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Abstract

The numerical investigation of the interaction of large, solid particles with
fluids is an important area of research for many manufacturing processes. Such
studies frequently lead to models that are very large and require the use of parallel
solution techniques. This paper presents the results of a parallel implementation
of a serial code for the direct numerical simulation of solid-liquid flows. The
base code is a serial, Arbitrary Lagrangian-Eulerian (ALE) formulation of the
equations of motion, which views that particles as solid bodies embedded into
the flow domain. This particular model poses some interesting difficulties for
domain decomposition type approaches for parallel solution. In particuler, it is
not fully understood how the partitioning of the particles among the subdomains
influences the performance of parallel solvers. We present several strategies for
the partitioning of the solid particles, focusing on the effectiveness of these tech-
niques in terms of parallel speedup and efficiency.
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AMS subject classifications: 65F10, 65F50, 65N22

1 Introduction

Direct numerical simulations of fluid-particle flows are important in several industrial
applications, such as oil refining and drilling, catalyst cracking, coating enhancement
and hydraulic fracturing. Medical research areas such as rheology have also benefited
from the study of such flows. While researchers have long used particle tracking meth-
ods (e.g., in the study of free surface flows), the effect of large particles on the fluid
itself has largely been ignored until recently [6].
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Institute



Often, the numerical simulations to be performed contain hundreds or even thou-
sands of particles, resulting in models which require large amounts of computer mem-
ory. In addition, as the number of particles increases the allowable time step decreases
due to the CFL condition. Hence, the amount of computer time required to perform
such simulations can be prohibitive. In light of these difficulties, the use of parallel
computers has become necessary. One aspect of parallel computing techniques that
has not been systematically investigated is how the partitioning of the particles affects
the performance of iterative solvers. This paper presents a few ’overlapping’ strate-
gies used when partitioning the particles among processors, in the context of domain
decomposition methods.

Most discrete models used to simulate the interaction of solids and liquids fall into
one of three types. These are the deforming-spatial-domain/space-time (DST/DT),
the distributed Lagrangian multiplier / fictitious domain (DLM), and the arbitrary
Lagrangian-Eulerian (ALE) models.

The deforming-spatial-domain/space-time method is described in [17, 18] and is
based on using finite element spaces that span both the spatial and temporal domains.
With this technique, the deformation of the spatial domain is automatically accounted
for. The approach was initially tested on the two-dimensional flow of drafting cylinders.
This approach is used in [13] to model the three-dimensional flow of 5 spheres in a
vertical channel at a Reynolds number of 100.

The DLM model as it is most frequently used was first employed in [21] and is char-
acterized by structured, fixed computational grids. The particles flow through the grid
as time advances, creating a moving fictitious domain for each particle. The Lagrange
multiplier referred to is a constraint on the mesh nodes internal to the particles and is
included to enforce a condition of rigid body rotation at the internal mesh nodes. The
appeal of this model is that fast solution techniques such as multigrid or fast Poisson
solvers can be used, because of the structured grids. A primary disadvantage is that
local mesh refinement is not possible. This can result in models that are larger than
may be necessary. In addition, a smaller time step is required (relative to the ALE
method to be described) to obtain accurate representations of the particle physics. This
approach was used in [10] to simulate the two-dimensional flow of 540 circular particles
and the three-dimensional flow of 2 spheres in a sedimentation column. In [22], the
DLM model is used to simulate the three-dimensional fluidization of 1204 spheres.

The ALE model, originally proposed in [20] employs an unstructured, moving grid
in which particles are embedded and treated as moving, solid boundaries. The fluid
equations are derived relative to the local mesh velocity. Because the mesh velocity
varies through the grid, the frame of reference is, in some sense, arbitrary. The un-
structured grid generally precludes the efficient use of multigrid solution techniques,
but larger time steps can be taken. In addition, local mesh refinement is possible in
regions where pressure and velocity gradients are large. The ALE model was employed
in [4] to investigate the two-dimensional Poiseuille flow of 100 circles in a vertical chan-
nel for Reynolds numbers near 100. In [2], it was used to model the fluidized lift-off of
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Figure 1: A solid-liquid flow domain consisting of 100 particles in a closed box. Gravity
is acting towards the right.

300 particles in a periodic channel for Reynolds numbers as large as 3500.

The above brief overview of research and techniques for modeling solid-liquid flows
is by no means comprehensive and readers are encouraged to consult the references
given, particularly [4, 10], for more information.

The purpose of this paper is to study the effect of several techniques for partitioning
the particles in the parallel implementation of a particular serial ALE code [4] for fluid-
particle simulations. The emphasis will be on investigating the parallel performance
and efficiency of these techniques.

2 Problem Description and Formulation

The mathematical description of the ALE method used in the solid-liquid simulations
to be investigated has been presented in [1, 4] and is summarized here for complete-
ness. Consider a two-dimensional region I' containing an incompressible fluid and an
arbitrary number of circular particles. Such a domain is illustrated in Figure 1. The
region of I' occupied by the fluid is given by

=C\([qul,ur,)

where I'y, I';, and I',, are the sections corresponding to Dirichlet boundary conditions,
Neuman boundary conditions and particle surfaces respectively.



The motion of the fluid is described by the conservation of mass and momentum
equations:

V-u = 0 (1)

pf<g—1;+u-Vu> = -Vp+V.T (2)
where u is the fluid velocity vector, p is the pressure and p; is the fluid density. If the
fluid is taken to be Newtonian then the extra stress tensor T = pyA(u) where puy is
the fluid viscosity and A(u) = Vu + (Vu)” is the strain rate tensor. All quantities,
aside from 1y and py, are assumed to be of the form u = u(x, ?).

The particle motion is governed by Newton’s second law

p=12,...,N, (3)
dX, _
dt 7

where N, is the number of particles. The translational and rotational equations have
been combined. M is the generalized mass matrix of the particle, X,,, U, and F, are,
respectively, the generalized position vector, velocity vector and force vectors of the
particle. G, represents external forces (i.e., gravity) acting on the particles. The mass
matrix can is described by

m 0 O
M= 0 m O
0 0 I

where m is the particle mass per unit length and [ is the moment of inertia about the
center of mass. The remaining quantities can be written as

X U F, 1
Xp=|Y |, U=V |, Fo=| F, |; Gy=(pp—pr)gdp| 0

Here, X,Y and O represent the position and angular orientation of the particle, U,V
and 2 are the particle vector and angular velocities, A, is the particle area, p, is the
particle density, and g is the force of gravity which has been assumed to act in the
z-direction.

Initial conditions for the fluid and particles are imposed as:

u(x,0) = ug ; X,(x,0) = X ; U,(x,0) = U,.
The boundary conditions on the fluid are

u = ug only
—p-n+T-n = u, onl,
u = U,+Q,x(x—-X,) onT,.
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The last of these conditions reflects the no-slip condition on the particle surfaces. With
this notation, it is possible to define fluid and particle Reynolds numbers as

D Ul - D
Re; = Doy Re, = | 1l = [[ull | Dypy
1 1y

respectively, where D is a domain dependent length scale, D, is the particle diameter
and || x || represents the L?-norm.

2.1 Discretization

Before describing the discretized equations, the momentum equation must be altered
slightly. As the motion of the particles evolves, the portion of I' occupied by the fluid
changes. The ALE scheme makes use of moving grids to compensate for this. This
introduces an arbitrary reference frame indicated by the local grid velocity u,. The
fluid is assumed to be convected relative to ug, so the modified momentum equation
becomes

)
pf<5—]:+(u—ug)-Vu>=—Vp+V-T (4)

where the time derivative is taken in the new reference frame. If u, = 0, the standard
Eulerian frame is recovered while if u; = u, the Lagrangian frame is observed.

Two other important elements of the model must also be mentioned briefly. The
first is the use of the combined fluid-particle formulation [4, 10]. This formulation
greatly simplifies the solution of the discrete equations because it eliminates the need
for computing the forces and torques imparted by the fluid on the particles. The prin-
ciple behind this approach is to incorporate the equations for the particle motion (3)
into the momentum equation (4) when writing these equations in their weak form. Ap-
propriate use of integration by parts results in the cancellation of all particle boundary
integrals. The second important modification to the model is the use of a particle
projection technique described in [9]. In this approach, which is used in conjunction
with the combined formulation, the equations associated with the velocity variables on
the particle surfaces are projected onto the particle variables U,. The advantage of
this technique is that it yields a saddle point problem with an SPD matrix in the (1,1)
block. For simulations involving several thousands of particles, the memory savings
associated with this transformation are significant.

The spatial discretization in the current ALE model is achieved through a P2-P1
finite element formulation with isoparametric P2 elements employed to characterize
the circular particle boundaries.

The time stepping process is a four step, second-order accurate operator splitting
scheme [1, 3]. This scheme is implicit for the fluid variables while the particles are
advanced using a simple first-order, explicit relation. Let u" and U, denote the fluid
and particle velocity vectors and p" represent the pressure, which are known at some



discrete time ¢ = nAt. The splitting method proceeds by first solving a convection
diffusion equation, yielding intermediate velocities  and U,

N

a—u" 1 1 .
m(uAtu +§f1”-ﬁ+§ﬁ”-un) = T"+T

M=K = Bt G

Here, T and T represent the discretized extra stress tensors, given by

1 1 .
T"=guA?) ;s T=guAD).
For the case of a Newtonian fluid, these become discrete Laplacian terms. The con-
vection term has been linearized in terms of the relative grid velocity u" = u" — ug.
Because there is no reference to the pressure, the computed i1 does not necessarily

satisfy the incompressibility condition. This is enforced in the second step by solving

u* —1u
— Vpn
o (M5) = W
U;-U ©
M—2_—f — F
At P
for the intermediate velocities u* and Uj. Another feature of the combined formulation
is that it allows the third and fourth steps in [3] to be combined into a single step.
In conjunction with the particle projection step, this results in a symmetric saddle
point problem which simultaneously computes the pressure field while enforcing the

incompressibility condition:

un+1 _ u* A
- _ n+1
Ps ( At ) Vp
Un+1 U
» P ; (7)
M A7 F,
V-u'tt = 0. )

The mesh velocity uy is obtained by solving a Laplace equation on the pressure
space, then interpolating the result to the velocity grid. Eventually the translational
and rotational motion of the particles requires that the computational domain be
remeshed. This is determined by evaluating the quality of the elements after moving the
mesh according to ug. When remeshing is performed, the existing u” is quadratically
interpolated to the new mesh.

The code is not limited to Newtonian fluids. It also supports Oldroyd-B fluids,

which are used in the modeling of blood flows. Other fluids can be included, provided

6



Figure 2: An example of a typical partitioning of the surface elements for two closely
spaced particles.

the constitutive equation for T is known. More general particles shapes, such as ellipses
and rectangles can also be selected. The individual particles can have different radii,
however, all particles must be of the same basic shape.

3 Parallel Implementation

The parallel implementation was achieved through the use of PSPARSLIB [12], an
MPI-based, portable library of domain decomposition-type solvers for general sparse
linear systems. The main preconditioners available are variants of the additive and
multiplicative Schwarz procedures described in [15, 16], as well as the more sophisti-
cated Schur complement approach described in [14]. The local systems are typically
solved by a simple local ILU-type techniques, possibly accelerated with a local GM-
RES iteration. A variety of (global) accelerators are available. However, the primary
accelerator is FGMRES a flexible variant of GMRES which allows the preconditioner
to vary at each step. PSPARSLIB also provides sparse data structures and communi-
cation routines for implementing the distributed matrix-vector product operation and
the preconditioners mentioned above.

The basic input to the PSPARSLIB data structure routines is the distribution of
the local equations among the various subdomains. For the ALE code under consid-
eration this is somewhat complicated due to the particle projection step described in
Section 2. In order to correctly generate the discrete particle equations, information
from all elements that come in contact with the particle surface is required. As an ex-
ample, consider Figure 2, where it is supposed that some technique for subdividing the
computational domain has been used. Here, two particles are close enough that their
surface elements come in contact. To generate the equations for particle P, all the
surface elements and particle variables associated with particle P, will also be required.
In the example domain shown in Figure 1, all of the particles exhibit this characteristic.



Figure 3: Particle partitioning example from Figure 2 with method M4 imposed.

Because the density of the finite element grid is greatest near particles, the situation
where the particle surface elements are distributed among two or more subdomains
is almost unavoidable and some method of partitioning these particles must be used.
Four approaches have been considered.

M1 Overlap all particle variables and surface elements on all relevant subdomains.
For the example indicated in Figure 2 all the elements and particle variables
would be present on subdomains 1, 2 and 3.

M2 Overlap only the particle variables on all relevant subdomains. In Figure 2 the
particle variables associated with particles P, and P, would appear on domains 1,
2 and 3 while the surface elements would be placed in their respective domains.
Information from the required particles is available locally to avoid communica-
tion during the generation of the local equations.

M3 Overlap nothing. Place particle in domain based on weight of surface elements.
For Figure 2 the variables for particle P, would be placed in subdomain 1 and
those for particle P, would be placed in subdomain 2.

M4 Same as M3, but with the additional constraint that all elements having an edge
on the particle are reassigned to same domain as particle. This is illustrated in
Figure 3.

It is also possible to graft a layer of structured elements onto each particle, as was done
in [7, 13]. This effectively isolates each particle from its neighbors and greatly reduces
the number of overlapping particles. Unfortunately, for particles in close proximity, the
layer of elements must be extremely thin in order to obtain elements that are suitable
for computation. For the domain shown in Figure 1 this was observed to increase the
number of elements by 100-200%, hence this approach is not considered here.
Experimentation with these methods indicates that method M1 converges faster
if some degree of additional element overlap at subdomain boundaries is included and

8



that methods M2-M4 will not converge at all without additional overlap. One layer
of overlap is obtained by examining all elements that share a node with a given element
(say E;) and including them in the same domain as F;. More layers can be obtained
by applying this idea recursively.

Two techniques for dividing " into N, subdomains have been examined. The first
is the program Metis [8]. For the second, a simple one-dimensional partitioner is
employed. This partitioner places each element in one of N, accumulation bins based
on the z-coordinate of the centroid. The elements within each bin are sorted in order of
increasing y-coordinate. Then, starting with the first bin, elements are placed into the
first subdomain until N, = %—’S’ elements are accumulated. The next set of NV, elements
are placed in the second subdomain and so on until all the elements are exhausted.
This partitioning technique will be referred to as the bin-sorting method. The final
partitioning procedure is then described by

1) Partition domain on an elemental basis,

2) Adjust partitioning to account for particle overlap using one of methods M1-M4
above,

3) Include additional layers of element overlap.

In the current model, only the saddle point equation (7) has been implemented
in parallel. The solution of this equation represents the largest portion of solution
time. Equations (5) and (6) are implemented in serial and are solved in each processor.
Though this seems somewhat wasteful, these equations are effectively solved using
diagonally preconditioned Bicgstab. Further, the current mesh generator is serial and
this constitutes the main limitation to increasing the problem size.

4 Numerical Experiments

We consider four test cases for purposes of examining the computational accuracy as
well as the performance of the parallel solver in light of the partitioning methods M1-
M4. In all cases, the fluid and particles start from rest and all particles are circular
with a radius of 1 cm.

T1 A single particle in a gravity driven sedimentation column. The domain is a
closed, square box with side length 20 cm. The particle and fluid densities are
1.01 and 1.00 0_1%1_3 respectively and the fluid viscosity is 0.01 poise. The particle
is initially in the lateral center of the column as shown in Figure 4.

T2 1000 particles in a sedimentation column. The domain is a rectangular box of
width 21.05 cm and length 104.5 cm. The particle and fluid densities are 1.1 and
1.0 a%l—g respectively. The particles are initially configured in a 20 x 50 array
(see Figure 10).



T3 Lift-off of 300 particles in a periodic channel. The domain is 12 cm wide, 63
cm long and periodic in the z-direction. The fluid and particle properties are

the same as in case T1. The flow is driven by a pressure gradient of 1.0 %Lmn
The particles are initially in a 5 x 60 crystal array on the bottom of the channel
(Figure 15).

T4 Lift-off of 7008 particles in a periodic domain. The domain is 102.4 cm wide and
248 cm long. The fluid and particle densities are 1.14 and 1.00 C_Ign_s respectively
and the fluid viscosity is 0.01 poise. Initially, the particles are configured in a 96
X 73 crystal array.

The first two cases are important in the modeling of industrial coating processes and
increasing the efficiency of chemical reactions through catalyst cracking. In this case,
the fluid represents a coating that is to be applied to the particles. The latter cases
are used to model the processes of hydraulic fracturing and lubricated transport. The
flows are driven by a pressure gradient. For sufficiently high gradients, the particles
are lifted off the upper layer of the initial crystal layer into the free stream. Eventually
all particles are lifted off and settle into an aggregate height in the mid stream. They
cannot completely rise to the top of the channel because the shear stress at the upper
wall is acting to drive the particles back down into the free stream.

All the tests described here were performed on an IBM-SP2 supercomputer located
at the Minnesota Supercomputing Institute. This machine has several subconfigura-
tions, but the portion used for these experiments consists of 17 nodes, each node having
four 222 MHz Power3+ processors sharing 16 GB of memory. Additionally, due to the
expense and difficulty of obtaining dedicated computer time, only the parallel perfor-
mance tests were performed in dedicated mode. The timing of the performance studies
was done using a wall-clock timer provided in the MPI implementation (MPI_WTime),
however, by the results to be presented in Sections 4.2 and 4.3, it is important to note
that these times might be in error by as much as one second even though the runs were
performed in dedicated mode at times when the overall system use was low.

In all cases, the parallel solver for the saddle point problem is an additive Schwarz
algorithm using local ILU preconditioning and GMRES for the accelerator. The con-
vergence criteria is a reduction of the initial preconditioned residual be a factor of
1078. The original serial code employed a conjugate gradient algorithm with ILU(0)
preconditioning. The parameters for GMRES and ILU for each test case are given in
Table 1. In each case, both Metis and the Bin-sorting partitioning are tested. The
number of bins for the Bin-sorting technique was taken to be N, = 20. Experimenta-
tion showed that this value gave reasonable performance results for all test cases under
consideration.

Before proceeding to the test case results, it is instructive to make two comments
about the behavior observed when running simulations with the parallel code. First,
with the exception of Case T1, all of the cases eventually require remeshing of the
domain. However, the initial mesh size is the largest one. Remeshing of the domain
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T1 | T2 | T3 | T4
m || 50 | 100 | 80 | 100
2] 10 41 10

o

Table 1: Krylov subspace dimensions m for GMRES(m) and fill-level & in ILU(k), for
Cases T1-T4.

Procs (n) E, | Period (s) | Uterm ((:Tm)
1 - 1.34 2.47

2 | 6.20(-4) 1.34 9.47

4 || 6.47(-4) 1.34 9.47

8 || 7.81(-4) 1.34 9.47

16 | 7.12(-4) 1.34 2.47

Table 2: Results of accuracy tests for Case T1. The error in column 2 represents the
absolute error in the total solution vector relative to that obtained on 1 processor.

typically results in somewhere between 2-5% fewer elements than the initial size. Sec-
ond, in order for the parallel solver to converge, it is necessary to employ an averaging
matrix-vector product operation which averages all the data in the overlapping regions.

4.1 Case T1

The first test is a simple accuracy test. This is done to ensure that an acceptably
accurate solution is being computed independent of the number of processors. The
simulation is run for 3000 time steps, corresponding to ¢ = 15 seconds.

The physical behavior of the particle in this simulation has been studied extensively.
The particle rapidly accelerates to a terminal velocity, then enters a periodic steady
state, as shown in Figure 5. The results of these tests are in Table 2. The steady
state period of oscillation and the average terminal velocity for the particle are in good
agreement with the values given in [1]. Further, there is little variation in the errors in
the total solution vector at ¢ = 15. Because the angular displacement of the particle is
small, remeshing never needs to be done in this case.

The result of these tests is in Table 2. The steady state period of oscillation and
the average terminal velocity for the particle agree with the value given in [1]. Further,
there is a consistent degree of accuracy when the number of processors is varied.

The parallel speedup performance is shown in Figures 6 and 7. In addition, iteration
counts, parallel efficiencies and total times are given in Table 3. Despite the relatively
small size of the saddle point problem, reasonable speedup can be obtained for large
numbers of processors. The best approach for this case appears to be either methods
M1 or M2, though all the methods give nearly identical results for a fixed partitioner.
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M1

Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
11 32| 3.45 1.00 1.00 || 32| 3.45 1.00 1.00
2| 38| 2.42 1.46 0.73 ] 36 | 2.24 1.58 0.79
41 38| 1.30 2.72 0.68 || 41| 1.84 1.92 0.48
8| 43| 0.98 3.61 0.45 | 48 | 1.48 2.39 0.29
16 | 45| 0.66 5.36 0.33 | 47| 1.08 3.27 0.20
M2
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
11 32| 3.45 1.00 1.00 || 32| 3.45 1.00 1.00
2] 38| 2.38 1.46 0.73 ] 36 | 2.20 1.61 0.80
4| 38| 1.30 2.72 0.68 || 40 | 1.89 1.87 0.46
8| 43| 0.98 3.61 0.45 | 48 | 1.37 2.58 0.32
16 | 45| 0.66 5.36 0.33 | 47| 1.08 3.27 0.20
M3
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
1 32| 345 1.00 1.00 | 32| 3.45 1.00 1.00
2| 38| 2.42 1.46 0.73 ] 36 | 2.23 1.58 0.79
4| 38| 1.30 2.72 0.68 || 42| 1.78 1.99 0.49
81 43 | 0.98 3.61 0.45 || 49 | 1.42 2.49 0.31
16 || 45| 0.68 5.20 0.32 | 54 | 1.22 2.90 0.18
M4
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
11 32| 3.45 1.00 1.00 || 32| 3.45 1.00 1.00
2| 38| 2.42 1.46 0.73 || 36 | 2.20 1.61 0.80
41 38| 1.30 2.72 0.68 || 42 | 1.78 1.99 0.49
8| 43| 0.98 3.61 045 | 49 | 141 2.51 0.31
16 | 46 | 0.68 5.20 032 || 54| 1.21 2.92 0.18

Table 3: Performance results for Case T1 using Metis and Bin-sorting partitioners.

Absence of data indicates that the method did not converge in 300 iterations.

12




This is mainly due to the fact that the single particle does not create a substantive
amount of overlap, hence all four methods are essentially the same. Note that there
is a large discrepancy between Metis and the Bin-sorting partitioning. This is due to
the fact that Metis partitions by attempting to minimize edge connections while the
Bin-sorting partitioner is based only on element balance. Also, since the times may
be in error by as much as one second (see Section 4.2), it is difficult to say which
partitioner performs better.

Figures 8 and 9 give the amount of time spent in the major components of the
parallel solver: Total time, GMRES, matrix vector and preconditioning operations.
These figures reveal that both the GMRES solver and the matrix-vector operation do
not scale well with increasing numbers of processors. This is due to the small size of
the saddle point problem.

4.2 Case T2

The parallel performance results for this case are given in Table 4 and Figures 11 and
12 and indicate that Method M2 with Metis partitioning performs the best in terms of
overall parallel speedup and efficiency, though all methods exhibit poor performance.
Again, possible perturbations in the accuracy of the timings lead one to conclude that
Methods M1 and M2 are very similar. Figures 13 and 14 show the times of the
individual components in the parallel solver for Method M2 and Metis partitioning.
In spite of the poor overall performance, all of the component operations appear to be
scaling at the same rate.

The parallel performance in this case is best explained by examining Table 5 which
contains information on how the data is partitioned among the subdomains for Methods
M1-M4 and both Metis and Bin-sort partitioning. The first rows give information on
how many particles are shared among the various subdomains. The next rows give
the average number of particles per subdomain as well as the maximum and minimum
number of particles on any subdomain. The third set of rows give an indication of the
load balancing expressed as a percentage of the total number of equations in the saddle
point problem. Again, average, maximum and minimum values are given. The last set
of rows is perhaps the most revealing. These indicate how many of the local variables
need to be communicated to adjacent processors expressed as a percentage of the total
number of variables local to each processor.

In the initial particle configuration, every particle is affected by adjacent particles
through the particle projection step described in Section 3. This can be observed in
the first line of Table 5 (Split Particles). Eventually, the number of particles that must
communicate with adjacent subdomains reaches approximately 25%.

This table also reveals the possibility of large errors in the timing of the routines.
If the local equations generated by Methods M3 and M4 are examined, it is seen
that these two methods are identical, yet the execution times differ by 0.7 seconds
for Bin-sorting partitioning and 1.5 seconds for Metis partitioning (for 16 processors).
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The equivalence of these 2 methods implies that all the domain boundaries lie between
particles. This can easily be seen in Figure 10, which includes the Metis and Bin-sorting
partitionings of the domain for 8 processors. Also, although not explicitly shown, the
same remarks regarding Methods M3 and M4 be made for Case T1.

The data communication portions of Table 5 reveal that the amount of data to be
communicated becomes significant as the number of processors increases. For Methods
M1 and M2 and 16 processors, the local variables to be communicated with adjacent
processors is 50% and 30% of all variables, on average, respectively. The use of an
Additive Schwarz algorithm implies that, aside from a few scalar product operations in
the GMRES accelerator, substantial communication occurs only in the matrix-vector
operation. However, the large quantities of data to be averaged result in a bottleneck
in the solution process. As one might expect, the amount of data communication is less
for Method M2, but still substantial. Method M3 requires only about half as much
data communication as Method M2, but the performance is more erratic, particularly
for 2 processors and Metis partitioning.

4.3 Case T3

The parallel performance results for this test are given in Table 6 and Figures 17 and 18.
These figures show that method M2 with Bin-sorting partitioning performs the best
in terms of overall parallel speedup and efficiency. Figures 19 and 20 show the times
of the individual components in the parallel solver. These figures also show that the
GMRES and matrix-vector operations are not scaling well with increasing processors.
This is due to the use of the averaging matrix-vector operation necessary to obtain
convergence and also the fact that GMRES is not a constant work per iteration solver.

These results are qualitatively similar to those obtained in Case T2. Again, all of
the particles in the initial configuration are affected by the particle projection step.
Table 7 gives the data distribution as explained in the Section 4.2, although the data
communication is even more severe. For 16 processors, Methods M1 and M2 require
approximately 50% to 90% respectively of the local variables to be communicated
(depending on the partitioning). It is interesting to note that the parallel performance is
much improved despite the increase in data communication percentages. This confirms
that the quantity of data to be communicated, which is much less than Case T2, also
plays a significant role in performance.

Table 6 shows that Metis partitioning fails for Methods M3 and M4 with large
numbers of processors. This can be explained by looking at the partitioning of the
domain shown in Figure 15 and also the particle distribution information in Table
7. Metis returns a partitioning that is highly fragmented and gives unequal particle
distributions, while Bin-sorting results in a more evenly balanced distribution.

Figures 22 and 21 show the performance of the parallel solver at time ¢t = 0.31
seconds. The maximum particle Reynolds number observed at this time is about
3300. Table 8 gives the data distribution among the processors. The results here
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M1

Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
2| 56| 85.6 1.000 1.000 || 58 | 87.2 1.000 1.000
41 62| 58.9 1.453 0.727 | 64| 60.6 1.439 0.796
8 67 | 41.9 2.043 0.511 69 | 44.1 1.977 0.494
16 || 72| 32.2 2.658 0.332 || 76| 36.7 2.376 0.297
M2
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
2| 61| 91.3 1.000 1.000 | 62| 92.3 1.000 1.000
41 73| 65.6 1.392 0.696 || 71| 64.7 1.427 0.713
8| 80| 44.8 2.038 0.510 || 83| 47.5 1.943 0.489
16 || 88| 33.1 2.758 0.345 || 95| 43.9 2.103 0.263
M3
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
2| 741149 1.000 1.000 || 71 | 106.2 1.000 1.000
4 || 147 | 124.9 0.920 0.460 || 80| 72.9 1.457 0.728
8| 89| 48.9 2.350 0.587 || 88| 50.1 2.120 0.530
16 || 112 | 38.8 2.961 0.370 || 100 | 46.1 2.304 0.288
M4
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
2 741 115.1 1.000 1.000 || 71 | 106.2 1.000 1.000
4 || 147 | 124.6 0.924 0.462 | 80| 73.5 1.445 0.722
8| 89| 48.8 2.359 0.590 || 88 | 49.2 2.159 0.540
16 || 112 | 40.3 2.856 0.357 || 100 | 46.8 2.263 0.284

Table 4: Performance results for Case T2 using Metis and Bin-sorting partitioners.

Absence of data indicates that the method did not converge in 300 iterations.
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Metis Procs Bin-sorting Procs

2 | 4 ] 8 | 16 2 | 4 ] 8 | 16
M1

Split Part 24 92 170 244 25 75 177 258
Part per

Ave 512 273 147 79 513 269 147 80

Max 516 287 159 86 515 280 155 85

Min 508 256 133 66 510 255 127 65
Eqns per

Ave || 0.5117 | 0.2726 | 0.1467 | 0.0785 || 0.5125 | 0.2687 | 0.1473 | 0.0806
Max || 0.5135 | 0.2825 | 0.1554 | 0.0831 || 0.5149 | 0.2773 | 0.1530 | 0.0840
Min || 0.5100 | 0.2649 | 0.1377 | 0.0724 || 0.5101 | 0.2581 | 0.1354 | 0.0703
Data Comm per
Ave || 0.0558 | 0.1995 | 0.3475 | 0.4689 || 0.0593 | 0.1671 | 0.3622 | 0.4979
Max || 0.0560 | 0.2530 | 0.4265 | 0.5950 || 0.0594 | 0.2190 | 0.4160 | 0.5786
Min || 0.0557 | 0.1482 | 0.2533 | 0.2984 || 0.0592 | 0.1130 | 0.2296 | 0.3211

Eqns per

Ave || 0.5010 | 0.2519 | 0.1267 | 0.0638 || 0.5015 | 0.2524 | 0.1287 | 0.0656

Max || 0.5025 | 0.2569 | 0.1308 | 0.0656 || 0.5024 | 0.2530 | 0.1308 | 0.0685

Min || 0.4994 | 0.2497 | 0.1229 | 0.0621 || 0.5006 | 0.2521 | 0.1270 | 0.0639

Data Comm per
Ave || 0.0257 | 0.0982 | 0.1800 | 0.2568 || 0.0292 | 0.0876 | 0.2126 | 0.3063

Max || 0.0261 | 0.1250 | 0.2295 | 0.3391 || 0.0322 | 0.1131 | 0.2773 | 0.4033

Min || 0.0253 | 0.0677 | 0.1202 | 0.1519 || 0.0262 | 0.0500 | 0.1247 | 0.1650

M3
Split Part 0 0 0 0 0 0 0 0
Part per
Ave 500 250 125 63 500 250 125 63
Max 507 258 132 66 510 259 130 66
Min 493 236 116 53 490 235 105 41
Eqns per

Ave || 0.5009 | 0.2517 | 0.1265 | 0.0637 || 0.5014 | 0.2523 | 0.1286 | 0.0655
Max || 0.5024 | 0.2567 | 0.1306 | 0.0654 || 0.5023 | 0.2528 | 0.1307 | 0.0684
Min || 0.4993 | 0.2496 | 0.1228 | 0.0620 || 0.5006 | 0.2520 | 0.1268 | 0.0637
Data Comm per
Ave || 0.0140 | 0.0477 | 0.0882 | 0.1290 || 0.0151 | 0.0464 | 0.1179 | 0.1780
Max || 0.0163 | 0.0614 | 0.1229 | 0.1671 || 0.0196 | 0.0679 | 0.1478 | 0.2315
Min || 0.0116 | 0.0334 | 0.0566 | 0.0681 || 0.0106 | 0.0229 | 0.0678 | 0.1067
M4

Eqns per

Ave || 0.5009 | 0.2517 | 0.1265 | 0.0637 || 0.5014 | 0.2523 | 0.1286 | 0.0655

Max || 0.5024 | 0.2567 | 0.1306 | 0.0654 || 0.5023 | 0.2528 | 0.1307 | 0.0684

Min || 0.4993 | 0.2496 | 0.1228 | 0.0620 (| 0.5006 | 0.2520 | 0.1268 | 0.0637

Data Comm per
Ave || 0.0140 | 0.0477 | 0.0882 | 0.1290 || 0.0151 | 0.0464 | 0.1179 | 0.1780

Max || 0.0163 | 0.0614 | 0.1229 | 0.1671 || 0.0196 | 0.0679 | 0.1478 | 0.2315

Min || 0.0116 | 0.0334 | 0.0566 | 0.0681 (| 0.0106 | 0.0229 | 0.0678 | 0.1067

Table 5: Distribution of particles, equations and communication for Case T2 for Metis
and Bin-sorting partitionings. The particle splittings are the same for Cases M1 and
M2 and Cases M3 and M4.
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are somewhat different. As can be seen from the domain plots given in Figure 16, the
particles have begun to lift-off from the initial positions along the bottom of the channel.
This results in more spacing between the particles and hence, the number of particles
that need to be overlapped due to the particle projection is reduced, at least for large
numbers of processors. The number of overlapped particles is not reduced substantially
for Metis partitioning, but Bin-soring results in about 50% less overlapping than in the
initial configuration. This fact is reflected in both the reduction of the amount of
data to be communicated and in the improvement in parallel performance. Also, Metis
returns a more evenly distributed particle partitioning and as a result, the performance
for Methods M3 and M4 is nearly the same as for Bin-sorting partitioning.

4.4 Discussion of Results

The performance results obtained for these test cases are somewhat inconclusive, but
they do point to a number of important facts. It is apparent that an equal distribution
of the particles is necessary for both good performance and robustness. There does not
seem to be a uniform result with respect to the performance of the basic partitioner. In
general, Metis partitioning is easier to implement and slightly faster than Bin-sorting,
but this portion of the particle partitioning process represents only about 5% of the
total effort. One disadvantage of the Bin-sorting partitioner is that it requires to select
a number of bins N,. This parameter can greatly affect the execution time, which can
vary in some cases by as much as 200%.

The particle partitioning methods seem to be gathered into 2 distinct groups. Gen-
erally, Methods M1 and M2 perform the best and exhibit very similar performance.
Method M3 is slightly less effective but also involves significantly less data communi-
cation. This drop in effectiveness is believed to be due to the lack of particle overlap.

The averaging matrix-vector product operation is necessary for the particle parti-
tioning methods to converge, but unfortunately it also becomes extremely costly for
large numbers of processors where the percentage of local variables that need to be
exchanged becomes significant. Reducing the amount of overlapping particles might
improve the performance of this operation. One approach that would be simple to im-
plement would be a compromise between Methods M2 and M3. Instead of overlapping
all particles, some subset (i.e., every other one) of particles could be overlapped.

Another performance improvement that could be made is to use a constant work
per iteration solver. A Bicgstab algorithm was test to see if this was indeed the case,
but it was observed to lead to drastic increases in the iteration counts for large numbers
of processors. Additionally, it would be useful to stabilize the number of iterations as
the processor number is increased. The Schur complement preconditioner of [14] has
been observed to have this property, however, the current version of this preconditioner
assumes that there is no overlap between neighboring domains. The preconditioner will
work with overlapping variables, but the performance was observed to degrade to the
point that the iteration counts were nearly identical to the Additive Schwarz algorithm.
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M1

Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
1] 55| 43.8 1.00 1.00 || 55| 43.8 1.00 1.00
2| 64| 27.9 1.57 0.78 || 56 | 24.2 1.80 0.90
4 67| 17.7 2.47 0.62 65 | 19.7 2.22 0.56
8| 69| 14.7 2.97 0.37] 69| 134 3.26 0.41
16| 71 8.6 5.09 032 74| 10.1 4.33 0.27
M2
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
1] 55| 43.8 1.00 1.00 || 55| 43.8 1.00 1.00
2| 65| 26.9 1.62 0.81] 64| 27.1 1.61 0.81
4| 70| 16.7 2.62 0.66 | 68| 17.6 2.48 0.62
8 79| 124 3.53 0.44 72 | 10.5 4.17 0.52
16 || 83 7.1 6.16 039 | 78| 7.00 6.25 0.39
M3
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
1] 55| 4338 1.00 1.00 | 55| 43.8 1.00 1.00
2126 | 52.2 0.83 0.42 71| 30.6 1.43 0.72
4 - 86| 21.2 2.07 0.52
8 - 127 | 18.2 2.40 0.30
16 - 136 | 11.4 3.84 0.24
M4
Metis Bin-sorting
Procs || Its | Time | Speedup | Efficiency || Its | Time | Speedup | Efficiency
1] 55| 43.8 1.00 1.00 || 55| 43.8 1.00 1.00
21126 | 52.0 0.84 0.42 71 ] 30.8 1.42 0.71
4 - 85| 20.6 2.12 0.53
8 - 127 | 171 2.56 0.32
16 - 136 | 10.3 4.25 0.27

Table 6: Performance results for Case T3 using Metis and Bin-sorting partitioners.

Absence of data indicates that the method did not converge in 300 iterations.
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Metis Procs Bin-sorting Procs

2 | 4 ] 8 | 16 2 | 4 ] 8 | 16
M1

Split Part 16 36 95 130 22 46 95 195
Part per

Ave 158 84 50 28 161 89 50 32

Max 159 89 56 33 162 97 61 38

Min 157 80 45 24 160 80 44 25
Eqns per

Ave || 0.5254 | 0.2772 | 0.1603 | 0.0890 || 0.5341 | 0.2956 | 0.1671 | 0.1032
Max || 0.5275 | 0.2825 | 0.1835 | 0.1012 || 0.5353 | 0.3204 | 0.1939 | 0.1212
Min || 0.5234 | 0.2683 | 0.1467 | 0.0804 || 0.5328 | 0.2734 | 0.1509 | 0.0874
Data Comm per
Ave || 0.1192 | 0.2419 | 0.5057 | 0.6518 || 0.1463 | 0.3059 | 0.5356 | 0.8634
Max || 0.1199 | 0.2941 | 0.6318 | 0.7709 || 0.1474 | 0.3692 | 0.6146 | 0.9161
Min || 0.1184 | 0.1918 | 0.3915 | 0.5741 || 0.1451 | 0.2393 | 0.4418 | 0.7611

Eqns per

Ave || 0.5045 | 0.2543 | 0.1284 | 0.0652 || 0.5117 | 0.2675 | 0.1406 | 0.0770

Max || 0.5069 | 0.2577 | 0.1365 | 0.0707 || 0.5123 | 0.2742 | 0.1514 | 0.0827

Min || 0.5021 | 0.2508 | 0.1225 | 0.0614 || 0.5111 | 0.2611 | 0.1372 | 0.0736

Data Comm per
Ave || 0.0646 | 0.1335 | 0.2903 | 0.4024 || 0.0946 | 0.2094 | 0.3960 | 0.7165

Max || 0.0652 | 0.1569 | 0.3744 | 0.5113 || 0.0960 | 0.2358 | 0.4567 | 0.7929

Min || 0.0640 | 0.1063 | 0.2344 | 0.3220 || 0.0932 | 0.1759 | 0.3374 | 0.6325

M3
Split Part 0 0 0 0 0 0 0 0
Particles per
Ave 150 75 38 19 150 75 38 19
Max 150 83 46 25 150 75 39 21
Min 150 64 20 8 150 75 36 15
Eqns per

Ave || 0.5043 | 0.2541 | 0.1282 | 0.0650 || 0.5115 | 0.2672 | 0.1403 | 0.0786
Max || 0.5067 | 0.2576 | 0.1360 | 0.0705 || 0.5121 | 0.2738 | 0.1510 | 0.0823
Min || 0.5019 | 0.2506 | 0.1223 | 0.0613 || 0.5109 | 0.2610 | 0.1371 | 0.0735
Data Comm per
Ave || 0.0389 | 0.0791 | 0.1548 | 0.2190 || 0.0570 | 0.1346 | 0.2481 | 0.4421
Max || 0.0419 | 0.1112 | 0.2727 | 0.3325 || 0.0601 | 0.1598 | 0.3095 | 0.5467
Min || 0.0359 | 0.0508 | 0.1058 | 0.1248 || 0.0539 | 0.1074 | 0.1855 | 0.3376
M4

Eqns per

Ave || 0.5043 | 0.2541 | 0.1282 | 0.0650 || 0.5115 | 0.2672 | 0.1403 | 0.0786

Max || 0.5067 | 0.2576 | 0.1360 | 0.0705 || 0.5121 | 0.2738 | 0.1510 | 0.0823

Min || 0.5019 | 0.2506 | 0.1223 | 0.0613 || 0.5109 | 0.2610 | 0.1371 | 0.0735

Data Comm per
Ave || 0.0389 | 0.0791 | 0.1548 | 0.2190 || 0.0570 | 0.1346 | 0.2481 | 0.4421

Max || 0.0419 | 0.1112 | 0.2727 | 0.3325 || 0.0601 | 0.1598 | 0.3095 | 0.5467

Min || 0.0359 | 0.0508 | 0.1058 | 0.1248 || 0.0539 | 0.1074 | 0.1855 | 0.3376

Table 7: Distribution of particles, equations and communication for Case T3 for Metis
and Bin-sorting partitionings at time ¢ = 0 seconds. The particle splittings are the
same for Cases M1 and M2 and Cases M3 and M4.
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Metis Procs Bin-sorting Procs

2 | 4 ] 8 | 16 2 | 4 ] 8 | 16
M1

Split Part 18 36 85 128 11 28 51 108
Part per

Avg 159 84 49 28 156 84 45 27

Max 164 87 57 33 157 87 53 33

Min 154 81 40 21 154 81 39 20
Eqns per

Avg || 0.5210 | 0.2718 | 0.1520 | 0.0835 || 0.5175 | 0.2773 | 0.1480 | 0.0851
Max || 0.5233 | 0.2818 | 0.1613 | 0.0919 || 0.5179 | 0.2849 | 0.1589 | 0.0965
Min || 0.5187 | 0.2672 | 0.1420 | 0.0767 || 0.5171 | 0.2674 | 0.1401 | 0.0782
Data Comm per
Avg || 0.1072 | 0.2101 | 0.4363 | 0.6003 || 0.0879 | 0.2139 | 0.3624 | 0.6379
Max || 0.1080 | 0.2484 | 0.5986 | 0.6724 || 0.0896 | 0.2590 | 0.4601 | 0.7686
Min || 0.1064 | 0.1745 | 0.3643 | 0.5057 || 0.0862 | 0.1671 | 0.2946 | 0.5491

Eqns per

Avg || 0.5051 | 0.2552 | 0.1307 | 0.0670 || 0.5081 | 0.2612 | 0.1350 | 0.0720

Max || 0.5072 | 0.2641 | 0.1384 | 0.0725 || 0.5082 | 0.2653 | 0.1385 | 0.0772

Min || 0.5030 | 0.2470 | 0.1232 | 0.0616 || 0.5080 | 0.2567 | 0.1327 | 0.0698

Data Comm per
Avg || 0.0579 | 0.1174 | 0.2604 | 0.3806 || 0.0593 | 0.1389 | 0.2541 | 0.4815

Max || 0.0588 | 0.1322 | 0.3730 | 0.4258 || 0.0597 | 0.1703 | 0.3158 | 0.5872

Min || 0.0571 | 0.1031 | 0.2018 | 0.3112 (| 0.0588 | 0.1104 | 0.2116 | 0.4097

M3
Split Part 0 0 0 0 0 0 0 0
Part per
Avg 150 75 38 19 150 75 38 19
Max 157 7 49 26 152 7 43 22
Min 143 70 27 12 148 71 34 16
Eqns per

Avg || 0.5049 | 0.2550 | 0.1305 | 0.0668 || 0.5079 | 0.2611 | 0.1348 | 0.0719
Max || 0.5070 | 0.2639 | 0.1382 | 0.0723 || 0.5081 | 0.2651 | 0.1383 | 0.0770
Min || 0.5029 | 0.2468 | 0.1230 | 0.0614 | 0.5078 | 0.2565 | 0.1326 | 0.0697
Data Comm per
Avg || 0.0405 | 0.0785 | 0.1679 | 0.2544 || 0.0475 | 0.1084 | 0.1995 | 0.3732
Max || 0.0431 | 0.0847 | 0.2225 | 0.3654 || 0.0477 | 0.1344 | 0.2316 | 0.4318
Min || 0.0379 | 0.0716 | 0.1042 | 0.1749 || 0.0473 | 0.0848 | 0.1572 | 0.3131
M4

Eqns per

Avg || 0.5049 | 0.2550 | 0.1305 | 0.0668 || 0.5079 | 0.2611 | 0.1348 | 0.0719

Max || 0.5070 | 0.2639 | 0.1382 | 0.0723 || 0.5081 | 0.2651 | 0.1383 | 0.0770

Min || 0.5029 | 0.2468 | 0.1230 | 0.0614 (| 0.5078 | 0.2565 | 0.1326 | 0.0697

Data Comm per
Avg || 0.0405 | 0.0785 | 0.1679 | 0.2544 || 0.0475 | 0.1084 | 0.1995 | 0.3732

Max || 0.0431 | 0.0847 | 0.2225 | 0.3654 || 0.0477 | 0.1344 | 0.2316 | 0.4318

Min || 0.0379 | 0.0716 | 0.1042 | 0.1749 (| 0.0473 | 0.0848 | 0.1572 | 0.3131

Table 8: Distribution of particles, equations and communication for Case T3 at time
t = 0.31 seconds for Metis and Bin-sorting partitionings. The particle splittings are
the same for Cases M1 and M2 and Cases M3 and M4.
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Because the Schur complement preconditioner is much more expensive than simple local
ILU factorizations, it is not of much use in the current implementation. It would be
beneficial to extend the functionality of this preconditioner to include overlapping.

5 Conclusions

We have presented an investigation on the effectiveness of several techniques for parti-
tioning the solid particles in a solid-liquid flow interaction simulator. While the results
are mixed for large numbers of particles, those obtained do indicate some general prop-
erties of the partitioner that are essential for good parallel speedup and efficiency. This
study points to some of the difficulties encountered when implementing parallel itera-
tive solvers for real life applications, and provides a few strategies to overcome them.
One of the main stumbling blocks in getting good parallel efficiency is the thin line
between two conflicting requirements: To be efficient the preconditioners require suffi-
cient overlap between the subdomains, and on the other hand excessive overlap leads
to excessive overhead and a deterioration of parallel efficiency. A compromise is often
hard to read.
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Figure 4: The initial particle configuration for Case T1. The mesh has 6392 elements
leading to a saddle point problem size of 28634 unknowns.
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Figure 5: The time history of the velocity vector and angular velocity for the particle
in test case T1.
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Figure 6: Parallel speedup for Case T1 and Metis partitioning at time ¢ = 0 seconds.
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Figure 7: Parallel speedup for Case T1 and Bin-sorting partitioning at time ¢t = 0
seconds.
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Figure 8: Absolute times for the major components of the parallel solver for Case T1
using Method M2 and Metis partitioning at time ¢ = 0 seconds.
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Figure 9: Scaled times for the major components of the parallel solver for Case T1
using Method M2 and Metis partitioning at time ¢ = 0 seconds.
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468819 unknowns. (b) Metis partitioner with 8 subdomains. (c¢) Bin-sorting partitioner
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the right. The mesh has 118483 elements leading to a saddle point problem size of
with 8 subdomains.

Figure 10: (a) The initial particle configuration for Case T2. Gravity is acting towards
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Figure 11: Parallel speedup for Case T2 and Metis partitioning at time ¢ = 0 seconds.
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Figure 12: Parallel speedup for Case T2 and Bin-sorting partitioning at time ¢t = 0
seconds.
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Figure 13: Absolute times for the major components of the parallel solver using Method
M2 and Metis partitioning for Case T2 at time ¢ = 0 seconds.
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Figure 14: Scaled times for the major components of the parallel solver using Method
M2 and Metis partitioning for Case T2 at time ¢ = 0 seconds.
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Figure 15: (a) The initial particle configuration for Case T3. The pressure gradient
is acting towards the right. The mesh has 41509 elements leading to a saddle point
problem size of 166362 unknowns. (b) Metis partitioner with 8 subdomains. (c) Bin-
sorting partitioner with 8 subdomains.
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Figure 16: (a) The particle configuration for Case T3 at time ¢ = 0.31 seconds. The
mesh has 35701 elements leading to a saddle point problem size of 148113 unknowns.
(b) Metis partitioner with 8 subdomains. (c) Bin-sorting partitioner with 8 subdo-
mains.
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Figure 17: Parallel speedup for Case T3 and Metis partitioning at time ¢ = 0 seconds.
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Figure 18: Parallel speedup for Case T3 and Bin-sorting partitioning at time ¢t = 0
seconds.
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Figure 19: Absolute times for the major components of the parallel solver for Case T3
using Method M2 and Bin-sorting partioning at time ¢t = 0 seconds.
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Figure 20: Scaled times for the major components of the parallel solver for Case T3
using Method M2 and Bin-sorting partioning at time ¢t = 0 seconds.
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Figure 21: Parallel speedup for Case T3 and Metis partitioning
seconds.
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Figure 22: Parallel speedup for Case T3 and Bin-sorting partitioning at time ¢ = 0.31

seconds.
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