit graphs in neural networks, e.g., Graph Neural
Networks (GNNs). Finally, a secondary goal of the paper is to make the point that
the numerical linear algebra community will find numerous opportunities for research
in AI and that it should increase its exposure to this emerging field.

2 Historical perspective

The idea of thinking machines began alongside that of modern computing toward the
middle of the 20th century. In 1950 Turing [5] designed a test (now known as the
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‘Turing test’) to answer the question as to whether or not machines can think. Since
then, the field of Artificial Intelligence (AI), has seen several periods of advancement
culminating with the idea of Transformers and Large Language Models and generative
AI, such as Chat-GPT, and LLama3, among others. There was a significant surge
of excitement surrounding AI research during the 1970s and 1980s but it became
evident that the promises made in the field were too ambitious for the time, leading
to a subsequent negative reaction and a decline in interest. AI resurfaced with force
beginning around 2010. A big factor for this come-back was big improvements in
computing power. Then AI began an astoundingly fast ascent around 2016 ending
with systems that can solve typical university-level homeworks and disrupting every
aspect of science and engineering.

2.1 Major Milestones

The first major idea in AI was of neural networks and the invention of the ‘perceptron’
by Rosenblatt in 1958 [6]. Getting insight from human brains, Rosenblatt thought of
a simple system that could perform classification tasks by building a function that
imitated neurons. Thereafter, much of AI research took the viewpoint of symbolic rea-
soning, and natural language processing. Incidentally the term ‘Artificial Intelligence’
was coined in 1956 by John McCarthy at the Dartmouth College Artificial Intelligence
Conference [7]. Among related developments, one can mention the invention of the
LISP language from 1958 which emphasized symbolic processing capabilities. Then
came the so-called AI Winter (1970s) - when AI researchers realized that their progress
was stalling. Funding and interest in AI research fell significantly. The main reason
that is often cited for this lack of progress was the limitations of the AI approaches of
that time, such as symbolic reasoning.

Readers in the field of Numerical Analysis will certainly be interested to learn that
it is the departure from symbolic reasoning and the adoption of numerical approaches
that saved AI. Indeed the next big milestone was the expansion of the Perceptron idea
to Multilayer Neural Networks and the exploitation of Backpropagation techniques
around the mid 1980s. The development of the backpropagation algorithm in [8] gave
a huge boost to AI ideas of the time as it allowed multi-layer neural networks to be
trained effectively. This revolutionized neural networks and provided the foundation
for practical deep learning. In spite of this major breakthrough AI still fell short of
fulfilling the promises of its early days, due to the limited computational resources of
the time.

The year 1997 saw the first major demonstration of AI systems: IBM’s Deep Blue
system defeated world chess champion Garry Kasparov in a six-game match. This was
achieved by a brute-force approach, evaluating millions of chess positions per second.
This event was a landmark moment in AI, showing that intensive search algorithms
using pure computational power can defeat a human expert. However, Deep Blue did
not exploit standard AI ideas of the time.

One had to wait until the period of the Mid 1990s to the decade of the 2000s to
witness the real rise of machine learning and data-driven AI. The main ingredient
behind this surge was the dramatic improvement of computational power and avail-
ability of large datasets. The field of AI took a definite turn away from rule-based
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systems (symbolic reasoning AI) and into data-driven approaches like machine learn-
ing and statistical modeling, i.e., more numerical approaches. One must realize that
in this period machine learning was not limited to Neural Networks. In fact a com-
mon term used at the time was ‘data mining’, which essentially included any method
that helps extract information from data. These methods were in the form of unsuper-
vised, supervised, or semi-supervised learning. Among the powerful supervised learning
techniques that were developed were classification methods such as Support Vector
Machines (SVM) [9], or the Linear Discriminant Analysis, e.g., [10]. Fascinating meth-
ods were also discovered in unsupervised learning. These include the techniques of
Eigenmaps [11], and Locally Linear Embedding [12] which are ‘embedding’ techniques
that map an item in high dimensional space into a low dimensional one. Simplified
versions of embeddings will later become part Deep Neural Network models. They are
also the backbone of graph-based approaches such as Graph Convolutional Networks
(GCN) and Graph Attention Networks (GAT), see Section 5.1.

Another breakthrough took place in 2012 where Convolutional Neural Networks
(CNN) appeared in force. In 2012 a CNN called AlexNet [13] won a yearly compe-
tition of image recognition called ImageNet by a significant margin, demonstrating
the potential of deep learning for image recognition tasks. What took researchers by
surprise was the margin of superiority compared to anything that was achieved up
to that date. In a short time AI systems surpassed humans at the task of classifying
images. This development ushered a resurgence in deep learning research and applica-
tions, leading to advances in speech recognition, image processing, and even natural
language understanding.

Then in 2016, following the steps taken by Deep-Blue almost a decade earlier, came
another powerful demonstration of machine versus man when AlphaGo, a program
developed by DeepMind, defeated Lee Sedol a champion of the game Go. Go is a game
considered to be much more complicated than chess due to its huge number of possible
moves. This fascinating episode of AI is narrated in detail in [2] a book co-authored
by one of the founders of DeepMind.

AI as we know it today took-off with the advent of generative AI and Large
Language models. Many developments led to LLMs. In summary, these involved mod-
ifications of neural networks that tried to process natural languages. If you give an
unfinished sentence to the system, what are the best words that can be generated to
complete the sentence? The answer is obtained by training a large model using a big
data base. A major technique that was developed was Recurrent Neural Networks [14]
but it was soon discovered that the learning process for RNNs often led to numerical
difficulties. Corrective techniques were invented including Long Short Term Memory
(LSTM), e.g., [15], or Gate Recurrent Units [16].

Then came another breakthrough when a paper with the title “Attention is all you
need” [17] suggested essentially that all of these were not needed. This led to GPT-
1 by OpenAI in 2018 followed by GPT-2 (2019) and GPT-3 (2020). GPT stands for
Generative Pretrained Transformer and the main idea used is that of transformers
exploiting two basic building blocks: the multi-layer perceptron idea of earlier times
and attention. When it was released in 2020 GPT-3 was one of the largest language
models capable of understanding and generating human-like text. It was seen as a
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Model GPT-1 GPT-2 GPT-3 GPT-4

Year 2018 2019 2020 2023
# Params 177M 1.5B 175B 1.7 T

Table 1 Evolution of the number of parameters in
GPT-x models

decisive advance, that marked the dawn of a new era. The training of Chat-GPT3 was
a tour-de-force, requiring a massive corpus of text and using 175 billion parameters.

Nowadays experts speak of General Artificial Intelligence (AGI), or the ability of
an AI system to perform general tasks done by humans, e.g., the work of an engineer.
Currently, computer software companies are already starting to reduce the number of
programmers they employ because they can rely on AI instead.

2.2 A comparison with Moore’s law

It is interesting to draw a comparison of the remarkable progress in AI with progress
made in another field over the past few decades: chip-making. In this context, Moore’s
Law [18] which was stipulated in 1965 predicted the exponential progress of chip man-
ufacturing for the following decades. The prediction was fairly accurate until recent
years when device manufacturing started to confront the limits imposed by physics
at the nanoscale. It is rather intuitive that any major discovery should follow a pro-
gression that exhibits an exponential behavior in its early stages. Therefore we can
ask the question: Is there a sort of new Moore’s law for AI? Here we could compare
hardware but it is more relevant to compare number of parameters.

Moore’s Law stated that the number of transistors that can be placed on a chip
will double every two years. In Artificial Intelligence we can look at the number of
parameters in large language models (LLMs) to see if there are any such behavior that
can be discerned. Using only open-AI’s GPT models for consistence, we can put the
number of parameters in a table as shown in Table 1 Based on these 4 points, we can
estimate the doubling time to 0.425 years (or 5.1 months) and the time to a 10-fold
increase to 1.41 years (or 17 months). It is unlikely that this rate will be sustained and
the primary reason for this is the ‘data-wall’, or the foreseen limitation of available
data that can be exploited by LLMs. Since the optimal number of parameters used
in a model is tied to the amount of data, according to a number of ‘neural network
scaling laws’ [19, 20], it is clear that data is the bottleneck that limits the growth of
the number of parameters and we are seeing this today.

While computer hardware manufacturing is highly competitive and protected, AI is
characterized by a global openness. This environment is a blessing for research/science
but it is also a curse as it makes containment challenging. However, there are now
indications that the current success of AI will lead it to become less open in the
future [1].

3 Deep Neural Networks

Neural Networks were initially developed with the help of an analogy with the human
brain: some picture is seen (input), and analyzed to enable a comparison with stored
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images that have been memorized. In a machine context, we can view the process from
the angle of finding a function φ through ‘training’, or optimizing φ on known data.
Once the function is found, i.e., once the model is trained, then ‘inference’ becomes
a matter of evaluating the function for some new input and deciding on an outcome
based on the result. This, roughly speaking, is common to all neural network methods.

Two ideas that originated from numerical analysis played a major role in DNNs:
The universal representation theorem proved by George Cybenko (1989) [21], and
the idea of backward differentiation, which led to Backpropagation see e.g., Andreas
Griewank [22–24]. These will be discussed briefly in the next few sections.

3.1 Multi-Layer Perceptrons

The problem of classification can be viewed from the angle of approximating a function
which maps a data item to a certain label. In regression the output of a function can
be any value in R or vector in Rk and the objective is to find one such function that
transforms sample inputs to outputs. For example, we could be interested in finding
the best function to predict an asset price (a value in R) given a few commodity prices
(a vector in Rd). In classification the functions are allowed to have a finite number
of values usually referred to as ‘labels’. An example would be to predict if a message
is Spam or non-Spam given a few of its key-words. Multilayer Perceptrons (MLPs)
express these functions in the form of composition of functions that combine linear
and nonlinear mappings. MLPs are key components of Transformers which are at the
core of of LLMs.

Suppose we have a set of sample images of digits and that we know the labels of
these samples, a number between 0 and 9. The problem is to use the given dataset,
say n pictures along with their correct labels, to build a function which will identify
the label of an arbitrary new image (not in the sample). This function will take an
array of pixels x and produce the label via a function φ(x), a digit between 0 and 9
or a vector of length 10, giving the probabilities that the label of x is 0, 1, · · · , 9.
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Fig. 1 A simple neural network with three hidden layers
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The unknown function φ is defined through a number of stages corresponding to
layers in the network. In this section, we consider the simplest case of Multi-Layer
Perceptron, depicted in Figure 1. The network in Figure 1 has an input layer (leftmost,
where x enters), 3 hidden layers (elongated ellipses) and output layer (rightmost).
The input on the left side is typically a vector of length d, whose components are
often called ‘features’. It is common to represent feature vectors as row-vectors, i.e.,
x ∈ R1×d, and they form the rows of a sample matrix that is processed in block,
through the layers, as is discussed later. For convenience we will assume for now that
x is a regular d-dimensional vector, i.e., x ∈ Rd.

To separate two given sets of input data, we could use the hyperplane delimited
by the linear mapping φ(x) = wTx+ β. The two sets are defined by the sign of φ(x):
positive sign for one set and nonnegative for the other. In other words:

φ(x) = σ(wTx+ β) (3.1)

where here σ is the sign function, will give the label of each set as +1 or −1. Thus,
if we had a number of training data points (xi, yi) with binary labels (e.g., ‘spam’–
‘non-spam’, ‘malignant’ –‘non-malignant’,...) where yi = ±1, we could use this set to
determine an optimal w for which φ(xi) ≈ yi for i = 1, · · · , n.

The functions used in neural networks are generalizations of the above function.
Instead of a single vector w we will use a d × k matrix W and σ is replaced by a
continuous function known as an ‘activation function’. The result is that φ(x) is a
vector. In addition, the final function φ is actually a composition of these elementary
functions, associated with the different layers.

Going through the first layer, x is transformed into WT
1 x+ b1 where W1 ∈ Rd×d1

is some unknown matrix of weights to be determined and b1 ∈ Rd1 is a bias, also to be
determined. This first linear transformation is then compounded with the activation
function usually denoted by σ, so the output of the first layer, denoted by z1 is

z1 = σ(WT
1 x+ b1). (3.2)

There are a number of choices for the activation function σ, but the most common is
the Rectified Linear Unit, or ReLU:

σ(t) = max{0, t}. (3.3)

Two other common activation functions are the sigmoid σ(t) = (1 + e−t)−1 and the
hyperbolic tangent σ(t) = tanh(t) = (et − e−t)/(et + e−t). Note that the value of
ReLU is nonnegative, while those for the sigmoid and tanh lie in (0, 1) and (−1, 1)
respectively. The second layer takes the output z1 and applies to it a transformation
similar to the first one: z2 = σ(WT

2 z1 + b2). Generally, going from layer l − 1 to layer
l we have

zl = σ(WT
l zl−1 + bl), (3.4)

where Wl ∈ Rdl−1×dl , bl ∈ Rdl , and σ. Assuming there are L hidden layers (L = 3 in
Figure 1), then counting the input and output layers, we have L+ 2 layers altogether.
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The parameters Wl, bl involve a mapping from data in layer l − 1 to data in layer l
and we have L + 1 of these, starting with W1, b1 and ending with WL+1, bL+1. The
last vector to be computed is zL+1 (e.g., z4 in Figure 1) and φ(x) is set to this output.
Thus, for the example in Figure 1,

φ(x) = σ(WT
4 σ(WT

3 σ(WT
2 σ(WT

1 x+ b1) + b2) + b3) + b4). (3.5)

This function is better expressed in algorithmic form, as shown in Algorithm 1. (Note
that the algorithm does not solve a problem yet - it just defines the function φ, given
the parameters).

Algorithm 1 Forward Propagation

1: Input: x ∈ Rd, Output: y ∈ RC
2: Set: z0 = x
3: for l = 1 : L+1 do
4: zl = σ(WT

l zl−1 + bl)
5: end for
6: Set: φ(x) := zL+1

Layer

Input

Layer

OutputHidden

Layer

Fig. 2 A simple neural network with 2 hidden layers

The problem is to find a function φ thus defined through these parameters in such
a way that given some data, i.e., a set of xi’s for which the exact outcome yi is known
(training data), the value of φ(xi) is closest to yi according to some measure.

In the case of digit recognition, we would have a set x1, · · · , xn of images of digits
for which the exact digit yi is known. Each image is an array m1×m2 of pixels which
is vectorized into a vector of length d0 ≡ m1m2. Each of these features xi will have a
value of yi between 0 and 9. It is convenient to recast the digit yi into a so-called one-
hot vector which is a vector of 10 entries that are zero except for the one corresponding
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to the digit yi which is set to one. Thus, if the digit is 2, the vector yi will be the
canonical vector e3 in R10, i.e., the 3rd column of the 10×10 identity matrix. Suppose
that m1 = m2 = 20 and that we have 2 hidden layers with d1 = 100, d2 = 100. Then
the input data has size n× d0 where d0 = 400 and the output will be of size n× 10.

The problem is to find a function φ (i.e., matrices Wl) such that φ(x) ≈ y for each
if the data pairs (xi, yi) in the ‘training set’. The question that arises is whether or
not it is possible to approximate an unknown function φ by a composition of functions
of the form (3.1). The ‘universal representation theorem’ shown by George Cybenko
in 1989 [21], answered this answer and provided a major theoretical foundation for
neural networks.

3.2 Loss function and training the MLP

Training the model requires a set of data points xi, yi, i = 1 : n. The input can therefore
be set as a matrix X of size n × d0, in which each row corresponding to a sample.
The output can be a vector Y of length n, whose entries are the (known) labels of the
samples. In classification, it is also common practice to replace the label by a one-hot
row vector of length C, where C is the number of classes, as was described earlier. In
this situation Y is n×C. Thus, we seek a function φ such that φ(xi) ≈ yi for i = 1 : n
- or, in matrix form φ(X) ≈ Y . Using matrix notation again, each of the internal
variables zl defined earlier becomes a matrix Zl of size n× dl and the transformation
(3.4) becomes:

Zl = σ(Zl−1 ×Wl + bl) (3.6)

where Wl Rdl−1×dl , bl ∈ R1×dl , and σ are the same as before. Note the change of
notation where the samples xi and internal variables zi seen in Section 3.1 are now row
vectors that occupy the rows of the matrix X and Zl respectively. Here we also need
to shed light on a feature of notation that is common in this context. The product
Zl−1×Wl in (3.6) is a matrix of size n× dl and when the row vector bl is added to it,
it is meant that it is added to each of its rows1.

For the given training data X ∈ Rn×d0 and corresponding ground truth Y ∈
Rn×dL+1 , we need to express an optimization problem which will consist of finding an
optimal set of parameters W , such that φW (X) ≈ Y . Here by W we mean the set
of parameters W1, · · · ,WL+1 along with the biases b1, · · · , bL+1. The output of the
network is the matrix ZL+1 = φW (X) ∈ Rn×C . We added W as a subscript to the
function φ to emphasize its dependence on these parameters. A better notation might
be φ(X |W ) which is to be read as “the result of φ for data set X, given the parameter
set W .” When the input data X is fixed as is usually the case for training, then we
can just write φ(W ). When W is fixed as is the case when testing, i.e., during the
inference phase, we evaluate φW (x), which can be written as φ(x) without ambiguity,
for some data item x.

1This is called broadcasting, a term borrowed from the Python language. Since Python is heavily used in
AI, its syntax and terminology has permeated the notation used in the field. Incidentally, in R, a popular
language in computational statistics, the equivalent term to broadcasting is vector recycling or recycling
rule. MATLAB, started supporting broadcasting with version R2016b, and it calls this operation implicit
expansion.

9



One possible formulation for an objective function to minimize could be:

min
W
L(W ) ≡ ‖Y − φW (X)‖2F =

n∑
i=1

‖yi − φW (xi)‖22 (3.7)

where ‖ · ‖F represents the Frobenius norm. Recall that Y and φW (X) are of size
n×dL+1 where dL+1 ≡ C is the number of classes. This simple formulation works fine
but it is seldom employed.

A preferred approach is to exploit a cross-entropy distance - a notion based in
maximum likelihood estimation. The output of the model φW (xi) is often denoted
by ŷi. When the output and the yi’s are scalars then the cross-entropy loss is simply
defined by

L(W ) = − 1

n

n∑
i=1

yi log ŷi (3.8)

In classification problems with C classes, the yi’s are often one-hot vectors of length
C, and the outputs are processed by the ‘softmax’ function, which is defined as follows
for a given row vector z:

softmax(z) =
exp(z)

sum[exp(z)]
. (3.9)

The exponential is applied componentwise and ‘sum[v]’ is the sum of components of
v. With this we define the vector ŷi:

ŷi = softmax(φ(xi)), (3.10)

and the new output matrix Ŷ whose rows are the ŷi’s
2. The end result is that each row-

sum of Ŷ is equal to one and each entry is nonnegative. The advantage of this simple
transformation is that the entries can now be interpreted as probabilities. Finally, the
product yi log ŷi in the scalar case, equation (3.8), is replaced by the inner product
(yi, log ŷi). Therefore, in the vector case, we want to minimize the following cross-
entropy function:

L(W ) = − 1

n

n∑
i=1

(yi, log ŷi) . (3.11)

The above expression comes from statistical arguments. Since the ŷi are to be
treated as probabilities that depend on W , the categorical distribution given W
is the inner product Cat(yi|ŷi) = (yi, ŷi) which leads to the likelihood function∏C
i=1(yi, ŷi(W )). Taking the average negative log yields the negative log likelihood

function to be minimized:

L(W ) = − 1

n

n∑
i=1

log(yi, ŷi) = − 1

n

n∑
i=1

(yi, log(ŷi)), (3.12)

2A common variation to the softmax function is to replace the variable z in the exponentials of
Equation (3.9) by z/T where T is known as the temperature.
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where the second equality in the above equation comes from the fact that each vector

yi has only one nonzero component, e.g., the c-th component y
(c)
i = 1, and therefore

log(yi, log(ŷi)) = y
(c)
i log(ŷ

(c)
i ) from which the result follows.

3.3 Optimization in DNNs

In spite of its simplicity, the Stochastic Gradient Descent (SGD) algorithm is a good
representative of iterative optimization algorithms in DL. This is because its use is
rather widespread and it shares the same features as those of the more advanced
algorithms. The classical (deterministic) gradient descent (GD) method for minimizing
a convex and differentiable function f(w) with respect to w, consists of taking the
iterates:

wj+1 = wj − ηj∇f(wj), (3.13)

where ηj is a scalar termed the step-size or learning rate in machine learning. Gradient
descent is well understood for functions f that are convex. In this situation, the step-
size ηj is usually determined by performing a line search, i.e., by selecting the scalar η
so as to minimize the cost function f(wj−η∇f(wj)) with respect to η. In data-related
applications w is a vector of weights needed to optimize a process. In deep learning,
f(w) is often the sum, or the mean, of a large number of other cost functions, i.e., we
often have

f(w) =
1

n

n∑
i=1

fi(w) → ∇f(w) =
1

n

n∑
i=1

∇fi(w). (3.14)

The related optimization problem is known as the finite sum problem [25]. The index
i here refers to the samples in the training data. In the simplest case where a ‘Mean
Squared Error’ (MSE) cost function is employed, we would have f(w) = 1

n

∑n
i=1 ‖yi−

φw(xi)‖22 where yi is the target value for xi and φw(xi) is the prediction of the model
for xi given the weights represented by w.

Since it is usually expensive to compute the ‘full’ gradient ∇f but inexpensive to
compute a component ∇fi(w), Stochastic Gradient Descent (SGD) methods replace
the gradient ∇f(wj) in the gradient descent step (3.13) by ∇fk(wj) where k is an
index between 1 and n drawn at random. The result is an iteration of the type:

wj+1 = wj − ηj∇fk(wj), (3.15)

where fk is a function among {f1, f2, · · · , fn} drawn at random at each step j. The
parameter ηj , called the learning rate in this context, is rarely selected by a linesearch
but determined adaptively or set to a constant. Convergence results for SGD have been
established in the convex case [26–29]. The main point, going back to the pioneering
work by Robbins and Monro [29], is that when gradients are inaccurately computed,
then if they are selected from a process whose noise has a mean of zero then the
process will converge in probability to the root.

The SGD algorithm goes back to 1951 with the seminal article by Robbins and
Munro [29] which considered the general problem of finding the root of the equation
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M(w) = α where M(w) is not available to the ‘experimenter’ but can be measured, or
sampled, via a random variable H(w) that satisfies E[H(w)] = M(w). In this case the
deterministic scheme wn+1 = wn − anM(wn) is not feasible but can be replaced by
an iteration of the form wn+1 = wn − angn in which gn = H(wn). The article showed
convergence results when the following conditions are satisfied:

∞∑
i=1

ai =∞,
∞∑
i=1

a2
i <∞. (3.16)

Further analysis of the Robbins an Munro framework can be found in [27, 28, 30].
A straightforward SGD approach that uses a single function fk at a time is seldom

used in practice because this typically results in slow convergence. A common middle-
ground alternative is to resort to mini-batching, where the idea consists of replacing
the single function fk, selected at random from f1, f2, · · · , fn by an average of a few
such functions - again drawn at random from the full set. Thus, the set {1, 2, · · · , n} is
partitioned into nB mutually disjoint ‘mini-batches’ Bj , j = 1, · · · , nB whose union is
the set {1, 2, · · · , n}. Here, each Bj is a small set of indices. Then instead of considering
a single function fi we will consider

fBj (w) ≡ 1

|Bj |
∑
k∈Bj

fk(w). (3.17)

We will cycle through all mini-batches Bj at each time performing a group-gradient
step of the form:

wj+1 = wj − ηj∇fBj (wj) j = 1, 2, · · · , nB . (3.18)

If each set Bj is small enough, computing the gradient will be manageable and compu-
tationally efficient. One sweep through the whole set of functions as in (3.18) is termed
an ‘epoch’. The number of iterations of SGD and other optimization algorithms in DL
is often measured in terms of epochs.

Mini-batch processing in the random fashion described above is advantageous from
a computational point of view since it typically leads to fewer sweeps through each
function to achieve convergence. It is also mandatory if we wish to avoid reaching
shallow local minima and overfitting. SGD approaches of this type are at the heart of
optimization techniques in DL.

SGD is the simplest algorithm employed in Deep Learning among a class of well-
established ‘optimizers’. The most common optimization technique invoked to train
a neural network is know as the Adaptive Moment Estimation (Adam) algorithm.
Adam and other optimizers exploit two ideas: variance reduction and momentum.
Variance reduction is borrowed from a technique known as AdaGrad [31] which scales
the variables adaptively, adjusting the learning rate for each parameter individually
in a model by considering the history of past gradients. The goal is to perform larger
updates for ‘infrequent’ parameters and smaller updates for frequent ones. The second
idea is that of momentum. Referring to the basic GD iteration (3.13), the principle of
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momentum is to add a multiple of the previous increment wj − wj−1 to the iterate:

wj+1 = wj − ηj∇f(wj) + ν(wj − wj−1), (3.19)

in essence forcing the iterate not to move too far away from its current trajectory.
Adam has two momentum terms one for the gradient and the other for variance.

Both of these are attenuated exponentially. The algorithm is described below where
gt is the gradient at step t,and β1 and β2, are decay rates.

mt = β1mt−1 + (1− β1)gt , m̂t = mt/(1− βt1) (3.20)

vt = β2vt−1 + (1− β2)(gt)
2 , v̂t = vt/(1− βt2) (3.21)

wt = wt−1 −
ηm̂t√
v̂t + ε

. (3.22)

Note that the shown vector divisions in the algorithm are performed component-
wise. Similarly the term (gt)

2 in (3.21) represents the vector of the squares of the
components of gt. Then, in (3.22) the components of the vector m̂t are divided by
those of the component-wise square root of v̂t + ε. Here ε is a small scalar used to
prevent divisions by zero or small numbers. The recommended parameters are β1 =
0.9, β2 = 0.999, ε = 10−8.

3.4 The challenges of DNNs

One of the major issues in optimizing DNNs is the lack of convexity of the objective
functions invoked in neural networks. Therefore, all methods that feature a second-
order character, such as a Quasi-Newton approach, will face both theoretical and
practical difficulties.

The lack of convexity and the fact that the problem is heavily over-parameterized
mean that there are many solutions to which the algorithms can converge. To which
of these will the optimizer converge and which optimizer is likely to perform better? If
we consider the objective function as the sole criterion, one may think that the answer
is clear: the lower the better. However, practitioners in this field are more interested in
‘generalization’ or the property to obtain good predictions on data that is not among
the training data set.

In the past few years, quite a few published articles were devoted to understanding
the nature of deep learning and, in particular, the problem of generalization has been
the object of numerous recent studies, see, e.g., [32–35] among many others. A puzzling
character of neural networks is that they tend to do quite well at classifying items
that do not belong to the training set. However, the paper [34] shows by means of
experiments that looking at DL from the angle of minimizing the loss function fails to
explain these nice generalization properties. The authors show that they can achieve a
perfect loss of zero in training models on well-known datasets (MNIST, CIFAR10) that
have been modified by randomly changing all labels. In other words one can obtain
parameters whose loss function is minimum but with the worst possible generalization
since the resulting classification would be akin to assigning a random label to each
item. A number of other papers explore this issue further [32, 33, 35, 36] by attempting
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to explain generalization with the help of the ‘loss landscape’, the geometry of the
loss function in high dimensional space. What can be understood from these works is
that the problem is far more complex than just minimizing a function and that the
random nature of the optimization plays a central role.

3.5 Computational graphs and back-propagation

Back-propagation is another example of an important contribution of scientific
computing to machine learning. In fact it may be argued that the impact of back-
propagation is just as important as that of high-performance hardware in the revival of
deep learning. Given a certain function φ the problem faced by software developers is
to compute the partial derivatives of φ in order to deploy common optimization algo-
rithms. The techniques of ‘automatic differentiation’ developed for this purpose was
popularized by the work of Andreas Griewank [22–24] among others. Back-propagation
is the term used for this method in deep learning.

Computational graphs are directed graphs, where vertices represent tasks that
must be executed in the order dictated by the directed edges of the graph: An evalu-
ation of a node will depend on other (incoming) nodes. For example we may have a
node that evaluates

f(x, y, z) = φ(a(x, y, z), b(x, y, z), c(x, y, x)). (3.23)

In this case, node (f) will be evaluated once nodes (a), (b) and (c) have been calculated.
Each of these in turn may depend on other nodes. Figure 3 shows a local view of such
a graph for the case of MLP seen earlier and captured by Equation 3.4. The arrows
indicate the direction of ‘forward propagation’. If the graph terminates at a function
f at the root, we often have to evaluate (i) the nodes, ending with the node (f);
and (ii) the derivatives of the root function f with respect to the primary variables
x, y, z, for some set values of x, y, z. Part (i) is performed by a ‘forward propagation’
algorithm a simple case of which is shown in Algorithm 1. Part (ii) can be evaluated
by a standard forward equivalent algorithm using chain rules. However, it is far more
convenient to use ‘back propagation’ where we assume that a forward pass has already
been performed so the nodes have been evaluated.

w l

z
l−1 lz z

l+1

b l

Fig. 3 Graph representation of the forward phase of the calculation in Equation 3.4
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Consider now a generic situation like the one shown in Figure 4 illustrating a back-
propagation computation where we assume that the partial derivatives of the target
function f with respect to the incident nodes aj , al, am have already been computed.
We now need to compute ∂f/∂ak and this can be done with the chain rule:

∂f

∂ak
=

∂f

∂aj

∂aj
∂ak

+
∂f

∂al

∂al
∂ak

+
∂f

∂am

∂am
∂ak

(3.24)

Here, the nodes ai, i = 1 : n are tasks in a computational graph with the last node
an ≡ f being the target function. The leaf nodes ai, i = 1, · · · , e are the primary
variables (e.g., x, y, z in (3.23)) and we wish to compute ∂f/∂a1, ∂f/∂a2, · · · , ∂f/∂ae.

The notation often used is to let δk = ∂f
∂ak

(called ‘errors’). Then back-propagation
amounts to successively evaluating the δk’s, following the graph backward from the
root (function f):

δk = δj
∂aj
∂ak

+ δl
∂al
∂ak

+ δm
∂am
∂ak

. (3.25)

Here, the nodes δj , δl, δm have been evaluated in earlier steps of back-propagation and
the terms ∂ai/∂ak are readily computable. Note that the initial ‘error’ corresponding
to f is δn = ∂f/∂f ≡ 1. The leaves in the back-propagation graph correspond to the
desired partial derivatives.

Fig. 4 Zooming in on a node (ak) in back-propagation

It is clear that in a general computational graph, there is an order in which to pro-
ceed in the back-propagation since a task cannot be started before its parent nodes
in the graph have been processed. This is a textbook example of topological sorting,
an ordering of the nodes in a directed acyclic graph (DAG) to obey the precedence
relations. Finally, we note that the computation involved in (3.25) amounts to a
matrix-vector product.

As an example consider the simple MLP model as represented by equation (3.4).
The computational graph localized at node l is shown in Figure 3. Let us call f the
original objective function which is obtained from the last (output) layer, e.g., recalling
notation from Section 3.2, f(x) = ‖y − φW (x)‖22 where we essentially take one data
item at a time, e.g., xi, yi replaced here by x, y as in Section 3.1. This is a function
of the parameters throughout all layers and we would like to obtain the gradient of f
with respect to these parameters. In the figure, the nodes in the graph are represented
by the circles (the zk’s) as well as the squares (the parameters, Wk, bk). Assume a

15



forward propagation step is taken in which case all nodes have been evaluated. In a
back-propagation step, the arrows in Figure 3 are reversed. At layer l we evaluate:

∂f

∂zl
=

∂f

∂zl+1
× ∂zl+1

∂zl
(3.26)

Note that ∂f
∂zl+1

is assumed to have been evaluated at a prior step in traversing the

graph and that ∂zl+1

∂zl
is readily computable from by using (3.4) with l replaced by

l + 1. Following the (reversed) arrows, we next compute

∂f

∂Wl
=
∂f

∂zl
× ∂zl
∂Wl

and
∂f

∂bl
=
∂f

∂zl
× ∂zl
∂bl

. (3.27)

The calculations in the above equations take place in the ‘leaves’ of the back-
propagation graph. The corresponding nodes are terminal in the sense that the
gradients calculated will no longer be modified and will not be used in other calcula-
tions. These are the desired gradients of f with respect to parameters Wl, bl. We have
taken the example (3.4) for simplicity - but in reality the calculations just discussed
are performed on the matrices Zl in the relation (3.6). Conceptually, all this means is
that we can treat rows of Zl one at a time in the manner just discussed. For additional
details see [25].

4 The idea of Attention – Transformer Architecture

An idea that has played a decisive role in Large Language Models is that of “Atten-
tion”, see, the breakthrough article titled “Attention is all you need” [17]. It is
worthwhile to illustrate the notion of attention with a simple example to show the
difference in thinking between Numerical Analysis and Machine Learning.

4.1 NA vs AI thinking - an example

Suppose we are given very noisy ‘training points’ xi, yi which are x-coordinates and
y-coordinates of some unknown function f , at specific points. The goal is to ‘recover’
f in some form, see left side of Figure 5. The Numerical Analysis approach is straight-
forward: use the data points to interpolate the function in the Least-Squares sense.
We need to first select the type of interpolating function we will use, for example a
cubic polynomial.

The Machine Learning solution to the problem is very different and relies entirely
on the given data points. The approach based on attention uses an advanced form of
averaging and it has its roots in databases. We are given known key, value pairs {ki, vi}
and would like to guess a value for a certain query q which is of the same type as the
keys. In the example given above, the key-value pairs are the pairs (xtraini , ytraini }) of
the given data. In the same example, q is an arbitray x-coordinate where we want to
the approximation to f . A naive first solution would be to take the closest key kl to
q and declare the value of f at q to be vl. A better solution is to take some weighted
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Fig. 5 (Left) The problem: given a cloud of (very) noisy data points, find the original function.
(Right) Illustration of the Nadarawa Watson kernel regression on periodic data.

average of all values vi, with weights defined so as to give more importance (attention)
to more relevant training points. These weights are defined through a kernel a(q, k).

There are a number of options for the kernel a, one of which is to use Gaussian
kernels such as the one expressed below for the more general case where the ki’s, and
q are in Rd:

a(q, ki) =
exp(− 1

2‖q − ki‖
2/σ2)∑n

l=1 exp(− 1
2‖q − kl‖2/σ2)

. (4.1)

Observe that the values of a(q, ki) are positive and scaled so that they add-up to unity
and so they play the role of probabilities. The inferred value v for q is then given by:

n∑
i=1

a(q, ki)vi.

This process is a form of Kernel Regression [25, 37] known as Nadaraya-Watson
attention. It is illustrated in Figure 6.

An example is given on the right side of Figure 5 for a function that is periodic.
If we did not know the nature of the function we might think of approximating it
with a cubic. As can be seen this results in a poor approximation in this case. Here,
the attention-based approximation does a much better job. The main point of this
illustration is that with a lot of data, we can succeed in obtaining a good approximation
to an unknown function by using attention.

4.2 Transformer architecture

The transformer architecture has become the dominant architecture in many applica-
tions such as neural machine translation, text generation, and vision, see e.g. [38, 39].
Transformer-based large language models like GPT-1 [40], BERT [41], GPT-2 [42],
GPT-3 [43], ChatGPT, Llama [44, 45], etc. have demonstrated impressive capabilities
in natural language processing, e.g., they are able to generate complex language and
programming code, answer questions and summarize text.
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Fig. 6 Illustration of the Nadarawa Watson kernel regression.

A transformer is a sequence-to-sequence model (Seq2Seq). The original (vanilla)
transformer architecture, introduced in [17] and used for machine translation, consists
of an encoder and a decoder3. The encoder processes the input sequence and produces a
vector representation for it, while the decoder generates the output sequence one token
at a time, taking into account both the encoder’s outputs and previously generated
tokens. The encoder consists of multiple stacked encoder blocks. Similarly, the decoder
consists of multiple stacked decoder blocks.

Each transformer block `, encoder or decoder, may be considered as a parametrized
function T`(X`−1; Θ`) which transforms an input data matrix X`−1 ∈ Rn×d into an
output data matrix X` ∈ Rn×d, i.e.,

X` = T`(X`−1; Θ`), (4.2)

where Θ` represents the parameters in transformer block `, sometimes termed layer `.
Hence, the output of a Transformer with L transformer blocks is the composition

of L functions T` corresponding to the transformers blocks ` = 1, · · · , L, each with
their own parameters, i.e.,

XL = T (X0) = (TL ◦ TL−1 ◦ · · · ◦ T1)(X0). (4.3)

By composing these transformer blocks, the Transformer progressively adjusts
these token embeddings so that they don’t merely encode individual words but will

3Terminology: In deep learning, an encoder is a neural network (a simple RNN, LSTM, GRU, convolu-
tional network, or a transformer network) defined as a parametric function Eϕ which maps the original data

X ∈ Rn×d to a latent representation Z ∈ Rn×d
′
, i.e., Z = Eϕ(X), where the dimensions d and d′ need

not be the same, and usually d′ ≤ d. A decoder performs the opposite operation, i.e., it is a parametrized
function Dθ which takes as input the latent bottleneck Z to produce an output, i.e., Dθ( Eϕ(X) ) ∈ Rn×d.
An “encoder-decoder architecture” like the ones we are considering here and based on [17] employs both
an encoder and a decoder component to process input and generate an output sequence, where d′ = d end-
to-end. This makes it suitable for tasks like machine translation. An “encoder-only transformer” employs
just an encoder, focusing on understanding the input context without generating new text making it ideal
for tasks like text classification or sentiment analysis for example.
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instead lead to learning some contextual meaning. Each transformer block consists
of two distinct stages or sublayers, with layer normalization in each stage and resid-
ual connections, as shown in Figure 7 for a pre- and post-LayerNorm transformer
block, see the ground-breaking work of Vaswani et al. in [17]. The first sublayer is the
multi-headed self-attention (MultiHead or ATT for short), followed by the Multilayer
Perceptron (MLP) sublayer, which includes a nonlinear activation function to make the
transformer block more expressive. Hence, a Transformer is purely based on attention
and dense layers, i.e., Transformer block = ATT + MLP.

Mathematically, the transformation function class T` of a pre-LayerNorm trans-
former block ` is represented by the equations

X` = T`(X`−1)
∆
=

{
Y` = X`−1 + ATT( LN(X`−1) ),

X` = Y` + MLP( LN(Y`) ),

(4.4)

(4.5)

where the functions ATT, LN, MLP are implicitly indexed by layer `. And in the final
representation, an additional layer normalization is applied, i.e.,

XL ← LN( XL ), (4.6)

before this final output is passed into a bias-free linear layer to obtain logits. Table 2
presents the equations for both scenarios of Figure 7.

Post-LayerNorm Pre-LayerNorm

1 ATT Y` = LayerNorm( X`−1 + ATT(X`−1) ) Y` = X`−1 + ATT( layerNorm(X`−1) )

2 MLP X` = LayerNorm( Y` + MLP(Y`) ) X` = Y` + MLP( LayerNorm(Y`) )

Table 2 Transformer: Post-Norm and Pre-Norm with Skip Connections.

4.2.1 Attention mechanism (ATT)

The core foundation that supports the capabilities of LLMs is the attention block ATT.
The central concept of attention is to learn representations that emphasize the most
relevant parts of the input prompt. Specifically, the attention mechanism compares

the query vectors q
(`)
i = WT

Qx
(`−1)
i (the decoder’s output tokens, in the case of an

encoder-decoder transformer), with the key vectors k
(`)
i = WT

Kx
(`−1)
i (the encoder’s

input tokens). The attention weights are then determined based on the similarity of
this comparison, indicating the relative importance of each input token, i.e.,

Attention(Q`, K`) = softmax
(Q`KT

`√
dk

)
∈ Rn×n, (4.7)

where Q`,K` ∈ Rn×dk represent the matrices for queries and keys, respectively. The
softmax operation in the above equation was defined defined earlier in (3.9). It is
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X`−1

MultiHead

⊕

LayerNorm

1 Y` = LN( X`−1 + ATT(X`−1) )

X`−1 + ATT(X`−1)

MLP

⊕

LayerNorm

2 X` = LN( Y` + MLP(Y`) )

Y` + MLP(Y`)

X`−1

LayerNorm

MultiHead

⊕

1 Y` = X`−1 + ATT( LN(X`−1) )

LayerNorm

MLP

⊕

2 X` = Y` + MLP( LN(Y`) )

Fig. 7 Post-LayerNorm and Pre-LayerNorm of the Transformer block `.

applied row-wise: for each row i (i = 1, · · · , n) the vector z in (3.9) is the row-vector
consisting of the i-th row of the matrix Q`K

T
` /
√
d and the resulting row will be the

i-th row of the attention matrix on the left-hand side of (4.7). Note that without the
scaling factor

√
d, this row vector z consists of all inner products of row i of Q` with

all the rows of K` thus capturing some form of similarity between item i in Q` with all
other items in K`. It is said that ‘each word attends to each other word in a sentence’.
The matrix for (encoder’s) values is V` ∈ Rn×dv , with dv = dk usually, i.e.,

Q`, K`, V` = X`−1WQ, X`−1WK , X`−1WV . (4.8)

The attention weights, Equation (4.7), are used to compute weighted averages of the

value vectors v
(`)
i = WT

V x
(`−1)
i , resulting in the output context representation of the

attention sublayer, i.e., ATT(X`−1), see Algorithm 2,
Thus, applying the attention matrix (4.7) to the value matrix (X`−1WV ) we obtain:

ATT(X`−1) = softmax

(
(X`−1WQ)(X`−1WK)T√

dk

)
(X`−1WV ).

20



Algorithm 2 SingleHead Self-Attention

Input: X ∈ Rn×dmodel . representation of a given sequence of n tokens
Parameters: WQ,WK ,WV . learned weight matrices
Output: A ∈ Rn×dmodel . updated representation of tokens in X

1: function A = SingleHead(X |WQ,WK ,WV ) . Computes a single
self-attention head

2: Q, K, V = XWQ, XWK , XWV . query, key, value matrices
3: dk = size(Q, 2)
4: S = QKT /

√
dk . scaled dot-product, S is a matrix of size n× n

5: probs = softmax(S) . attention matrix of probabilities return
A = probs× V (≡ ATT(X)) . output context representation

6: end function

4.2.2 Multihead self-attention

The steps of SingleHead self-attention are outlined in Algorithm 2. This requires an
input sequence X ∈ Rn×dmodel and each layer ` has three parameter weight matrices
WQ,WK ,WV which are randomly initialized. The output is a context representation
A ∈ Rn×dmodel . This can be generalized to a Multihead self-attention by running inde-
pendently multiple SingleHead attentions. These H = nheads SingleHead attentions
have the same inputs but they do not share the parameters. The total number of
parameter weight matrices is 3 × nheads, i.e., WQ,h,WK,h,WV,h for h = 1, · · · , nheads.
The transformer’s multi-head scaled dot-product attention is given by

ATT(X`−1) = MultiHead(Q`,K`, V`) =
H

‖
h=1

( HAh )WO, (4.9)

with the h-th head attention HAh defined as,

HAh = softmax
( (X`−1WQ,h)(X`−1WK,h)T√

dhead

)
(X`−1WV,h), (4.10)

where WQ,h,WK,h ∈ Rdmodel×dhead and WV,h ∈ Rdmodel×dhead are the matrices that project
the queries, keys, and values into the hth subspace, respectively, i.e., HAh ∈ Rn×dhead ,
and where WO ∈ Rdv×dmodel is the matrix that computes a linear transformation of the
heads. Typically, dv = dk and dhead = dk/nheads where nheads is the total number of
heads, and ‖ concatenates the heads together along the channel dimension.

Let us decompose the output projection matrix WO into nheads block matrices
WO,h ∈ Rdhead×dmodel for h = 1, 2, · · · , nheads. It is easy to see that:

ATT(X`−1) =

nheads∑
h=1

(HAh)WO,h, (4.11)

=

nheads∑
h=1

softmax
( (X`−1WQ,h)(X`−1WK,h)T√

dhead

)
X`−1WV,hWO,h (4.12)
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which can be interpreted as computing self-attention heads HAh independently, mul-
tiplying each by its own output matrix WO,h and adding them, see [46]. In so doing,
each HAh could find a different kind of relation between tokens.

Algorithm 3 MultiHead Self-Attention

Input: X ∈ Rn×dmodel . sequence representation
Parameters: WQ,[1...nheads],WK,[1...nheads],WV,[1...nheads],WO . learned matrices

Output: A ∈ Rn×dmodel . updated representation of tokens in X
1: function A = MultiHead(X |WQ,[1...nheads],WK,[1...nheads],WV,[1...nheads],WO)
2: for h = 1, · · · , nheads do
3: HAh = SingleHead (X |WQ,h,WK,h,WV,h)

4: end forreturn A =
H

‖
h=1

( HAh )WO (≡ ATT(X)) . output context

representation
5: end function

4.2.3 Multilayer perceptron (MLP)

The second stage of a transformer block is a two-layer MLP. It is a standard feed-forward
network consisting of the composition of two affine mappins and a nonlinear activation
function. The output of the attention stage, i.e., Y` = X`−1 +ATT(LN(X`−1)), becomes
the input to the first layer which is parametrized by (W `

up, b
`
up) with W `

up ∈ Rdmodel×dmlp
such that dmlp � dmodel. It is essentially a linear projection to a higher-dimensional
space, i.e., Y`W

`
up+b`up. Then the second layer, parametrized by (W `

down, b
`
down), projects

it back to dmodel, after passing through a nonlinearity activation, preparing the token
for further processing, that is

MLP(Y`) =

2nd Layer︷ ︸︸ ︷
ReLU(Y`W

`
up + b`up︸ ︷︷ ︸

1st Layer

)W `
down + b`down (4.13)

where the learned parameter matrix W `
down is of size (dmlp, dmodel).

4.2.4 Stack of residual connections

It is well known that deep networks are difficult to optimize due to the gradient vanish-
ing/exploding problem, e.g. see [47, 48]. Residual connections and layer normalization
are adopted for a solution, see [49]. A residual unit, with identity mapping, can be
expressed in a general form as:{

X̃` = X`−1 + F(X`−1; Θ`),

X` = f(X̃`),

(4.14)

(4.15)

22



where X`−1 and X` are the input and output of the `-th sub-layer, respectively, and F
is a residual function with parameters Θ`; and X̃` is the intermediate output followed
by the post-processing function f(·).

X`−1

F

⊕ LayerNorm LayerNorm( X`−1 + F(X`−1) )

Fig. 8 Post-LayerNorm residual.

X`−1 LayerNorm F ⊕ X`−1 + F( LayerNorm(X`−1) )

Fig. 9 Pre-LayerNorm residual.

In the case of Transformers, the additive residual function F is a multihead self-
attention function, ATT, in the first stage of the Transformer block `, and a multilayer
perceptron, MLP, in the second stage of the Transformer block `.

In the early versions of the Transformer, layer normalization is placed after the
element-wise residual addition, where the function block F is either ATT or MLP, see
Figure 7. In this case, the layer normalization function, can be seen as a post-processing
step of the output, X̃` = X`−1 + F(X`−1), i.e., f(X̃`) = LayerNorm(X̃`). Whereas in
recent implementations, layer normalization is applied to the input of every sub-layer,
i.e., before the function operation F . Pre-layer normalization is applied before every
stage, and residual connections after every stage, i.e., f(X̃`) = X̃`, see Figure 9.

4.2.5 Layer Normalization

Layer normalization is a pivotal step in the transformer architecture. It is applied
to the input and output of each sub-layer in the encoder and decoder stacks, in the
original Transformer [17]. Layer normalization normalizes the values of the hidden
units across the feature dimension, which helps in reducing the internal covariate
shift and improves the training process. It computes the mean and variance of the
hidden units and then applies a linear transformation to normalize the values. Layer
normalization is beneficial as it allows the model to handle inputs with varying lengths
and reduces the dependence on the scale of the input. It also helps in stabilizing the
training process and improving the overall performance of the Transformer model.

Let x ∈ Rd represent an intermediate hidden representation in a transformer-based
model, on which the LayerNorm operation is applied, i.e., any ith row-vector XT

i,: of

the data matrix X ∈ Rn×dmodel . The corresponding normalized vector y, scaled and
shifted, is

y = LayerNorm(x) =
x− µ(x)√
σ2 + ε

� γ + β, (4.16)
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where
gamma, β are scaling and shifting vector parameters learned during training, and ε is
used for numerical stability in case the denominator becomes close to zero by chance,
and usually ε = 1.0e−5, e.g., see [50–52].

5 Graph Attention Networks

Graphs serve as powerful tools for representing relationships and interactions in var-
ious domains such as social networks (e.g. identify fake news, predict future friends,
learn multi-faceted interactions among users) [53, 54], chemistry (generate new drugs
and materials, predict chemical properties) [55, 56], recommender systems (e.g., lever-
age consumer-product choices) [57, 58], knowledge graphs (reasoning with entity
relationships) [59, 60], natural language processing (e.g. large language models) [17],
physics (e.g. learn from interactions of particles in systems, detect particles, accel-
erate physics research) [61, 62], neuroscience (e.g., learn functions of brain regions
through connectivity, understand brain mechanisms and neuro-degenerative diseases)
[63], transportation (e.g., learn traffic behavior across road networks, predict time
estimates across multilayered networks) and more.

Graph learning has gained prominence with the advent of graph neural networks,
which generalize neural networks to graph-structured data, e.g. see [55, 57, 64–68].
There exists two main classes of graph neural network architectures: (i) message-
passing GNNs which may be considered as a generalization of convolution, i.e., a
direct extension of ConvNets from images to graphs, e.g. see [69], and (ii) Weisfeiler-
Lehman GNNs which are recently proposed and go beyond message-passing GNNs.
They exhibit powerful expressivity and are permutation-invariant universal approxi-
mators, see [70–74]. Recent works present a hybrid variant, i.e., WL- and MP-GNNs,
see [75, 76]. This section will explore key developments that blend ideas from neural
networks and graphs, with a particular focus on message-passing GNNs.

5.1 Graph Neural Networks (GNNs)

A GNN is not a specific model but rather a framework of a general class of neural
networks that can be effective when working with graph-structured data. The goal is
to generate representations of the nodes in the graph, or of the graph itself, that can
then be used for various tasks. GNNs will serve as templates for the specific models
to be seen shortly.

All GNNs aim at providing solutions for certain tasks related to graphs. These
tasks include: node classification (determining the label of a vertex in a graph), graph
classification (given a set of labeled graphs, determine the label of a new graph), and
link prediction (predict whether or not there will be an edge between two vertices in
a graph.

The goal of a GNN is to produce an embedding for a graph (graph classification)
or the nodes of a graph (node classification). It works by iteratively updating node
features based on features from their neighbors, allowing the model to learn represen-
tations, i.e., embeddings, by exploiting both the content of the nodes (features) and the
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Fig. 10 Illustration of message passing: The new feature at vi is combined with features of its
nearest neighbors vj1 , vj2 , vj3 .

adjacency matrix, which captures links between nodes. Each node in the graph aggre-
gates information from its neighbors in each layer of the network, and the aggregated
information is used to update the node’s feature representation, see [54].

The fundamental operation of GNNs is the message-passing mechanism, where
neural networks are used to exchange and update vectors messages. The feature vector
xi of a node vi in the graph is updated by aggregating features from its neighbors.
The message-passing update rule can be written as:

x
(`+1)
i = UPDATE

(
x

(`)
i , AGGREGATE( {x(`)

j : j ∈ N (vi)} )
)
, (5.1)

where x
(`)
i represents the feature vector of node i at the `-th layer, N (vi) denotes the

set of neighbors of node vi, AGGREGATE is an aggregation function (e.g., summation,
mean, or max pooling) that generates a message with the features of neighboring
nodes N (vi), whereas the parametric UPDATE function combines the generated message
with the previous embedding to update the node’s feature vector, typically involving

a neural network layer, with x
(0)
i = xi ∈ Rd0 ,∀vi ∈ V. We can define different GNNs

by simply varying the function the UPDATE and the AGGREGATE operations. A few
examples follow.

5.2 Graph Convolutional Networks (GCNs)

GCNs generalize the concept of convolutions from grid-like data (such as images) to
arbitrary graph structures, enabling the model to capture spatial relationships and
node dependencies efficiently. GCNs have gained popularity due to their ability to
process graph data in a hierarchical manner while maintaining the flexibility to handle
varying graph sizes and structures.

The idea of GCN followed decades long research on ‘graph embeddings’ mentioned
in the introduction. Following the success of convolutional networks, the authors [77]
defined a convolution operator that is sparse and defined directly from the adjacency
matrix A. Specifically, we shift the matrix by the identity to obtain Ã = A+I, i.e., self-
loops are added to the input graph, and we let D̃ be a diagonal matrix with diagonal
entries d̃ii =

∑
j ãij . We then define the normalized adjacency matrix with self-loops:

Â := D̃−1/2ÃD̃−1/2, (5.2)
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where this normalization step is applied to ensure that the feature aggregation is not
biased by nodes with a high degree. Balanced aggregation improves training stability,
and adding self-loops ensures that isolated nodes are included in learning. The idea is
that convolution is replaced by a product with Â: a given new feature at node i at the
next level results from some average of the features of its nearest neighbors using the
matrix Â followed by an application of the activation function σ. This corresponds to
the AGGREGATE process seen in (5.1), and we omit the UPDATE step, i.e.,

x
(`+1)
i = AGGREGATE( {x(`)

j : j ∈ N (vi) ∪ {vi}} ), (5.3)

where the AGGREGATE function is taken over the node’s neighbors and the node itself.
Therefore, with the notation just introduced, and defining X(0) ≡ X the node feature
matrix, a basic GCN layer can be described simply as follows:

X(`+1) = σ
(
ÂX(`)W (`)

)
, (5.4)

where X(`) ∈ Rn×d` is the matrix of node features at layer `, n is the number of
nodes, and d` is the dimensionality of the feature space at layer `; W (`) ∈ Rd`×d`+1 is a
learnable weight matrix at layer `; and σ is a non-linear activation function (e.g., ReLU).
The key operation is the multiplication of the normalized adjacency matrix Â with
the feature matrix, followed by a linear transformation and a non-linear activation.

X(l)

Â

W (`)

X(l+1)X(l+1) = σ(ÂX(l)W (l))

Fig. 11 The l-th layer of GCN.

Among the problems that have been successfully tackled by GCN are: node clas-
sification and graph classification. Node classification starts with an input graph, and
the main goal of GCN is to find embeddings of the nodes of this graph. In the case of
graph classification we are given a set of graphs (e.g., graphs of molecules) and GCN
will provide an embedding for each graph. These embeddings will then help with the
tasks mentioned above, whether graph or node classification.

In what follows we take a close look at node classification. The input is the graph
G = (V, E), where V is a set of nodes vi, i = 1, · · · , n and E is a set of edges eij =
{vi, vj}. This graph is conveniently represented by its adjacency matrix A, a sparse
matrix, with values aij equal to 1 or 0, which indicates the presence or absence of an
edge between node vi and node vj . With each node vi of the graph we associate a
feature vector that contains information deemed characteristic of this node. Assuming
the dimension of the feature vector is d, we can represent all features by an n × d
matrix X – where row i holds the features of node i (transposed). For example, X can
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just be the so-called term-document matrix where row i (node i) is the i-th item (a
document) and the entries are either 1 (the term is present in document) or 0 (term
not present in document). Our goal is to go through L layers of a neural network and
end up with an embedding Ŷ ∈ Rn×µ. For example if the problem is to classify a
node into one of µ classes, the ideal embedding for a given node vi would be a one-hot
vector ŷi of length µ, where a value of one in location k means that vi is in class k.

The target used for training is typically a one-hot matrix Y of size n × µ. Then,
the loss function that is often used is the common one used for classification, namely
the cross-entropy loss seen in Section 3.2, see, (3.11).

In graph classification4, the input data is now a set of graphs {G1, · · · ,Gm}. Like in
node classification each of these graphs is represented by an adjacency matrix and it is
complemented by a set of node features. So we have m adjacency graphs A1, · · · , Am
and m feature matrices of X1, X2, · · · , Xm. If the number of vertices in Gk is nk, Ak
is of size nk × nk and Xk is nk × dk. Assume at first that there is no mini-batching
performed. Then for all layers except the last one, GCN works exactly as in the node
classification case with a single graph formed from the union of all graphs. In other
words, the matrix Â in (5.4) can be viewed as a block diagonal matrix whose diagonal
blocks are the Âk’s obtained from each of the m graphs. Thus, the feature matrix X(l)

at layer l < L+ 1 is of size n× dl where n = n1 + n2 + · · ·+ nm and dl is the selected
feature dimension for level l. The node features are simply concatenated in the node
dimension.

Â =


Â1

Â2

. . .

Âm


∈ Rn×n, X(`) =


X1

X2

...

Xm

 ∈ Rn×d` . (5.5)

When l = L in (5.4), the matrix X(L+1) obtained at the last layer will be n×dL+1.
To classify graphs we need this matrix to be of size m × C where C is the number
of classes and m the number of graphs. Indeed, we will need to embed each graph
Gk into a (row) vector zGk of length C where the c-th component holds a probability
that Gk is in class c. The dimension dL+1 should therefore be selected to be equal to
C. In addition, at the last layer GCN applies a ‘global pooling’ operation whereby all
the node features for the same graph Gk are combined, e.g., averaged, to yield a single
representation (a row of length C) for this graph, e.g., by applying a small MLP to
create a C-dimensional graph encoding, which is a vector representation of the graph
computed as

zGk = MLP
(
mean
i∈Vk

x
(L+1)
i

)
∈ RC , (5.6)

4PyTorch Geometric

27



where the mean operation is simply defined as

mean
i∈Vk

x
(L+1)
i =

1

|Vk|
∑
i∈Vk

x
(L+1)
i . (5.7)

However, using the full set of all graphs is not practical. Instead, it is common to
resort to mini-batching whereby a set of ν graphs is selected at random at each step.

A well-known dataset used to illustrate GNNs is the ENZYME dataset [78] which
contains 600 molecules represented by graphs that translate their protein structure.
An illustration of 4 such graphs is shown 5 in Figure 12. The dataset is divided into six
classes corresponding to six main categories of enzymes that catalyze various reactions.
These are Oxidoreductases, Transferases, Hydrolases, Lyases, Isomerases, and Ligases.
Therefore, the problem is, given a molecule with a given structure (graph) and the
nature of the compounds of the nodes in the graph (features) to determine what type
of enzyme it is. It turns out that each node has a feature vector of length 3. The sizes of
the 4 graphs are n1 = 5, n2 = 14, n3 = 12, and n4 = 15. If this set were a certain batch
then for this batch X(0) ∈ R46×3, X(l) ∈ R46×dl , and X(L+1) ∈ R46×dL+1 , by setting
dL+1 = 6 classes, and running (5.7) to get Z ∈ R4×6, i.e., 4 graphs and 6 classes.

Fig. 12 Four sample graphs from the ENZYME data set.

Some of the limitations of GCNs are (i) over-smoothing, i.e., deep layers cause node
features to converge, losing differentiation, which means that the representations for

5To show the graph, an embedding to 2-dimensional space is needed. The NetworX package in Pytorch
was used for this.
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all nodes in the graph can become very similar to one another; and (ii) fixed aggrega-
tion, i.e, it treats all neighbors equally, missing heterogeneous relationships. Therefore,
building deeper GCN models can actually hurt performance, and information about
local neighborhood structures is lost as more layers are added. On the positive side,
we note that GCNs leverage graph sparsity, and since the node update equation is
local, GCNs are naturally parallelizable with sparse matrix multiplications. This is
efficiently implemented in libraries such as DGL [79], PyG [80] and Spektra [81]. Also,
GCNs benefit from batch normalization and residual connections, e.g., see [82].

5.3 GraphSAGE (Graph Sample and Aggregation)

GraphSAGE is a scalable and efficient graph neural network architecture designed to
handle large-scale graphs see [83]. Unlike traditional GNNs, which require the entire
graph to be available during training, GraphSAGE uses a sampling-based approach to
aggregate information from a fixed-size neighborhood around each node, making it
suitable for inductive learning on large graphs. The main idea behind GraphSAGE is
to aggregate features from a node’s local neighborhood to update the node’s feature
representation. The key distinction is that GraphSAGE samples a fixed-size subset of
neighbors, rather than using all neighbors, which makes it computationally efficient
for large graphs. This process enables inductive learning, meaning that GraphSAGE can
generalize to unseen parts of the graph, such as newly added nodes or edges.

In GraphSAGE, the feature representation x
(`)
i of each node vi is updated by aggre-

gating information from its `-hop neighbors. The update rule in the `-th layer can be
described as:

x
(`+1)
i = ReLU

(
W (`),T × AGGREGATE

(
{x(`)

j : j ∈ N (vi)} ∪ {x(`)
i }
))
, (5.8)

where the AGGREGATE function combines the features of neighboring nodes. Common
aggregation functions include mean, LSTM [15], and pooling.

To efficiently aggregate node features, GraphSAGE uses a sampling technique to
limit the size of the neighborhood. For each node, a fixed number of neighbors are
randomly sampled to aggregate their features, i.e., N (vi) = sample(vi). This reduces
the computational cost compared to using all the neighbors, especially in large graphs.
It is also possible to use importance sampling to reduce variance, as in FastGCN [84].
The simplest mean-aggregation function, which computes the element-wise mean of
the neighboring node features, is

AGGREGATE ({xj : j ∈ N (vi)}) =
1

|N (vi)|
∑

j ∈N (vi)

xj . (5.9)

As mentioned before, over-smoothing is an issue in GNNs with deeper layers, where
the node-specific information becomes less important relative to the aggregated infor-
mation from the neighbors during message passing. The updated node representation

x
(`+1)
i will depend more strongly on the messages aggregated from the neighbors,
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{x(`)
j : j ∈ N (vi)}, and less on the representation of the node itself from the previ-

ous layer, x
(`)
i . Therefore, a simple strategy to alleviate this over-smoothing issue is

to use vector concatenations, or skip connections, whereby the information from the
previous iteration of message passing is preserved during the update step. It turns out
that this strategy helps also in improving the numerical stability of optimization. It
has been adopted in GraphSAGE, see Algorithm 4.

Algorithm 4 GraphSAGE Embedding

Input: Graph G(V, E), input features {xv,∀v ∈ V}, neighborhood function N
Parameters: depth K, weight matrices W (`),∀` ∈ {1, · · · ,K}
Output: zv,∀v ∈ V . vector representations after message passing completion

1: for ` = 1, · · · ,K do
2: for v ∈ V do
3: x

(`)
N (v) ← AGGREGATE( {x(`−1)

u , ∀u ∈ N (v)} )

4: x
(`)
v ← ReLU

(
W (`),T

[
x

(`−1)
v ‖ x(`)

N (v)

])
. ‖ denotes concatenation

5: end for
6: x

(`)
v ← x

(`)
v /‖x(`)

v ‖2, ∀v ∈ V . normalization

7: end forreturn zv ← x
(K)
v , ∀v ∈ V

GraphSAGE is particularly effective for inductive learning tasks, where the model
needs to generalize to unseen data (e.g., new nodes in the graph). By learning to
aggregate information from a node’s neighbors during training, GraphSAGE can apply
the learned aggregation functions to unseen nodes during testing, even if those nodes
were not present in the training graph. Some of the advantages of GraphSAGE are

1. Scalability. By using a sampling approach, GraphSAGE can handle large graphs that
would be computationally expensive to process using traditional GNNs.

2. Inductive Learning. GraphSAGE can generalize to unseen nodes, making it effective
for applications where the graph structure evolves over time.

3. Flexibility. The ability to choose different aggregation functions allows GraphSAGE

to be tailored to specific applications and data types.

5.4 Graph Attention Networks (GAT)

GATs [85] are extensions of Graph Convolutional Networks (GCNs) that use atten-
tion mechanisms to weigh the importance of neighboring nodes during the aggregation
process. In GCNs, GraphSAGE and other popular GNN architectures [55, 70], all neigh-
bors are treated equally, i.e., the feature update of a node is typically the average of
the features of its neighbors. However, GATs assign different attention scores to each
neighbor, allowing the model to focus more on relevant neighbors. This enables a node
to decide which neighboring nodes are more important when aggregating messages,
i.e., it adaptively adjusts the influence of each neighboring node depending on the task.

In a Graph Attention Network, each node aggregates information from its neigh-
bors by applying an attention mechanism. The attention mechanism computes a weight
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for each neighbor, which determines the degree to which the node’s features are incor-
porated into its updated representation. Every node updates its representation by
attending to its neighbors (input keys) using its own representation as the query. This
generalizes the averaging or max-pooling operation of neighbors. GAT is inspired by
the self-attention mechanism of the Transformer [17], and the attention mechanism
in [86]. Given a graph with an adjacency matrix A and a node feature matrix X,
the attention-based message-passing mechanism, which computes a weighted average
of the transformed features of the neighboring nodes as the new representation of i,
followed by an activation function σ, can be expressed as

X(`+1) = σ
(
AαX

(`)W (`)
)
, (5.10)

where the entries αij of Aα are the attention weights between nodes i and j, and are
computed as:

αij =
exp(eij)∑

k∈N (i) exp(eik)
, (5.11)

in which the attention score eij , which indicates the importance of the features of the
neighbor j to the node i, is calculated between each node i and its neighbors j ∈ N (i)
through an attention function that uses a neural network with one layer, that is,

eij = LeakyReLU
(
aT ·

[
W (`),Txi ‖W (`),Txj

])
, (5.12)

where ‖ denotes vector concatenation, a ∈ R2d is a learnable attention vector. The
function LeakyReLU is a ‘leaky’ version of the ReLU activation function defined as
LeakyReLU(t) = max{ηt, t} where η is a small positive parameter. It ensures better
gradient flow compared to ReLU by allowing small negative values. One can recognize
the softmax function in (5.11) and so the coefficients αij form a probability distri-
bution. It is is beneficial to generalize GAT to multihead attention, i.e., use separate
attention heads and concatenate their outputs, see [85]:

x
(`+1)
i =

H

‖
h=1

LeakyReLU
( ∑
j ∈N (vi)

α
(h)
ij W

(`),T
h x

(`)
j

)
. (5.13)

This multiheaded learning flexibility provides a mechanism that allows to attend
to separate semantic characteristics of the problem. The results of these attention
mechanisms are combined by concatenating the vectors together.

The Equation (5.12) computes the attention scores eij between all possible pairs
of nodes, as if the graph is assumed to be fully connected. We need however to select
only those which represent existing edges between nodes. To address this, after the
LeakyReLU activation is applied to the attention scores, the attention scores are masked
based on existing edges in the graph, which means that we only keep the scores that
correspond to existing edges. This is achieved by using the adjacency matrix of the
graph. It is worth mentioning that any attention model from deep learning can be used
in computing the attention scores in (5.12), even though it has become the de facto
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practice, and is now implemented in most GAT libraries, e.g. see [79, 80, 87, 88]. The
idea of adding attention to graphs, as in GATs, helps in increasing the representational
capacity of the GNN model, in particular when there is some prior knowledge which
indicates that some neighbors might be more informative than others. GATs have
several unique properties, namely

1. Self-Attention. GATs use self-attention mechanisms, where each node’s attention
weights are learned based on its own features and the features of its neighbors.

2. Adaptive Weights. Unlike GCNs, where each neighbor contributes equally, GATs
assign adaptive weights to each neighbor, depending on their relevance.

3. Scalability. GATs allow for parallel computation of attention coefficients, making
them more scalable than other attention-based models.

4. Inductive Learning. Like GCNs, GATs can be applied inductively to unseen nodes
during inference.

Some of the limitations of GATs are (i) computational overhead, i.e., increased
complexity due to attention computations; and (ii) sparse data, i.e., GATs struggle
with graphs having few connections.

5.5 Graph Transformer

Graph Transformers [89] aim to extend the success of Transformer models in nat-
ural language processing and computer vision to graph-structured data. In these
models, the self-attention mechanism is adapted to account for the graph’s struc-
ture. Each node in the graph attends to its neighbors, as well as potentially distant
nodes, using the attention mechanism, thus learning more flexible and expressive node
representations.

The Graph Transformer GT follows the same transformer architecture of Vaswani
et al. [17], which is explained in Section 4 for large language models, see (4.4)–(4.5)
and Table 2. It generalizes and extends the success of Transformer models to arbitrary
graph-structured data, see [89, 90]. It also generalizes the word cos/sin positional
encoding PE from sequences to graphs, i.e., node ordering with Laplacian eigenvectors.
The GT model is constructed by stacking GT` layers, as in (4.3), i.e.,

XL = GT(X0) = (GTL ◦ · · · ◦ · · · ◦ GT1)(X0), (5.14)

where GT` is the Graph Transformer block `.
The transformation function class (post-Norm) GT` of each graph transformer block

`, for an arbitrary graph with an adjacency matrix A, is represented by the equations6

X` = GT`(X`−1)
∆
=

{
Y` = Norm( X`−1 + gATT(X`−1) ),

X` = Norm( Y` + MLP(Y`) ),

(5.15)

(5.16)

6For implementation details, see e.g., the Deep Graph Library.
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where the graph multihead attention function gATT is defined as,

gATT(X`−1) =
H

‖
h=1

( gHAh )WO, (5.17)

in which the h-th graph head attention gHAh is (see [90]):

gHAh = softmax
(
Ag �

(X`−1W
(`)
Q,h)(X`−1W

(`)
K,h)T

√
dhead

)
(X`−1W

(`)
V,h). (5.18)

The Norm function in (5.15,5.16) can either be LayerNorm [50–52] or BatchNorm [91],
and the modified adjacency matrix Ag in (5.18) is such that, see [90],

Ag(i, j) =


A(i, j) if nodes i, j are connected,

1 for i = j to enforce self-loops,

−∞ if nodes i, j are not connected,

where only the attention scores between connected nodes are computed via the point-
wise multiplication with Ag. There are different graph attention functions for (5.18),
e.g., GraphiT in [92] uses a kernel graph attention, i.e., Ag is some kernel on the graph;
whereas the Hadamard graph attention in [93] has a different formulation than (5.18),

gHAh = Ag � softmax
( (X`−1W

(`)
Q,h)(X`−1W

(`)
K,h)T

√
dhead

)
(X`−1W

(`)
V,h), (5.19)

with Ag being the original adjacency matrix. There are alternative formulations, e.g.
see [94].

Post-Norm Pre-Norm

1 gATT Y` = Norm( X`−1 + gATT(X`−1) ) Y` = X`−1 + gATT( Norm(X`−1) )

2 MLP X` = Norm( Y` + MLP(Y`) ) X` = Y` + MLP( Norm(Y`) )

Table 3 Post-Norm and Pre-Norm with Skip Connections.

Positional Encoding. A naive self-attention model sees only a bag-of-nodes, i.e., a
set of feature vectors in X, which is invariant to ordering. Therefore, it is important to
incorporate spatial or structural information into graph-based models, such as Graph
Transformers. Positional encoding helps the model understand the relative positions
of nodes within a graph, and since graphs don’t have a natural ordering like sequences,
encoding the structural information and relationships between the nodes is important.
Laplacian positional encoding uses the Laplacian matrix of the graph and its spectral
properties to inject structural (positional) information into the model, e,g., see [95–97].

33



5.6 Graph-Transformer for WSI Classification – an example

In this section, we introduce an example where graph transformers are used in the
biomedical field. Computational pathology is the study and analysis of pathology data
using machine learning techniques, and it involves analyzing medical images, such
as tissue slides, to assist in diagnosing diseases like cancer, and predicting patient
outcomes. A Whole Slide Image (WSI) is a digital representation of an entire tissue
slide, and the sheer size of a single WSI can exceed a gigabyte, so traditional image
analysis techniques may not be able to efficiently process all this data.

Modern methods rely on systematic breakdown of WSIs into a large number of
smaller non-overlapping regions like tiles (e.g., 512×512 image patches). A graph-based
approach treats these regions as nodes in a graph, where the edges between nodes can
represent spatial relationships or interactions between neighboring tissue regions; and
the nodes vi usually contain feature information extracted from the image patches, or
deep learning-based embeddings. For a classification task, we follow these steps:

1) Graph construction and embeddings. Given that WSIs contain thousands of
patches, it is computationally infeasible to process raw image pixels directly. So, usu-
ally a ResNet7 model is trained to extract meaningful feature embeddings from WSI
patches, which serve as inputs for the graph-based representation. Each node vi is asso-
ciated with a feature vector xi ∈ Rd, where d is the embedding dimension extracted
from ResNet. The resulting graph representation can be expressed as a node feature
matrix X ∈ Rn×d. The adjacency matrix A is used in graph convolutional operations
to propagate information across connected nodes, thus allowing the model to aggregate
context from nearby patches. This enables the model to learn meaningful relationships
between tissue structures rather than treating each patch independently. The node
features are passed through multiple GCN layers, as in Equation (5.4), refining their
representations by incorporating information from adjacent patches.

2) Graph Transformer. The graph transformer uses self-attention to learn depen-
dencies between different nodes (i.e., patches) in the graph, which allows the model to
focus on relevant regions of the WSI, thus allowing the model to recognize both local
and global patterns in the tissue. The attention output for node i is a weighted sum
of the value vectors vj from its neighbors N (i), as in Equations (5.15)-(5.16).

3) Classification. After processing through multiple layers of graph transform-
ers, each node’s feature vector xLi will encode rich contextual information about the
patches. The final prediction (such as tumor classification or segmentation) can be
derived from these learned representations. If the goal is to classify the entire WSI,
we can aggregate the node features (patch features) into a global representation by
graph pooling, as in Equation (5.6).

7Resnet, or residual neural network, which was originally designed for computer vision, is a deep neural
network characterized by additional connections that skip multiple layers in the network, see Section 4.2.4.

34



4) Min-cut Pooling. For scalability sake and to make this process computationally
efficient, usually a min-cut pooling8 layer is introduced between the graph and trans-
former layers. This pooling operation reduces the number of nodes while preserving
the most informative ones, ensuring that the model remains scalable to large WSIs.

To conclude, this step-by-step approach allows efficient and robust analysis of whole
slide images, enhancing tasks like disease detection and classification in computational
pathology, e.g. see [98–100].

6 Conclusion: The next chapter in NLA

We cannot overstate the important role that Numerical Linear Algebra is playing in the
development and deployment of AI. NLA provides software packages used internally
and is contributing key ideas and algorithms to reduce computational time. The matrix
and tensor formalisms allow to easily express the various transformations employed
in deep learning. One of the key tools in optimizing models is Back-Propagation,
which can be efficiently carried out because it amounts to a sequence of matrix-matrix
products. In fact, one might argue that tools from NLA contribute the most to the
improvement of algorithms for training LLMs and for the subsequent inference. Low-
rank approximations are heavily exploited for example as are tensor computations in
low-precision arithmetic.

While these successes of NLA are noteworthy, the megatrend of AI poses an impor-
tant question to the Numerical Linear Algebra and Numerical Analysis communities,
namely: how should its members react to it? AI is proving to be unusually disruptive
in academia. For example, given the excitment generated by AI and the availability of
high-paying jobs in AI-related fields most students in computer science and elsewhere,
are interested in working in AI, at the exclusion of other topics. On the educational
side, students are now able to use LLMs to solve most questions given in homeworks
and exams and this makes testing rather challenging. Meanwhile, AI research is pro-
moted by favorable funding at the expense of traditional fields that have taken decades
to mature. If researchers do not adapt, their work may become irrelevant or at least
generate little interest.

A reasonable goal in this environment is not to abandon intellectual innovations
in classical Linear Algebra but to also participate actively in Deep Learning research.
However, this is not an easy task due to a number of factors. AI as a field has many
differences with NLA, in terms of culture, notation, emphasis, etc. The community
is huge and the field diverse, embracing algorithms for Neural Networks on the one
hand, and information theory, or graph methods on the other. The publication culture
is fast-paced and completely different from what we see in NLA. The main point that
we want to make is that in spite of all these challenges, the NLA community cannot
afford to ignore the AI wave. It should fully participate in its advancement.

8Min-Cut Pooling is a method used in deep learning to down-sample graph-structured data. The pooling
operation is defined as Xpool = STX where S ∈ Rn×K is the assignment matrix and K is the number of
clusters formed during the pooling process, with K � n. To adjust the graph structure after pooling, the
adjacency matrix A is updated based on the new assignment matrix S as Apool = STAS. The key idea of
min-cut pooling is to reduce the size of the graph while preserving the important structure of the data.
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