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Abstract: This paper presents a �nite element formulation for solving multidimensional compressible 
ows. This
method is inspired by our experience with the SUPG, Finite Volume and Discontinuous-Galerkin methods. Our
objective is to obtain a stable and accurate �nite element formulation for multidimensional hyperbolic-parabolic
problems with particular emphasis on compressible 
ows. In the proposed formulation, the upwinding e�ect
is introduced by considering the 
ow characteristics along the normal vectors to the element interfaces. This
method is applied for solving inviscid, laminar and turbulent 
ows. The one-equation turbulence closure model
of Spalart-Allmaras is used. Several numerical tests are carried out, and a selection of two and three-dimensional
experiments is presented. The results are encouraging, and it is expected that more numerical experiments and
theoretical analysis will lead to greater insight into this formulation. We also discuss algorithmic and parallel
implementation issues.
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1 Introduction

This paper discusses the numerical solution of the compressible multidimensional Navier-Stokes and Euler equa-
tions using the �nite element methodology. The standard Galerkin variational formulation is known to generate
numerical instabilities for convective dominated 
ows. Many stabilization approaches have been proposed in the
literature during the last two decades, each introducing in a di�erent way an additional dissipation to the orig-
inal centered scheme. For example, a popular class of �nite element methods for compressible 
ows is based on
the Lax-Wendro�/Taylor-Galerkin scheme proposed by Don�ea [1]. However, these methods experience spurious
oscillations for multidimensional hyperbolic systems, so that an arti�cial viscosity is introduced [2]. Another
class of methods is based on the SUPG (Streamline Upwinding Petrov-Galerkin) formulation introduced by
Brooks-Hughes [3] and was �rst applied by Hughes-Tezduyar [4] to compressible 
ows. These schemes also
su�er from spurious oscillations in high gradient zones. Later work by Hughes and his co-workers [5] improved
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its stability through the use of a new set of variables, called entropy variables, and a shock capturing operator
depending on the local residual of the �nite element solution. These works led naturally to the introduction of
the Galerkin-Least-Squares formulation to 
uid 
ows [6]. In the same spirit, Soulaimani-Fortin [7] developed
a Petrov-Galerkin formulation which used the conservative variables and a simpli�ed design for the shock cap-
turing operator and for the well known stabilization matrix (or the matrix of time scales). This formulation
has also been applied to other types of independent variables [9]. In [8], a SUPG formulation is used with
explicit schemes and adaptive meshing. SUPG methodology is indeed commonly used in �nite element based
formulations while the Roe-Muscl scheme is popular in the context of �nite volume based methods ( [11], [12]
and [10]). Recent developments of the discontinuous-Galerkin formulation try to combine the underlying ideas
behind the Galerkin method and stabilized �nite volume methods (see for instance [13] and [14]).
In the present study, a new stabilized �nite element formulation is introduced which lies between SUPG and �nite
volume methods. This formulation seems to embody the good properties of both of the above methods: high
order accuracy and stability in solving high speed 
ows. As it uses continuous �nite element approximations,
it is relatively easier to implement than discontinuous-Galerkin formulation, either in combination of implicit
or explicit time discretizations, and requires less memory for the same order of interpolations. Preliminary
numerical results were presented in [15]. Here we present further developments, particularly for turbulent

ows, and more numerical experiments in 3D. In the following, the SUPG and discontinuous Galerkin methods
are brie
y reviewed, followed by a description of EBS formulation. The implicit solver developed is based on
the nonlinear version of the Flexible GMRES. For parallel computations, a Additive-Schwarz based domain
decomposition algorithm is developed. A selection of numerical results is then presented.

2 Governing equations

Let 
 be a bounded domain of Rnd (with nd = 2 or nd = 3) and � = @
 its boundary. The outward unit vector
normal to � is denoted by n. The nondimensional Navier-Stokes equations written in terms of the conservation
variables (�;U ; E) are given by

@�

@t
+ divU = 0

@U

@t
+ div (U 
 u) + grad p = div� + �f

@E

@t
+ div ((E + p)u) = div (�:u)� div q + f :U + �r (2.1)

In the above equations � is the density, U the momentum per unit volume, u the velocity, p the pressure, �
the viscous-stress tensor, q the heat 
ux, f the body force per unit mass , r the heat source per unit mass and
E the total energy per unit volume. To close the above system of equations, the supplementary constitutive
relations are adopted:

u = U
�

,

T = E
� + jU j2

2�2 ,

p = (
 � 1)�T ,
q = � �


RePr
gradT and

� = �
Re

[gradu+ (gradu)t � 2
3 (divu)I]

where Re is the Reynolds number, Pr = 0:72 the Prandtl number, I the identity tensor, and � the nondimen-
sianal laminar viscosity. In the case of turbulent regime,

q = �



Re
(�=Pr + �t=Prt)gradT

and
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� =
(� + �t)

Re
[gradu+ (gradu)t �

2

3
(divu)I]

with �t the nondimensional turbulent viscosity and Prt = 0:9 is the turbulent Prandtl number.

2.1 Turbulence closure model

The turbulent kinematic viscosity �t = �t=� is computed using the Spalart-Allmaras (S-A) one-equation model
[16]. This model consists of solving only one partial di�erential equation over the entire 
uid domain. To be
accurate in solving turbulent 
ows, as for all other models, the S-A model requires a �ne grid near the wall
where the �rst node from the wall must guarantee a value of y+ � 10. In these conditions, computation becomes
very expensive in terms of memory requirement and CPU time. One way to avoid this problem, as well as to
reduce the need for a �ne grid resolving the 
ow in the sublayer portion, is to use a wall function to model
the inner region of the boundary layer by an analytical function which is matched with the numerical solution
given by the S-A model in the outer region. In this case the S-A model can be reduced to its simpli�ed high
Reynolds number version:

@�t
@t

+ u � r�t �
1

Re�

�
r � (�tr�t) + Cb2(r�t)

2
�
� cb1!�t +

Cw1

Re
fw

��t
d

�2
= 0 (2.2)

�t is the kinematic turbulent viscosity, ! the vorticity and d the normal distance from the wall. The closure
function fw and constants are given by:

fw = g

�
1 + C6

w3

g6 + C6
w3

�1=6
;

g = r + Cw2(r
6 � r);

r =
�t

Re!�2d2
;

Cb1 = 0:1355; Cb2 = 0:622; � = 2=3;

Cw1 =
Cb1

�2
+

1 + Cb2

�
;Cw2 = 0:3; Cw3 = 2

and � = 0:41 is the von Karman constant. The wall function used here consists of the law of the wall developed
by Spalding , which models the inner laminar sublayer, the transition region and the intermediate logarithmic
layer of the turbulent boundary layer:

y+ = u+ + e��B [e�u
+

� 1� �u+ �
(�u+)2

2
�

(�u+)3

6
]

with y+ = Re
�yu�
� ; u+ = jjujj

u�
; B = 5:5 , u� is the friction velocity and y is the normal distance from the wall.

In order to save more memory and CPU time when using the wall function, we adopt the following technique:
the computational boundary is assumed to be positioned up from the real wall by a distance Æ. A slip condition
with friction is then imposed: u � n = 0. The wall traction vector tw and heat 
ux qwdue to shear stresses are
computed as:

tw = �Cf�ujjujj; (2.3)

qw = tw � u: (2.4)

where Cf is a friction coeÆcient de�ned using the wall function as:

Cf =
�
y+ � f(u+)

��1
(2.5)
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with

f(u+) = e��B [e�u
+

� 1� �u+ �
(�u+)2

2
�

(�u+)3

6
]

The distance Æ is chosen so that any node on the solid computational boundary falls within the logarithmic

layer i.e. 30 � y+ � 100. In this case, the destruction term Cw1

Re
fw

�
�t
d

�2
due to the blocking e�ect of the wall

can be neglected. The kinematic turbulent viscosity on the wall is computed as:

�t = Re u� � Æ

with

u� = Cf jjujj:

To ensure a positive turbulent viscosity throughout the entire domain and during all computation iterations,
a change of variable is used as �t = e~� . This change of variable can be seen as a way to stabilize the numerical
solution of the viscosity equation. The Spalart-Allmaras equation is then written in terms of ~� as:

@~�

@t
+ u � r~� �

1

Re�
[r � (e~�r~�) + (1 + Cb2)e

~�(r~�)2]� cb1! = 0: (2.6)

Remark 1:

- Equation (2.5) is a typical convection-di�usion scalar equation, with nonlinear terms, for which the proposed
stabilization method can be applied.

- The averaged Navier-Stokes (2.1) and the turbulence equation (2.5) are solved in a coupled way according to
the following algorithm:

1- Initialize the 
ow �eld and the turbulent viscosity with a given distance Æ.
2- Loop over time steps.
3- Loop over Newton iterations.
4- Solve the wall function for u� .
5- Update �t and Cf on the wall.
6- Solve the coupled system of equations (N-S and S-A).
7- With the new solution repeat the algorithm from step 3 until convergence.
8- End of Newton iterations.
9- End of time advancing loop.

Remark 2:
Equations (1) and (4) can also be rewritten in terms of the vector V = (�;U ; E; ~�t)

t in a compact and
generic form as

V ;t + F adv
i;i (V ) = F

diff
i;i (V ) +F (2.7)

where F adv
i and F diff

i are respectively the convective and di�usive 
uxes in the ith-space direction, and F is
the source vector. Lower commas denote partial di�erentiation and repeated indices indicate summation. The
di�usive 
uxes can be written in the form:

F
diff
i = KijV ;j

while the convective 
uxes can be represented by diagonalizable Jacobian matrices Ai = F adv
i;V . Note that

any linear combination of these matrices has real eigenvalues and a complete set of eigenvectors.
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3 Stabilization techniques

Throughout this paper, we consider a partition of the domain 
 into elements 
e where piecewise continuous
approximations for the conservative variables are adopted. It is well known that the standard Galerkin �nite
element formulation often leads to numerical instabilities for convective dominated 
ows. Various stabilization
�nite element formulations have been proposed in the last two decades. Most of them can be cast in the generic
form: �nd V such that for all weighting functions W ,

X
e

Z

e

[W � (V ;t + F adv
i;i �F) +W ;iF

diff
i ] d
 �

Z
�

W :F diff
i ni d� (3.1)

+
X
e

Z

e

S(W ;V ) d
 = 0:

where n is the outward unit normal vector to the boundary � and S(W ;V ) is a bilinear form to add more
stability to the Galerkin integral form. Note that S(W ;V ) is de�ned and intergated over elements interior. In
its simplest and popular expressions, S(W ;V ) reduces for the one-dimensional system case to:

S(W ;V ) = W ;1
h

2
jAjV ;1 = AtW ;1�AV ;1

with h the element length and the matrix � = h
2 jAj

�1
. It is clear that S(W ;V ) is positive for symmetric

A. It can also be proven that S(W ;V ) is positive for A derived from Euler 
ux [17]. Thus, the obtained
stabilized method is nothing but the classical �rst order upwinding scheme applied along 
ow characteristics.
For the Navier-Stokes equations in multidimensions, there is an in�nite number of 
ow characteristics inside
any elements. However, for a prescribed space direction, there are only a �nite number of characteristics along
which upwinding techniques can, in principle, be applied.

3.1 SUPG formulation

In the SUPG method, the Galerkin variational formulation is modi�ed to include an integral form depending
on the local residual R(V ) of equation (2.7), i.e. R(V ) = V ;t +F adv

i;i (V )�F diff
i;i (V )�F , which is identically

equal to zero for the exact solution. The SUPG formulation reads then as : �nd V such that for all weighting
functions W ,

X
e

Z

e

[W � (V ;t + F adv
i;i �F) +W ;iF

diff
i ] d
 �

Z
�

W :F diff
i ni d� (3.2)

+
X
e

Z

e

(At
iW ;i) � � �R(V ) d
 = 0:

In this case, S(W ;V ) = (At
iW ;i) � � � R(V ), and the matrix � is commonly referred to as the matrix of

time scales. The SUPG formulation is built as a combination of the standard Galerkin integral form and a
perturbation-like integral form depending on the local residual vector. The objective is to reinforce the stability
inside the elements. The SUPG formulation involves two important ingredients: First, it is a residual method
in the sense that the exact continuous regular solution of the original physical problem is still a solution of the
variational problem (3.1). This is a requirement for optimal accuracy. Second, it contains the following integral
term:

P
(
R

e(At

i:W ;i)� (AjV ;j)d
); which is of elliptic type provided that the matrix � is appropriately
designed. However, for multidimensional systems, it is diÆcult to de�ne � in such a way as to introduce
the additional stability in the characteristic directions. This property is desired to reduce arti�cial cross-
wind di�usion. Indeed, for multidimensional Navier-Stokes, the convection matrices are not simultaneously
diagonalizable. A choice of � matrix proposed in [17] reads � = (BiBi)

�1=2, where Bi = @�i
@xj
Aj and @�i

@xj
are
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the components of the element Jacobian matrix. Thus, � is de�ned using a combination of advection matrices
computed in the local element frame. In [7] a simpli�ed formula is proposed to analytically compute � as

� = (
X
i

jBij)
�1:

The above expressions of � reproduce exactly the one-dimensional case.

3.2 Discontinuous Galerkin method

The discontinuous-Galerkin (DG) method is usually applied to purely hyperbolic PDEs. It is obtained by
applying the standard Galerkin method to each element. That is, a �nite-dimensional basis set is selected for
each element, the solution in each element is approximated in terms of an expansion on that basis, and the
governing equations are then interpreted in a weak form asZ


e

W � V ;t d
 �

Z

e

W ;i � F
adv
i d
 +

Z
�e
W � F adv;R

i (V ;V
0

) ni d� = 0 (3.3)

where n is the outward unit normal vector to �e, V is the approximate solution in element 
e, and V
0

denotes
the approximate solution in the neighboring elements to 
e and computed on the element boundary �e. Because
the global solution is discontinuous across element interfaces, the discontinuities are resolved through the use

of approximate Riemann 
ux vector F adv;R
i (V ;V

0

) ni. This 
ux provides the upwinding e�ect that is required
to ensure stability. For instance, Roe type approximate Riemann 
ux is given by

F
adv;R
i (V ;V

0

) ni =
(F adv

i (V ) + F adv
i (V )

0

) ni
2

� ~jAnj
(V � V

0

)

2

where An = niAi and ~An is the well-known Roe matrix. Taking an approximation of order zero for the
weighting W and trial functions, i.e. a constant for each element, one can recover the classical cell-centered
�nite volume Roe scheme. For higher order approximations, the number of degrees of freedom can however
increase rapidly which may be a serious drawback. The higher-order DG method may also be somewhat complex
to implement for implicit time schemes. The �rst term in the above approximate Riemann 
ux generates a
centered scheme, while the last term introduces the upwind bias in the 
ow characteristics and along the normal
direction to the element boundary. In the above scheme, stability is introduced by resolving the discontinuity
in this direction of the solution �eld V . This stabilization approach is also known as stabilization or upwinding
by discontinuity. Note that cell centered �nite volume (FV) schemes can be derived from (3.3) by choosing zero
order weighting functions. It is believed that the success of FV schemes in solving high speed 
ows is related
to the fact that arti�cial dissipation is primarily introduced along the 
ow characteristics which are computed
along the normal directions to the element edges (or faces in 3D). It is desirable to keep this property in the
framework of the �nite element methodology using simple continuous interpolations.

4 The Edge Based Stabilized method (EBS)

Let us �rst take another look at the SUPG formulation. Using integration by parts in (3.1), the integral

Z

e

(At
iW ;i) � � �R(V ) d


can be transformed intoZ
�e
W � (An� �R(V )) d� �

Z

e

W � (Ai � �R(V ));i d
 (4.1)

where �e is the boundary of the element 
e, ne the outward unit normal vector to �e and An = neiAi. If one
neglects the second integral above, then

X
e

Z

e

(At
iW ;i) � � �R(V ) �=

X
e

Z
�e
W � (An � �R(V ) d�:
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The above equation suggests that � could be de�ned explicitly only at the element boundary. Since in practice
a numerical integration is usually employed, it is then suÆcient to compute � at a few Gauss points on �e.
Hence, a natural choice for � is given by

� =
h

2
jAnj

�1 (4.2)

Since the characteristic lines are well de�ned on �e for the given direction ne, then the above de�nition of � is
not completely arbitrary. It de�nes � using the eigenvalues of An. Using (4.2), the stabilizing contour integral
term in (4.1) becomes

X
e

Z
�e

h

2
W � (sign(An) �R(V )) d�:

For a one dimensional hyperbolic system, one can recognize the upwinding e�ect introduced by the EBS added
term

X
e

Z
�e

h

2
W � (jAnjV ;1) d�:

which has a strong similarity with
P

e

R

eW ;1

h
2 jAjV ;1d
.

Remarks 3:

- Equation (4.2) provides an appropriate de�nition of the matrix of time scales for multidimensional systems.
Thus, the standard SUPG formulation can still be used along with the new design of � as given in (4.2).
However, to easily compute the stabilizing integral term, integration points have to be chosen on the element
contour.

- For linear �nite element interpolations, the �rst integral term in (4.1) introduces the most dominant stabilizing
e�ect. The resulting Edge Based Stabilized �nite element formulation clearly shares some roots with SUPG
and DG methods.

Here we would like to show how more upwinding e�ect can naturally be introduced in the framework of EBS
formulation. Consider the eigen-decomposition of An,

An = Sn�nSn
�1:

Let Pei = �ih=2� be the local Peclet number for the eigenvalue �i, h a measure of the element size on the
element boundary, � the physical viscosity, �i = min(Pei=3; 1:0)� and 0 � � � 1 a positive parameter. We
de�ne the matrix Bn by

Bn = SnLSn
�1 (4.3)

where L is a diagonal matrix whose entries are given by  Li = (1 + �i) if �i > 0; Li = �(1 � �i) if �i < 0
and Li = 0 if �i = 0. This means that more weight is introduced for the upwind element. The proposed EBS
formulation can now be summarized as follows: Find V such that for all weighting functions W ,

X
e

Z

e

[W � (V ;t + F adv
i;i �F) +W ;iF

diff
i ] d
�

Z
�

W :F diff
i ni d� (4.4)

+
X
e

Z
�e
W � � edn �R(V ) d� = 0

with � edn the matrix of intrinsic length scales given by

� edn =
h

2
�Bn: (4.5)
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We now point out the following important remarks:

Remarks 4:

- As in the case of SUPG method, EBS formulation is a residual method in the sense that if the exact solution
is suÆciently regular then it is also a solution of (2.7). Thus, one may expect high-order accuracy. Note that
the only assumption made on the �nite element approximations for the trial and weighting functions is that
they are piecewise continuous. Equal-order or mixed approximations can in principle be employed. Further
theoretical analysis is required to give a clearer answer.

- A stabilization e�ect is introduced by computing the di�erence between the residuals on element interfaces
while considering the direction of the characteristics. In this approach, the stabilization is introduced using the
jumps of the residuals across element boundaries. A higher jump is in fact an indication of an irregular solution
or of a mesh-related diÆculty in solving the PDE.

- For a purely hyperbolic scalar problem, one can see some analogy between the proposed formulation and the
discontinuous-Galerkin method and also with the �nite volume formulation.

- The function of the EBS formulation is to add an amount of arti�cial viscosity in the characteristic directions.
Since EBS formulation leads to a high-order scheme, high frequency oscillations in the vicinity of shocks or
stagnation points can occur. A shock capturing viscosity depending on the discrete residual R(V ) is used.
More dissipation is then added in high gradient zones to avoid any undesirable local oscillations. Two for-
mulations for the shock capturing viscosity were used. The �rst one is identical to that proposed in [7],
�cc1 = Ck1 h min(jj�R(V )jj; jjujj)=2 with Ck1 a tuning parameter. The second formulation is obtained by mul-
tiplying the arti�cial viscoisty �d proposed in [18] by a tuning paremeter Ck2, �cc2 = Ck2 �d. From extensive
tests, we observed that when �cc2 is used with Ck2 = 1:, an excessively smeared solution is obtained. Better
results are given with a smaller value up to 0:25. The parameter Ck1 usually takes a value between 1: and 10:
depending on the grid resoution. As a general observation, EBS formulation behaves better with �cc2 than with
�cc1. We usullay start the computations with a higher value of Ck1 or Ck2 and we gradually decrease it as long
as the convergence is guaranteed.

- The parameter �i is introduced to give more weight to the element situated in the upwind characteristic
direction. The formulation given above for the parameter �i is introduced in order to make it vanish rapidly in
regions dominated by the physical di�usion such as the boundary layers. It is also possible to choose �i as a
function of the local Mach number Ma, for instance by choosing � = Ma by analogy with �nite volume schemes
[13].

- The length scale h introduced above is computed as the distance between the centroid of the element and its
edges (faces in 3D).

- Numerical experiments showed that a higher order integration quadrature should be used to evaluate the
element-contour integrals. For instance, in the case of 3D computations using tetraedral elements, stable and
accurate results have been obtained using three Gauss points for each face.

4.1 An illustrative example

The Edge Based Stabilized �nite element formulation (4.4) reads in the case of the multidimensional scalar
advection-di�usion equation (2.6) as:

X
e

Z

e

[W � (
@~�

@t
+ u � r~� �

1

Re�
((1 + Cb2)e

~�(r~�)2 � cb1!) +
1

Re�
rW � (e~�r~�)]d


+
X
e

Z
�e

[W � � edn � (
@~�

@t
+ u � r~� �

1

Re�
(r � (e~�r~�) + (1 + Cb2)e

~�(r~�)2)� cb1!)]d�

with � edn a scalar having a dimension of length. It reads in its simplest expression as � edn = h
2 � Bn with

Bn = (1 +�) if u �ne > 0 and Bn = �(1��) if u �ne < 0. Note that the residual of equation (2.6) is weighted
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and integrated over the element boundary. The di�erence of two gradients u � r~� computed along an edge (or
a face) of two adjacent elements results in a discrete Laplacian operator along the streamline, thus introducing
a stablization e�ect. It is worth noting that the time derivative term in the contour integral has a bene�cial
e�ect on the conditioning of the global system.

5 Solution algorithms

An implicit solution algorithm is used based on a time marching procedure combined with an inexact-Newton
algorithm and variants of GMRES [19]. Stabilization methods naturally introduce more nonlinearities in the
original PDEs equations. These nonlinearities could be very strong so that robust solution methods are required.
Speci�cally, it was observed that in the case of turbulent 
ows [20], standard preconditioned GMRES algorithm
failed to converge in some situations, especially for turbulent 
ows. However, convergence was achieved by using
ILUT preconditioner with the Flexible GMRES. This robust combination of techniques has also been successful
with Additive Schwarz domain decomposition method, leading to a fairly eÆcient parallel version of the code,
as will be seen later. The proposed preconditioners are brie
y presented in this section. More details are given
in the references. We begin with a review of the right-preconditioned GMRES algorithm [19] described here
for solving a linear system of the form

Ax = b

where A is the coeÆcient matrix and b the right-hand-side. The algorithm requires a preconditioning matrix M
in addition to the original matrix A. The preconditioner M is typically a certain matrix that is close to A but
is easily invertible in the sense that solving linear systems with it is inexpensive. The algorithm also requires
an initial guess x0 to the solution.

Algorithm 5.1 Right preconditioned GMRES

1. Compute r0 = b�Ax0, � := jjr0jj2, v1 := r0=�.
2. De�ne the (m + 1)�m matrix Hm =

fhi;jg1�i�m+1;1�j�m. Set Hm = 0.
3. For j = 1; 2; :::;m Do:

4. Compute zj := M�1vj
5. Compute wj := Azj
6. For i = 1; :::; j Do:
7. hij := (wj ; vi)
8. wj := wj � hijvi
9. EndDo

10. hj+1;j = jjwj jj2. If hj+1;j = 0 set m := j, goto 13
11. vj+1 = wj=hj+1;j
12. EndDo

13. De�ne Vm = [v1; :::; vm], and Hm = fhi;jg1�i�m+1;1�j�m.

14. Compute ym the minimizer of

jj�e1 �Hmyjj2 and xm = x0 + Vmym.
15. If satis�ed Stop, else set x0 := xm goto 1:

We now make a few comments on the nonlinear version of GMRES. When the above algorithm is used in the
context of Newton's method, the matrix A represents the Jacobian matrix of a certain nonlinear function F ,
which in our case is the discretized version of the Navier-Stokes equations. However, it is not always possible, or
it may simply be very expensive, to compute the Jacobian matrix analytically. It may be preferable to compute
an approximation of the Jacobian and freeze it for a prescribed number of time steps and Newton iterations.
This matrix will then be used to construct the preconditioning matrix M . On the other hand, the action of the
Jacobian on a vector (i.e. the matrix-by-vector product in line 5 of the above algorithm) can be approximated
using a �nite di�erence quotient such as:

F (x0 + �zj)� F (x0)

�
; : (5.1)
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where � is an appropriate small number. All the problems considered in this paper are solved using this
non-linear version of GMRES or its variant FGMRES. This general approach is also termed `inexact Newton'
method, since the linear system in Newton's method is solved approximately, or inexactly.

5.1 Incomplete LU factorizations and ILUT

One of the most common ways to de�ne the preconditioning matrix M is through Incomplete LU factorizations.
In essence, an ILU factorization is simply an approximate Gaussian elimination. When Gaussian Elimination
is applied to a sparse matrix A, a large number of nonzero elements may appear in locations originally occu-
pied by zero elements. These �ll-ins are often small elements and may be dropped to obtain Incomplete LU
factorizations. So ILU is in essence a Gaussian Elimination procedure in which �ll-ins are dropped.

The simplest of these procedures is ILU(0) which is obtained by performing the standard LU factorization
of A and dropping all �ll-in elements that are generated during the process. In other words, the L and U factors
have the same pattern as the lower and upper triangular parts of A (respectively). More accurate factorizations
denoted by ILU(k) and IC (k) have been de�ned which drop �ll-ins according to their `levels'. Level-1 �ll-ins for
example are generated from level-zero �ll-ins (at most). So, for example, ILU(1) consists of keeping all �ll-ins
that have level zero or one and dropping any �ll-in whose level is higher.

Another class of preconditioners is based on dropping �ll-ins according to their numerical values. One of
these methods is ILUT (ILU with Threshold). This procedure uses basically a form of Gaussian elimination
which generates the rows of L and U one by one. Small values are droped during the elimination using a
parameter � . A second parameter, p, is then used to keep the largest p entries in each of the rows of L and U .
This procedure is denoted by ILUT (�; p) of A. More details on ILUT and other preconditioners can be found
in [19].

5.2 Flexible GMRES

Recall from what was said above that the role of the preconditioner M is to solve the linear system Ax = b
approximately and inexpensively. At one extreme, we can �nd a preconditioner M that is very close to A, leading
to a very fast convergence of GMRES, possibly in just one iteration. However, in this situation it is likely that
M will require too much memory and be too expensive to compute. At the other extreme, we can compute a
very inexpensive preconditioner such as one obtained with ILU(0) { but for realistic problems, convergence is
unlikely to be achieved.

If the goal of the preconditioner is to solve the linear system approximately, then one may think of using
a full-
edged iterative procedure, utilizing whatever preconditioner is available. The resulting overall method
will be an inner-outer method, which includes two nested loops: an outer GMRES loop as de�ned earlier, and
an inner GMRES loop in lieu of a preconditioning operation. In other words, we wish to replace the simple
preconditioning operation in line 4 of Algorithm 5.1 by an iterative solution procedure. The result of this
is that each step the preconditioner M is actually de�ned as some complex iterative operation { and we can
denote the result by zj = M�1

j vj . Therefore, the e�ect of this on Algorithm 5.1 is that the preconditioner M
varies at every step j. However, Algorithm 5.1 works only for constant preconditioners M . It would fail for
the variable preconditioner case. To remedy this, a variant of GMRES called Flexible GMRES (FGMRES) has
been developed, see [19]. For the sake of brevity, we will not sketch the method. The main di�erence between
FGMRES and Algorithm 5.1 is that the vectors zj generated in line 4 must now be saved. These vectors are then
used again in Line 13, in which they replace the vectors vi of the basis Vm used to compute the approximation
xm. This gives the following algorithm

Algorithm 5.2 FGMRES

1. Compute r0 = b�Ax0, � := jjr0jj2, v1 := r0=�.
2. De�ne the (m + 1)�m matrix Hm =

fhi;jg1�i�m+1;1�j�m. Set Hm = 0.
3. For j = 1; 2; :::;m Do:

4. Compute zj := M�1
j vj

5. Compute wj := Azj
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6. For i = 1; :::; j Do:
7. hij := (wj ; vi)
8. wj := wj � hijvi
9. EndDo

10. hj+1;j = jjwj jj2. If hj+1;j = 0 set m := j, goto 13
11. vj+1 = wj=hj+1;j
12. EndDo

13. De�ne Zm := [z1; :::; zm], and Hm = fhi;jg1�i�m+1;1�j�m.

14. Compute ym the minimizer of

jj�e1 �Hmyjj2 and xm = x0 + Vmym.
15. If satis�ed Stop, else set x0 := xm goto 1:

A non-linear version of FGMRES is obtained, similar to the standard case of GMRES, by computing the
matrix-by-vector product Azj in line 5 via the �nite di�erence formula (5.1).

6 Parallel implementation issues

Domain decomposition methods have recently become a general, simple, and practical means for solving partial
di�erential equations on parallel computers. Typically, a domain is partitioned into several sub-domains and
a technique is used to recover the global solution by a succession of solutions of independent subproblems
associated with the entire domain. Each processor handles one or several subdomains in the partition and then
the partial solutions are combined, typically over several iterations, to deliver an approximation to the global
system. All domain decomposition methods (d.d.m.) rely on the fact that each processor can do a big part of
the work independently. In this work, a decomposition based approach is employed using an Additive Schwarz
algorithm with one layer of overlapping elements. The general solution algorithm used is based on a time
marching procedure combined with the inexact-Newton and the matrix-free version of FGMRES or GMRES
algorithms. The MPI library is used for communication among processors and PSPARSLIB [22] is used for
preprocessing the parallel data structures.

6.1 Data structure for Additive Schwarz d.d.m. with overlapping

In order to implement a domain decomposition approach we need a number of numerical and non-numerical
tools for performing the preprocessing tasks required to decompose a domain and map it into processors, as
well as to set up the various data structures, and solving the resulting distributed linear system. PSPARSLIB
[16, 23], a portable library of parallel sparse iterative solvers, is used for this purpose. The �rst task is to
partition the domain using a partitioner such as METIS [24]. PSPARSLIB assumes a vertex-based partitioning
(a given row and the corresponding unknowns are assigned to a certain domain). However, it is more natural
and convenient for FEM codes to partition according to elements. The conversion can easily be done by setting
up a dual graph which shows the coupling between elements. Assume that each subdomain is assigned to a
di�erent processor. We then set up a local data structure in each processor to perform the basic operations such
as computing local matrices and vectors, assembling interface coeÆcients, and preconditioning operations. The
�rst step in setting up the local data-structure mentioned above is to have each processor determine the set of all
other processors with which it must exchange information when performing matrix-vector products, computing
global residual vector or assembling matrix components related to interface nodes. When performing a matrix-
by-vector product or computing a residual global vector (as actually done in the present FEM code), neighboring
processors must exchange values of their adjacent interface nodes. In order to perform this exchange operation
eÆciently, it is important to determine the list of nodes that are coupled with nodes in other processors.
These local interface nodes are grouped processor by processor and are listed at the end of the local nodes
list. Once the boundary exchange information is determined, the local representations of the distributed linear
system must be built in each processor. If it is needed to compute the global residual vector or the global
preconditioning matrix, we �rst compute their local representation to a given processor and move the interface
components from remote processors for the operation to complete. The assembly of interface components for
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the preconditioning matrix is a non trivial task. A special data structure for the interface local matrix is built to
facilitate the assembly operation, in particular when using the Additive Schwarz algorithm with geometrically
non-overlapping subdomains. The boundary exchange information contains the following items:
1. nproc - The number of all adjacent processors.
2. proc(1:nproc) - List of the nproc adjacent processors.
3. ix - List of local interface nodes, i.e. nodes whose values must be exchanged with neighboring processors.
The list is organized processor by processor using a pointer-list data structure.
4. vasend - The trace of the preconditioning matrix at the local interface which is computed using local elements.
This matrix is organized in a CSR format, each element of which can be retrieved using arrays iasend and jasend.
Rows of matrix vasend are sent to the adjacent subdomains using arrays proc and ix.
5. jasend and iasend - The Compressed-Sparse-Row arrays for the local interface matrix vasend , i.e. jasend is
an integer array to store the column positions in global numbering of the elements in the interface matrix vasend
and iasend a pointer array, the i-th entry of which points to the beginning of the i-th row in jasend and vasend.
6. varecv - The assembled interface matrix, i.e. each subdomain assembles in varecv interface matrix elements
received from adjacent subdomains. varecv is also stored in a CSR format using two arrays jarecv and iarecv.

Additional details on the data structure used as well on the general organization of PSPARSLIB can be
found in [22, 23].

6.2 Algorithmic aspects

The general solution algorithm employs a time marching procedure with local time-stepping for steady state
solutions. At each time step, a nonlinear system is solved using a quasi-Newton method and the matrix-free
GMRES or FGMRES algorithm. The preconditioner used is the block-Jacobian matrix computed and factorized
using ILUT algorithm, at each 10 time steps. Interface coeÆcients of the preconditoner are computed by
assembling contributions from all adjacent elements and subdomains, i.e. the varecv matrix is assembled with
the local Jacobian matrix. Another aspect worth mentioning is the fact that the FEM formulation requires
a continuous state vector V in order to compute a consistent residual vector. However, when applying the
preconditoner (i.e. multiplication of the factorized preconditioner by a vector) or at the end of Krylov-iterations,
a discontinuous solution at the subdomain interface is obtained. To circumvent this inconsistency, a simple
averaging operation is applied to the solution interface coeÆcients.

Algorithm 6.1 Parallel Newton-GMRES

1. Get a mesh decomposition using Metis partitioner

2. Preprocess the parallel data structures

3. Loop over time steps, For Is = 1; nsteps Do:
4. Compute and factorize the local preconditioning matrix M at every N time steps

5. Loop over Newton iterations, For In = 1; niterations Do:
6. Compute Initial residual r0 = F (x0) and � := jjr0jj2, v1 := r0=�.
7. De�ne the (m + 1)�m matrix Hm =

fhi;jg1�i�m+1;1�j�m. Set Hm = 0.
8. For j = 1; 2; :::;m Do:

9. Compute zj := M�1vj
10. Compute local representation of the perturbed solution x0 + �zjand average interface

components to obtain the global representation, then compute F (x0 + �zj)

11. Compute wj :=
F (x0+�zj)�F (x0)

�
12. For i = 1; :::; j Do:
13. Compute local coeÆcient hij := (wj ; vi) and sum over subdomains

14. wj := wj � hijvi
15. EndDo

16. Compute local coeÆcient hj+1;j = jjwj jj2 and sum over subdomains.

If hj+1;j = 0 set m := j, goto 19
17. vj+1 = wj=hj+1;j
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18. EndDo

19. De�ne Vm = [v1; :::; vm], and Hm = fhi;jg1�i�m+1;1�j�m.

20. Compute ym the minimizer of jj�e1 �Hmyjj2,
get local representation xm = x0 + Vmym and average interface components to obtain continuous global solution.

21. If satis�ed EndDo, else set x0 := xm goto 6:
22. EndDo

23. EndDo

For compressible 
ows, the following parameters are generally used: m = 10, N = 10, � = 10�6, niterations = 1,
p = NNZ=NEQ + lfil and � = 10�3; with NNZ the number of nonzero enteries, NEQ the number of local
equations and (�10lelfille10). The parallelized Newton-FGMRES is similar to Algorithm 6.1 but step (9) is
replaced by an inner preconditioned-GMRES loop for which m = 2.

7 Numerical results

The EBS formulation has been implemented in 2D and 3D, and tested for computing viscous and inviscid
compressible 
ows. Also, EBS results are compared with those obtained using SUPG formulation (the de�nition
of the stabilization matrix employed is given by � = (

P
i jBij)

�1) and with some results obtained using a Finite
Volume code developed in INRIA (France). All tests have been performed on a SUN Enterprise 6000 parallel
machine with 165 MHz processors. The objective of the numerical tests is to assess the stability and accuracy of
EBS formulation as compared to SUPG and FV methods. Linear �nite element approximations over tetrahedra
are used for 3D calculations and mixed interpolations over triangles for 2D (quadratic for momentum and linear
for density, pressure, temperature and energy). A time-marching procedure is used, second order accurate for
unsteady solutions and �rst order Euler scheme with nodal time steps for steady solutions.

7.1 Two dimensional tests

Several benchmark tests were carried out. We �rst present results for subsonic and transonic 
ows around
a NACA0012 airfoil at, respectively, the following conditions: (inviscid, Ma=0.50 and angle of attack =0),
(inviscid, Ma=0.80 and angle of attack =1.25 degree) and (viscous Re = 10000, Ma = 0:80 and angle of attack
=0). A symmetric mesh of 8150 triangular elements is used. For EBS formulation, the parameter � was set
to 0:5. For the inviscid computations, all the formulations gave similar results although the shocks are steeper
for EBS (Figures 1 and 2). For the viscous case the results (Figures 3) clearly show a strong vortex shedding
phenomenon at the trailing edge. Again, the shock is steeper for EBS formulation. These results compare
quite well with those obtained in [25] and [26] where re�ned and adapted meshes were used. A second problem
consists of solving a two-dimensional viscous 
ow at Re = 1000, Ma = 3 and zero angle of attack over a 
at
plate. A structured mesh of 2 � (28 � 16) triangular elements was employed. Figure 4 shows the isomachs.
The boundary layer obtained with SUPG and the new design for � seems a little thinner. A smooth solution
is obtained using EBS. A thinner boundary layer could be obtained by decreasing � to 0:3 for instance, as has
actually been observed in our tests.

7.2 Three dimensional tests

Three-dimensional tests have been carried out for computing viscous 
ows over a 
at plate, inviscid as well as
turbulent 
ows around the ONERA-M6 wing and inviscid 
ows around the AGARD-445.6 wing [27].
For the 
at plate, 
ow conditions are set to (Re = 100 and Ma = 1:9) and (Re = 400 and Ma = 1:9). A coarse
and unadapted mesh is used for this test. Figures 5 and 6 show the Mach number contours (at a vertical plane).
It is clearly shown that SUPG and FV solutions are more di�usive than EBS solution.
For the ONERA-M6 wing, a Euler solution is computed for Ma = 0:8447 and an angle of attack of 5:06 degrees.
The mesh used has 15460 nodes and 80424 elements. Figures 7 show the Mach number contours at the root
section for EBS, SUPG, FV methods respectively. It is clearly shown that EBS method is stable and less
di�usive than SUPG method. The shock is well captured as in the 2nd order FV solution. Under the same
conditions (Mach number, angle of attack and mesh), a turbulent 
ow is computed for a Reynolds number of
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Re = 11:7106 and for a distance Æ = 10�4. These are the same 
ow conditions used in [21]. However, in [21]
a much �ner mesh on the wall is employed. Figures 8 present respectively the Mach contours obtained with
EBS, SUPG, �rst-order FV and second-order FVmethods. The Finite Volume code uses the �-� turbulence
model. These results show clearly that SUPG and �rst-order FV codes give a smeared shock. It is fairly well
captured by EBS method. However, the use of the second-order FV method results in a much stronger shock.
It is also observed from these �gures that the positions of the shock obtained respectively with the EBS-SA
and FV-�-� codes are quite di�erent. However, the results obtained with the EBS-based code are comparable
to those obtained in [21]. It seems that the way the nonpenetration condition is implemented for the trailing
edge nodes is responsible for these discrepancies. In our code a unit normal vector is computed for every node
and the condition u � n is enforced precisely. In the used �nite volume code, this condition is obtained in a
weak form. Figure 9 shows the isocountours for the turbulent viscosity obtained with EBS and SUPG methods
using S-A turbulence model.
The AGARD-445.6 is a thin swept-back and tapered wing with a symmetrical NACA 65A004 airfoil section.
This wing is popular in aeroelastic studies as experimental results exist. An unstructured grid is employed for
Euler computations which has 84946 nodes and 399914 and generates 388464 coupled equations (Figure 10). A

ow at a free-stream Mach number of 0:96 and zero angle of attack is computed and results are compared with
those of [28] where a structured and �ne mesh is used. Figure 10 shows a comparison of pressure coeÆcient
contours on the upper surface obtained using our SUPG and EBS methods and results of [28]. It can be observed
that the results obtained with EBS are qualitatively similar to [28] while those obtained with SUPG are more
di�usive. A comparison of Cp coeÆcients at the root section is also presented. In this plot the results of reference
[28] actually correspond to Navier-Stokes computations at a high Reynolds number since those corresponding
to the Euler case are not reported. Discrepancies at the trailing part are likely due to the boundary layer and
shock interactions in Navier-Stokes solution.

Tables 1 and 2 show speed-up results obtained in the case of Euler computations around the Onera-M6 and
AGARD 445.6 wings using the parallel version of the code. Figure 11 shows the convergence history for the
case of the Euler 
ow around the Onera-M6 wing using EBS formulation and a di�erent number of processors.
Identical convergence is then ensured for any number of processors. For the small-scale problem, eÆciency
is of order of 90%. However, it drops to 70% for the large-scale problem. The performance drop is mainly
caused by the increase of the total number of GMRES iterations. The additive Schwarz algorithm, with only
one layer of overlapping elements, along with ILUT factorization and the FGMRES/GMRES algorithm, seems
to provide reasonable numerical tools for parallel solutions of compressible 
ows. However, there is still room
for improvement, using for instance more overlapping layers or a more sophisticated preconditioner such as the
distributed Schur complement [[29] and [30]].
Another Euler test has been performed on the Onera-M6 wing using a frequently studied parameter combination
of Ma = 0:8395 and an angle of attack of 3:06 degrees. This transonic case gives rise to a characteristic
lambda-shock. A relatively �ne mesh was used (187248 nodes, 905013 element and 936240 degrees of freedom).
Comparisons of the Cp coe�cients with the experimental data [31] show reasonable agreement for an inviscid
model and for the mesh used (Figure 12). Figure 13 shows the Cp contours for EBS and SUPG formulations
which are used along with a �nal value of �cc2=:25. For EBS formulation, the lambda shock seems to start
appearing. A comparison with the numerical results obtained in [32] are shown in Figure 14.

Conclusion

A new stabilization �nite element formulation (EBS) is proposed in this study and applied to multidimensional
systems, in particular Euler and Navier-Stokes equations. Also, a new design for the time scale matrix � is
proposed for the classical SUPG formulation. These formulations need more stabilization for stagnation points
and shocks. To do this, the shock capturing operator of Le Beau et al [18] is used. In the framework of EBS
formulation, it is possible to add more stabilization to the upwind element as it is usually done in the FV formu-
lations. Numerical tests in 2D and 3D show that the EBS formulation combines well with the shock capturing
operator of [18] while SUPG seems very di�usive. On the other hand, SUPG formulation is robust and has a
good convergence for Euler and turbulent 
ows using standard iterative solvers such as the ILUT preconditioned
GMRES. However, some convergence diÆculties are encountered for EBS formulation, especially in the case of
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turbulent 
ows. To solve these diÆculties, the ILUT preconditioned FGMRES has been used as the default
iterative solver for turbulet 
ows. In terms of CPU time, EBS formulation is in general as twice consuming
as SUPG (using the old designs of � and only one Gauss quadrature point). This trend is similar to what is
generally observed when comparing �rst and higher order methods for compressible 
ows. We also discussed
some parallel implementation issues. An Additive Schwarz domain decomposition method with algebraically one
layer of overlapping elements is implemented along with the ILUT-FGMRES/GMRES algorithms. Numerical
results show that the parallel code o�ers reasonable performance for a number of processors less than 16.
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Appendix: A computer program for computing the EBS tau matrix.

subroutine tau3d-ebs(taub,v1,v2,v3,pres,dens,gama,ci,

1 beta0,iel,ndim,hel,vmu)

c===================================================================

c Stabilisation matrix TAU calculation in three dimensions

c Input : - velocity components: v1,v2, v3.

c - density : dens

c - gama: specfici heat ratio

c - unit normal vector: ci

c - viscoity: vmu

c - upwinding parameter: beta (see paper)

c Output: tau EBS matrix

c Author: Azzeddine SOULAIMANI

c asoulaimani@mec.etsmtl.ca

c===================================================================

double precision t(5,5),ti(5,5),vm(5,5),vmi(5,5),sol(5,5),

1 d(5),taub(5,5),ci(3),sol1(5,5),soli1(5,5),

2 v1,v2,v3,pres,dens,gama,gama1,beta,hel,vmu,Pec,

3 rtc,cel,rc,vv,c1,c2,c3,pl1,pl2,pl3,plmax,

4 rt2,ct1,ct2,ct3,zero,un,deux,eps,beta0

integer iel,ndim,i,j

data zero/0.d0/, un/1.d0/, deux/2.d0/, eps/1.d-15/

gama1 = gama - un

rt2 = sqrt(deux)

do i = 1,5

do j = 1,5

taub(i,j) = zero

enddo

enddo

c---- sound speed

if(pres.le.zero.or.dens.le.zero)then

write(*,*)' Problem : negative pressure or density in element:',iel

stop

endif

cel = sqrt(gama*pres/dens)

rc= dens/(cel*rt2)

c---- velocity norm square

vv = v1*v1 + v2*v2 + v3*v3 + eps*eps

c====== TAU matrix computation =========================================

c1 = ci(1)

c2 = ci(2)

c3 = ci(3)

rtc = sqrt(c1*c1 + c2*c2 + c3*c3)

c----- eigenvalues of the Gradient matrices as given by Warming et al.

pl1 = (c1*v1 + c2*v2 + c3*v3) + eps

pl2 = (c1*v1 + c2*v2 + c3*v3 + cel*rtc) + eps
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pl3 = (c1*v1 + c2*v2 + c3*v3 - cel*rtc) + eps

c----- diagonal matrix

d(1) = pl1

d(2) = pl1

d(3) = pl1

d(4) = pl2

d(5) = pl3

c----- update the diagonal matrix

do i=1,5

Pec= (abs(d(i))*hel)/(6.d0*vmu)

beta= dmin1(Pec,1.d0)*beta0

if(d(i).ge.eps) then

d(i) = (1.d0 + beta)

else

if(dabs(d(i)).gt.eps) then

d(i) = - (1.d0 - beta)

else

d(i) = 0.d0

endif

endif

enddo

c------------------------------------------

ct1 = c1/rtc

ct2 = c2/rtc

ct3 = c3/rtc

c------ Initialization

do i=1,5

do j=1,5

vm(i,j)=zero

vmi(i,j)=zero

ti(i,j)=zero

t(i,j)=zero

enddo

enddo

c------ T matrix as given in Warming et al.

t(1,1) = ct1

t(1,2) = ct2

t(1,3) = ct3

t(1,4) = rc

t(1,5) = rc

t(2,2) = - ct3

t(2,3) = ct2

t(2,4) = ct1/rt2

t(2,5) = - ct1/rt2

t(3,1) = ct3

t(3,3) = - ct1

t(3,4) = ct2/rt2

t(3,5) = - ct2/rt2

t(4,1) = - ct2

t(4,2) = ct1

t(4,4) = ct3/rt2

t(4,5) = - ct3/rt2

t(5,4) = dens*cel/rt2
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t(5,5) = dens*cel/rt2

c------ TI invers matrix as given in Warming et al.

ti(1,1) = ct1

ti(1,3) = ct3

ti(1,4) = - ct2

ti(1,5) = - ct1/(cel*cel)

ti(2,1) = ct2

ti(2,2) = - ct3

ti(2,4) = ct1

ti(2,5) = - ct2/(cel*cel)

ti(3,1) = ct3

ti(3,2) = ct2

ti(3,3) = - ct1

ti(3,5) = - ct3/(cel*cel)

ti(4,2) = ct1/rt2

ti(4,3) = ct2/rt2

ti(4,4) = ct3/rt2

ti(4,5) = un/(dens*cel*rt2)

ti(5,2) = - ct1/rt2

ti(5,3) = - ct2/rt2

ti(5,4) = - ct3/rt2

ti(5,5) = un/(dens*cel*rt2)

c------ M matrix as given in Warming et al.

vm(1,1) = un

vm(2,1) = v1

vm(2,2) = dens

vm(3,1) = v2

vm(3,3) = dens

vm(4,1) = v3

vm(4,4) = dens

vm(5,1) = vv/deux

vm(5,2) = dens*v1

vm(5,3) = dens*v2

vm(5,4) = dens*v3

vm(5,5) = un/gama1

c------ MI invers matrix as given in Warming et al.

vmi(1,1) = un

vmi(2,1) = - v1/dens

vmi(2,2) = un/dens

vmi(3,1) = - v2/dens

vmi(3,3) = un/dens

vmi(4,1) = - v3/dens

vmi(4,4) = un/dens

vmi(5,1) = vv*gama1/deux

vmi(5,2) = - gama1*v1

vmi(5,3) = - gama1*v2

vmi(5,4) = - gama1*v3

vmi(5,5) = gama1

c---- product M.T

call mpro(sol1,vm,t,5)

c---- product TI.MI

call mpro(soli1,ti,vmi,5)

c----- product M.T.D
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do i = 1,5

do j = 1,5

sol1(i,j) = sol1(i,j)*d(j)

enddo

enddo

c----- product M.T.D.TI.MI

call mpro(sol,sol1,soli1,5)

c----- TAU matrix

do i = 1,5

do j = 1,5

taub(i,j) = taub(i,j) + sol(i,j)

enddo

enddo

return

end

Table 1: Parallel Performance of Euler 
ow around Onera-M6 wing
Number of SUPG EBS
processors Speedup EÆciency Speedup EÆciency

2 1:91 0:95 1:86 0:93
4 3:64 0:91 3:73 0:93
6 5:61 0:94 5:55 0:93
8 7:19 0:90 7:30 0:91

10 9:02 0:90 8:79 0:88
12 10:34 0:86 10:55 0:88

Table 2: Parallel Performance of an Euler 
ow calculation around AGARD wing 445.6 using SUPG, GMRES
and 300 pseudo-time steps at CFL=20

Number of GMRES
processors Speedup EÆciency iterations

1 1 1:00 1004
4 2:95 0:74 1285
6 4:24 0:71 1399
8 5:86 0:73 1357

10 6:53 0:65 1457
12 8:76 0:73 1342
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Figure 5: 3D viscous 
ow at Re = 100 and M = 1.9. Mach contours for EBS, SUPG and FV methods.
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Figure 6: 3D viscous 
ow at Re = 400 and M = 1.9. Mach contours for EBS, SUPG and FV methods.
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Figure 7: Euler 
ow around Onera-M6 wing. Mach contours for EBS, SUPG and 1st order FV and 2nd order
FV methods.
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Figure 8: Turbulent 
ow around Onera-M6 wing. Mach contours for EBS, SUPG and 1st order FV and 2nd
order FV methods.
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Figure 9: Turbulent 
ow around Onera-M6 wing. Turbulent viscosity contours for EBS and SUPG methods.
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Figure 10: Euler 
ow around Agard wing 445.6. EBS and SUPG methods.
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Figure 11: Euler 
ow around Onera-M6 wing. Convergence history with EBS.
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