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Abstract

This paper presents results using preconditioners that are based on a number of variations of
the Algebraic Recursive Multilevel Solver (ARMS). ARMS is a recursive block ILU factorization
based on a multilevel approach. Variations presented in this paper include approaches which
incorporate inner iterations, and methods based on standard reordering techniques. Numerical
tests are presented for three-dimensional incompressible, compressible and magneto-hydrodynamic
(MHD) problems.
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1 Introduction

Selecting a suitable solver for handling the linear systems in realistic applications can be a diÆcult task.
On one side of the spectrum of possible choices lies a large collection of special-purpose preconditioners
which are tailored to the physical problem at hand. Though these techniques may be vastly superior
to contending methods that attempt to be general-purpose, their main weakness is that they are
unlikely to be useful for solving other problems with di�erent characteristics. On the other extreme
of the spectrum, lies the well-developed class of sparse direct solvers which are the most general and
reliable techniques available. It is clear that from the point of view of generality and reliability, direct
methods, are the most desirable. However, these methods are prohibitive for realistic 3-dimensional
problems. A middle-ground solution is to develop methods that attempt to imitate the generality
and robustness of sparse direct solvers. In this regard, ILU-type preconditioners constitute the most
popular choice. In this paper we further explore a class of methods in this category, which lies in
between multilevel techniques and ILU-type preconditioners.

Multilevel methods can be extremely eÆcient for certain classes of problems. In this category,
multigrid techniques can be viewed as \specialized" since their success is narrowly limited and con-
tingent upon tuning of various parameters and operator choices. The Algebraic MultiGrid (AMG)
methods, introduced in the seventies to remedy these limitations, o�er an alternative whose success
has been mixed since it still depends on the underlying PDE problem. In recent years, a number of
preconditioners were introduced in the literature which attempt to combine attributes of the standard

�Department of Computer Science and Engineering, University of Minnesota,4-192EE/CSci Building, 200 Union
Street S.E., Minneapolis, MN 55455

yD�epartement de G�enie M�ecanique, �Ecole de technologie sup�erieure, 1100 Notre-Dame Ouest, Montr�eal (Qu�ebec),
H3C 1K3, Canada email: asoulaimani@mec.etsmtl.ca

1



incomplete LU factorizations and the algebraic multigrid method. These methods possess features of
multilevel methods as well as some features of ILU factorizations. ILUM [26] is one such approach
and related work by Botta and co-workers [4, 5], and [30, 31], indicates that this type of approach
can be fairly robust and scales well with problem size, in contrast with standard ILU preconditioners.
The idea was extended to a block version (BILUM) using dense blocks [30] and then this was further
extended into BILUTM [31] which treats the diagonal blocks as sparse. Later BILUTM gave rise to
the Algebraic Recursive Multilevel Solver (ARMS) [29], which o�ers more capabilities and a truly
recursive implementation in the C programming language. On parallel platforms ARMS provides a
general framework for multilevel parallel ILU preconditioning which can accommodate both �ne-grain
and coarse-grain parallelism [21].

This paper presents a number of variants of ARMS and illustrates their performance on realistic
problems from Computational Fluid Dynamics. Two types of variations are explored. First, various
inner-outer combinations are considered, which consist of using Krylov accelerations at some of the
levels. Second, we introduce techniques which exploit existing reordering strategies, such as Nested
Dissection, in the framework of ARMS. One observation we make in this paper is that the separation
of the nodes used to de�ne levels can be quite general. One possibility, for example, is to use a simple
criterion of diagonal dominance. The performance of these variations is illustrated in the section on
numerical experiments.

2 Background on preconditioned Krylov subspace methods

A preconditioned Krylov subspace method for solving the linear system

Ax = b (2.1)

consists of an accelerator and a preconditioner. In what follows we call M the preconditioning matrix,
so that, for example, the left-preconditioned system

M�1Ax =M�1b (2.2)

or its right-preconditioned version,

AM�1y = b x =M�1y (2.3)

is solved instead of the original system (2.1). The above systems are solved via an \accelerator", a
term used to include a number of methods of the Krylov subspace class. We only brie
y describe one
such method here, namely the right-preconditioned GMRES algorithm [27, 28]. Other techniques and
details can be found in [27], for example.

Algorithm 2.1 Right preconditioned GMRES(m)

1. Compute r0 = b�Ax0, � := jjr0jj2, v1 := r0=�.
2. De�ne the (m+ 1)�m matrix Hm = fhi;jg1�i�m+1;1�j�m. Set Hm = 0.
3. For j = 1; 2; :::;m Do:
4. Compute z :=M�1vj and w := Az
5. For i = 1; :::; j Do:
6. hij := (w; vi)
7. w := w � hijvi
8. EndDo
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9. hj+1;j = jjwjj2.
10. If hj+1;j = 0 set m := j and goto 12.
11. vj+1 := w=hj+1;j
12. EndDo
13. Compute ym the minimizer of jj�e1 �Hmyjj2 and
14. Compute xm = x0 +M�1Vmym, where Vm � [v1; v2; � � � ; vm]
15. If satis�ed Stop, else set x0 := xm goto 1:

In the above algorithm, m represents the dimension of the Krylov subspace, i.e., the number of
directions used before restarts.

A variation of the above algorithm is available which is motivated by the desire to use a precondi-
tioner M which is itself an iterative solver. This is particularly appealing for domain decomposition
methods in parallel environments where a subdomain solve can be itself iterative. In this case, the
preconditioning operation in Line of Algorithm 2.1 does not correspond to a matrix solve with the
same matrix M . It can be viewed as a solve with a matrix Mj , which varies with the step number j.
In this case, the algorithm as it is described above will fail. However, a variation, referred to as FGM-
RES (Flexible GMRES), has been developed to handle this situation. This variation consists of simply
changing Lines 4 and 14 into the following two lines, leaving the rest of the algorithm unchanged:

4a. Compute zj :=M�1
j vj and w := Azj

14a. Compute xm = x0 + Zmym, where Zm � [z1; z2; � � � ; zm]

Note that FGMRES requires to save an extra set of vectors, the zi's, so the storage required by the
accelerator is nearly doubled.

A common way to de�ne a preconditioner M is through an Incomplete LU factorization obtained
from an approximate Gaussian elimination process. When Gaussian elimination is applied to a sparse
matrix A, a large number of nonzero elements may appear in locations originally occupied by zero
elements. These `�ll-ins' often have small values and therefore they can be dropped to obtain a sparse
factorization, referred to as an Incomplete LU factorization. The simplest of these procedures, ILU(0)
is obtained by performing the standard LU factorization of A and dropping all �ll-in elements that
are generated during the process. In other words, the L and U factors have the same pattern as the
lower and upper triangular parts of A (respectively).

More accurate factorizations denoted by ILU(k) and IC (k) (symmetric case) have been de�ned
which drop �ll-ins according to their `levels'. Level-1 �ll-ins for example are generated from level-zero
�ll-ins (at most). So, for example, ILU(1) consists of keeping all �ll-ins that have level zero or one
and dropping any �ll-in whose level is higher.

Another class of preconditioners is based on dropping �ll-ins according to their numerical values.
One of these methods is ILUT (ILU with Threshold). This procedure uses basically a form of Gaussian
elimination which generates the rows of L and U one by one. Small values are dropped during the
elimination, using a parameter � . A second parameter, p, is then used to keep the largest p entries in
each of the rows of L and U . This method is denoted by ILUT (�; p).

3 Multilevel ILU preconditioners and ARMS

Multi-level ILU preconditioners exploit the property that a set of unknowns that are not coupled to
each other can be eliminated simultaneously in a Gaussian elimination type process. These independent
sets have been extensively used in devising both direct and iterative solution methods for sparse linear
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systems, see, for example, [16, 23, 20, 8, 26]. Independent set orderings transform the original linear
system into the form �

B F
E C

��
u

y

�
=

�
f

g

�
(3.4)

in which the B block is diagonal. Since B is diagonal, it is easy to eliminate the u variable to obtain
a system with only the y variable. The coeÆcient matrix for this `reduced system' is the Schur
complement S = C � EB�1F which is still sparse. In ILUM[26], this idea was used recursively.
Dropping is applied to S to limit �ll-in and an independent set is found to put the resulting reduced
system into the above form. This is repeated for a few levels until the system is small enough, or a
maximum number of levels is reached. Then the system is solved by some other, standard, means
such as an ILUT-GMRES combination.

The concept of independent set has been generalized to blocks or groups [30, 31]. A group-
independent set is a collection of subsets (blocks) of unknowns such that there is no coupling between
unknowns of any two di�erent groups (blocks) [30]. Unknowns within the same group (block) may
be coupled. This is illustrated in Figure 1. If the unknowns are permuted such that those associated

No Coupling

Figure 1: Independent groups or blocks.

with the group-independent set are listed �rst, followed by the other unknowns, the original coeÆ-
cient system will take the form (3.4) where now the matrix is not diagonal but block diagonal. An
illustration is shown in Figure 2 which shows two block independent reorderings of the same matrix.

ARMS exploits block independent sets and implements a multilevel ILU which generalizes ILUM.
At the l-th level of ARMS, the coeÆcient matrix is reordered as in (3.4) where B is now diagonal and
then the following block factorization is computed `approximately' (subscripts corresponding to level
numbers are introduced):

 
Bl Fl
El Cl

!
�

 
Ll 0

ElU
�1
l I

!
�

 
Ul L�1l Fl
0 Al+1

!
; (3.5)

where

Bl � LlUl (3.6)

Al+1 � Cl � (ElU
�1
l )(L�1l Fl) (3.7)

Exploting recursivity simpli�es the description of the procedure which consists essentially of two
steps. First, obtain a group-independent set and reorder the matrix in the form (3.4); second, obtain
an ILU factorization Bl � LlUl for Bl and approximations to the matrices L�1l Fl, ElU

�1
l , and Al+1.

The process is repeated recursively on the matrix Al+1 until a selected number of levels is reached. At
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(a) (b)

Figure 2: Group-independent set reorderings of a 9-point matrix: (a) Small groups (�ne-grain), (b)
large groups (coarse-grain).

the last level, a simple ILUT factorization, possibly with pivoting, or an approximate inverse method
can be applied.

The Ai's remain sparse but become denser as the number of levels increases, so small elements are
dropped in the block factorization to maintain sparsity. Note that the matrices ElU

�1
l ; L�1l Fl or their

approximations
Gl � ElU

�1
l ; Wl � L�1l Fl (3.8)

which are used to obtain the Schur complement via (3.7) need not be saved. They are computed
only for the purpose of obtaining an approximation to Al+1. Once this is accomplished, they are
discarded to save storage. Subsequent operations with L�1l Fl and ElU

�1
l are performed using Ul; Ll

and the blocks El and Fl. As an example of the many possible variations that can be made, examine
the following forward and backward solves associated with the ARMS factorization. In the following,
(fTl ; g

T
l )

T is a right-hand side for the system (3.5), and (yTl ; z
T
l )

T the solution of the system.

Algorithm 3.1 RMLS { Recursive Multi-Level Solution

1. Compute g0l = gl �ElB
�1
l fl

2. Solve (recursively) the system Al+1zl = g0l
3. Back-Substitute to get yl, i.e., solve Blyl = [fl � Flzl]

The output vector from the above procedure is the result of one preconditioning operation applied to
a given input vector (fTl ; g

T
l )

T . Step 1 is akin to a �ne-to-coarse mesh restriction used in multigrid.
Step 3 is the reverse operation which can be viewed as a prolongation. Step 2 is where many possible
variations can arise, among which the following ones

1. An iterative process is used (recursively) in the forward/backward RMLS sweeps;

2. The preconditioner for this iterative process is de�ned using the next (l+2) level. This variation
leads to procedures reminescent of W -cycles in multigrid.

3. Alternatively, the local Bl block can be used in preconditioning.

5



The paper [29] describes a scalar version of ARMS. The implementation, written in C, is fully
recursive and makes eÆcient use of storage. The paper also presents a number of comparisons with
other existing solution methods, both iterative and direct. ARMS is often superior to ILUT, which
is often used as a benchmark for similar comparisons. Note that by a proper choice of parameters
(essentielly using a number of levels equal to zero) the code will yield ILUT as one option.

3.1 Block independent set strategies

Several methods are available for obtaining block-independent sets. One of the simplest techniques in
this context is based on a form of reverse Cuthill-McKee ordering. A �rst node (called the root) is
selected from which the traversal is done. In the �rst step of the traversal, all the neighbors of the
root are traversed. These nodes constitute the �rst level in the traversal. Every node that has been
visited is marked. At each step a traversal is made from each of the nodes of the previous level. When
a certain number of nodes are reached the set of nodes gathered from the traversal will constitute one
block. In essence, the procedure starts a standard reverse Cuthill McKee procedure and stops as soon
as a given number of nodes have been gatherer in the current set. The nodes thus gathered will form
one of the B-blocks. Within each of these B-blocks, the labeling is reversed in a way similar to the
reverse Cuthill-Mc Kee ordering.

Algorithm 3.2 Multiple root reverse Cuthill Mc Kee

1 Set visited = ;
2 While jvisitedj < n do
3 Select a new root v; set set := last level := fvg
4 While jsetj < bsize :
5 For each w in last level
6 If w is not marked
8 Add w to new level
9 Mark w
10 EndIf
11 EndFor
12 set := set [ new level
13 last level := new level
14 EndWhile
15 Reverse Ordering of set
16 Add all vertices of last level to complement set
17 Select a new root from the non marked nodes
18 EndWhile

Figure 3 is reminescent of a number of patterns seen with some standard reordering methods. For
example Nested Dissection (ND) orderings [16] common in sparse direct solution systems give rise
to similar patterns. One can use nested dissection as a basis for generating block-independent sets.
Nested dissection is a primary technique used to reduce �ll-in in sparse direct solvers. It is easily
described by using recursivity and by exploiting `separators'. The main step of the ND procedure is
to separate the graph in three parts, two of which have no coupling between each other. The third
set has couplings with vertices from both of the �rst sets and is referred to as a sepator. The key
idea is to separate the graph in this way and then repeat the process recursively in each subgraph.
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Figure 3: Nested dissection ordering and corresponding reordered matrix

The nodes of the separator are numbered last. An illustration is shown in 3. We implemented this
strategy by using the reordering techniques provided in Metis [19]. Results reported in [29] indicate
that this techniques does not usually improve upon the simple strategy described earlier. A di�erent
way of using Nested Dissection will be discussed in Section 3.3.

3.2 Diagonal Dominance Filtration

In order to improve the robustness of the factorization the numerical values are also considered. This
is used to `�lter out' the rows that are the least diagonally dominant to the complement set in any
group-independent set strategy. The heuristic is simple yet quite e�ective for improving robustness
for problems that are highly inde�nite.

A row is rejected to the complement set whenever a certain measure of its diagonal dominance
relative to the other rows is poor. To implement this, a vector of weights w is computed as follows.
First, some diagonal dominance coeÆcients are computed as:

ŵ(i) =
jaiijPn
j=1 jaij j

:

Note that 0 � ŵ(i) � 1 and that when aii 6= 0 the inverse of ŵ(i) is ŵ(i)�1 = 1+
P

j 6=i jaij=aiij. These
weights are close to one for strongly diagonally dominant rows, and close to zero for very non-diagonal
dominant rows. For matrices that have all of their rows far from being diagonally dominant a strategy
based on using the above weights might reject all the rows. A more e�ective strategy is to utilize the
criterion on a relative basis by normalizing all the ŵ(i) ratios by the average or the maximum. For
example, we can use instead,

w(i) =
ŵ(i)

maxj=1;:::;n ŵ(i)
; i = 1; � � � ; n: (3.9)

Variations exist in which the weights combine both column and row diagonal dominance ratios.

7



3.3 ARMS with reordering

The block independent set reordering discussed above can be viewed as a reordering technique (coupled
with a �ltration mechanism) which allows to obtain a B block that is easy to invert, in the sense that
its factorization will introduce little �ll-in. In the extreme case of ILUM (block-size of one) no �ll-in
occurs in the factorization of B. There are many reordering methods used to reduce �ll-in prior to
a factorization. These are mainly used for direct methods but their usefuleness for iterative methods
has been also extensively studied; see for example, [3, 9, 10, 12, 11, 6].

Among the standard reorderings, it is known (at least experimentally) that the best reordering
technique for a direct solver is not necessarily the best one for ILU. Among these techniques, the
reversed Cuthill Mc Kee reordering is known to perform quite well for ILU.

We can also combine reordering strategies with ILU in a di�erent way. Experiments suggest that
it is important to �lter out those rows that are non-diagonally dominant and order them last, yielding
a system in the form (3.4), where B does not have any particular structure. After this is done, we
can apply a �ll-reducing ordering to the B matrix. This strategy has been tested in the numerical
experiments section. We have tried three di�erent reordering strategies.

ARMS-RCM This uses the reverse Cuthill McKee ordering technique from the SPARSPAK pack-
age [7]. Note that the block-independent set algorithm of Section 3.1 can also yield a RCM ordering
by taking an in�nite block-size. However, it does not search for a good initial node (pseudo-peripheral
node) to start the traversal as is done by the SPARSPAK routine.

ARMS-MMD The minimum degree (MD) algorithm is a very popular strategy for minimizing
�ll-in in Gaussian elimination. At any given step of Gaussian elimination, the node with the smallest
degree is selected as the next pivot. The idea is that by doing so, we will minimize an upper bound
for the numbe of �ll-ins that will be introduced.

The Multiple Minimum Degree algorithm is a variation due to Liu [22, 15] which works with
independent sets of pivots at each step. (The degrees of nodes adjacent to any vertex in the independent
set, are updated only after all vertices in the set are processed).

ARMS-MND This technique uses the Nested Dissection ordering [16] as obtained from the package
Metis [19]. Nested dissection is another popular reordering strategy for minimizing �ll-in in Gaussian
elimination. It is often used for symmetric positive de�nite matrices since it does not accomodate
pivoting.

ARMS-AMF The Approximate Minimum Fill (AMF) algorithm has received much attention re-
cently, see, e.g., [25]. Instead of minimizing the degree of each new pivot in Gaussian elimination, this
strategy attempts to directly minimize the actual �ll-in. This would in theory be expensive but tech-
niques based on quotient graphs allow to obtain computationally inexpensive bounds for the amount
of �ll-in.

3.4 ARMS Cycles

There are many possible variations of the ARMS preconditioner once the ARMS factorization is
available. One of the simplest ways to enhance the robustness of the preconditioner is to perform
some form of inner iterations. The current version of ARMS allows three such variations which can
be described in terms of variations on the ways in which the Schur complement systems are solved.
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Below are three simple options that come to mind and which have been implemented and tested.
Many other options exist which have not been explored.

(VARMS) If the current level is not the last, continue to descend by using the level-structure. When
the last level is reached solve with GMRES-ILUT and then ascend back to the current level.

(WARMS) If the current level is not the last, use a few steps of GMRES to solve the reduced system
- utilizing VARMS as a preconditioner. When the last level is reached solve with GMRES-ILUT.

(WARMS*) If the current level is not the last, use a few steps of FGMRES to solve the reduced
system - using WARMS* (recursively) as a preconditioner. At the last level ILUT-GMRES is
again used.

WARMS* was discussed in the technical report [29]. However, since this algorithm turns out to be
fairly expensive for most practical situations we only mention it here for reference. The VARMS
preconditioning step is shown in the following algorithm.

Algorithm 3.3 xl := VARMS-solve(Al; bl) { Recursive Multi-Level Solution

0. Let bl =
�
fl
gl

�
1. Solve Ll f

0
l = fl

2. Descend, i.e., compute bl+1 := gl �ElU
�1
l f 0l

3. If l = last lev then
4. Solve Al+1yl = bl+1 using GMRES+ILU factors
5. Else
6. yl = VARMS-solve(Al+1; bl+1)
7. Endif

8. Ascend, i.e., compute f 00l = f 0l � L�1l Fl yl
9. Back-Substitute ul = U�1

l f 00l
10. Return xl :=

�
ul
yl

�

Note that in the analogous WARMS-solve algorithm, line 6 would be simply replaced by the line:

6w. Solve Al+1yl = bl+1 using GMRES preconditioned by VARMS(Al+1; �)).

In [29] the question was addressed on how to perform the matrix-vector products with the matrices
Ai without having to save these matrices. These operations are required whenever an iterative process
is used at the intermediate or last levels. To obviate the need to store Schur complement matrices, we
can compute Sl � w as

Sl � w = (Cl �ElB
�1
l Fl)w (3.10)

This version uses matrices from the current level instead of the next one and saves storage, most
often at the expense of additional arihtmetic operations. The inverse of Bl is applied by using its
(incomplete) LU factors.

4 Model Problems and solution strategy

Several three-dimensional CFD model problems are used for testing the proposed preconditioners.
Incompressible MHD 
ows and compressible gas 
ows are solved using stabilized �nite element for-
mulations. These considered test problems present some challenges for iterative methods. In the
following, the governing equations and the �nite element formulations used are brie
y presented.
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Let 
 be a bounded domain of <nd (nd = 3) with boundary � = @
. The outward unit vector
normal to � is denoted by n. Throughout this paper, we consider a partition of the domain 
 into
elements 
e where piecewise continuous approximations for the independent variables are employed.
We will use the standard notation: a subscript h to a function denotes a �nite element approximation.

4.1 Magnetohydrodynamic 
ows

Given a 
ow �eld, the conservative magnetohydrodynamic system of equations is obtained from the
Maxwell equations, and is written as:

@B

@t
�r� (u�B)�

1

Rem
r� (r�B) +rq = 0 (4.1)

r �B = 0 (4.2)

where Rem, B, u and q are respectively the magnetic Reynolds number, magnetic induction �eld,
velocity �eld and the scalar Lagrange multiplier for the magnetic free divergence constraint ([1] and
[2]). For coupled magnetohydrodynamics, this system is solved along with the incompressible Navier-
Stokes equations where the body force is f = 1

�(r�B)�B. This represents the Lorentz (Laplace)

force due to the interaction between the current density j = 1

�(r�B) and the magnetic �eld, where
� is the magnetic permeability. Since in real applications the magnetic-Reynolds number is small,
the discrete variational formulation used for the magnetic problem is a simple stabilized Galerkin
formulation [1] and is stated as: �nd (Bh, qh) such that for all weighting functions (B�

h
, q�h) one has,Z



B�
h �

@Bh

@t
d
 +

1

Rem

Z


rB�

h � rBh d
�
Z


B�
h � r � (u�Bh) d


+

Z


B�
h � rqh d
+ (�2 �

1

Rem
)

Z


(r � Bh) (r �B�

h) d


�
1

Rem

Z
�
((n � rBh) �B

�
h � (n � B�

h) (r �Bh)) d�

+

Z


q�h (r �Bh) d
+

X

e2�h

�2

Z

e

rqh � rq
�
h d
 = 0: (4.3)

The parameter �2 is a function of the mesh size h and local magnetic Reynolds number (Remh =

jjujjhRem) given by �2 = h2Rem=
q
Rem2

h + 4. The parameter �2 is a penalty factor given by �2 =

jjujjh=2. The case of fully-coupled MHD problems is described in [2] where a coupling algortithm
between magnetic and 
uid �elds is developed.

4.2 Compressible gas 
ows

The Navier-STokes equations are solved using a �nite element method [33] in terms of the conservative
varialbles V = (�;U ; E)t, i.e. the density, the vector momentum and the speci�c total energy. In
the case of turbulent 
ows we consider the one equation high Reynolds numbers Spalart-Allmaras
turbulence model [34], the vector of unknown variables is then V = (�;U ; E; �t)

t where �t is the
turbulent kinematic viscosity. The governing system of equations is written in a compact form as

V ;t + F
adv
i;i (V ) = F diff

i;i (V ) +F (4.4)

where F adv
i and F diff

i are respectively the convective and di�usive 
uxes in the ith-space direction,
and F is the source vector. Lower commas denote partial di�erentiation and repeated indices indicate
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summation. The di�usive 
uxes can be written

F
diff
i =KijV ;j

while the convective 
uxes can be represented by diagonalizable Jacobian matrices Ai = F
adv

i;V .
Recall that any linear combination of these matrices has real eigenvalues and a complete set of eigen-
vectors.

It is well known that the standard Galerkin �nite element formulation often leads to numerical
instabilities for convective dominated 
ows. In the Galerkin-Least-Squares method (or the generalized
Streamline Upwind Petrov Galerkin method) ( [18], [17]) the Galerkin variational formulation is
modi�ed to include an integral form depending on the local residual R(V ) of equation (4.4), i.e.

R(V ) = V ;t+F
adv
i;i (V )�F diff

i;i (V )�F , which is identical to zero for the exact solution. The SUPG
formulation reads : �nd V such that for all weighting functions W ,

X
e

Z

e
[W � (V ;t + F

adv
i;i �F) +W ;iF

diff
i ] d
 �

Z
�
W :F diff

i ni d� (4.5)

+
X
e

Z

e
(At

iW ;i) � � �R(V ) d
 = 0:

In this formulation, the matrix � is referred to as the matrix of time scales. The SUPG formulation
is built as a combination of the standard Galerkin integral form and a perturbation-like integral form
depending on the local residual vector [17]. The objective is to reinforce the stability inside the
elements. The matrix of time scales used here is given by � = (

P
jBij)�1, for i = 1; nd where

Bi =
@Remi

@xj
Aj and @Remi

@xj
are the components of the element Jacobian matrix [33]. The SUPG

formulation aims at adding an amount of arti�cial viscosity in the characteristic directions. Since
these formulations lead to a high-order scheme, high frequency oscillations in the vicinity of shocks
or stagnation points can occur. A shock-capturing viscosity depending on the discrete residual R(V )
as proposed in [33] is employed. More dissipation is then added in high gradient zones to avoid any
undesirable local oscillations.

4.3 Solution algorithms for nonlinear problems

The solution of partial di�erential equations of 
uid dynamics by any time and space discretization
method often leads to solving a non-linear problem in the Euclidian space <n:

F (x) = 0: (4.6)

The preferred strategy for solving (4.6) is Newton's method which generates a sequence of approxi-
mations of the form

xi+1 = xi + Æi (4.7)

starting from a certain initial approximation, x0 2 <n. The solution update Æi at step i is the solution
of the linear system

J(xi)Æi = �F (xi): (4.8)

where J(xi) denotes the Jacobian associated with F and evaluated at xi,
A solution strategy often used to solve many CFD problems consists of two nested loops, the �rst

one over time and the second over Newton's iteration. This can be sketched as follows
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Algorithm 4.1 General solution strategy

1. Do i=1, time� steps
2. Compute and factor the Jacobian matrix
3. (or an approximation) when needed
4. Do k=1,Newton� iterations
5. Compute the residual F (xi),
5. Solve the system (4.8) and
6. Update the solution by (4.7)
7. Check for convergence
8. EndDo
9. EndDo

In the exact Newton method, A is the true Jacobian matrix J(xi). This matrix, however, is not
always available or computable analytically. It may also be expensive to recompute at every iteration,
as is generally the case in CFD problems. It is often preferable to compute an approximation of the
Jacobian once and use it for a prescribed number of time steps and Newton iterations. In our codes,
this matrix is used to construct the preconditioner M . The action of the Jacobian on a vector (i.e. the
matrix-by-vector product in line 4 of algorithm 2.1 (i.e. Azj with zj =M�1vj) is often approximated
using a �nite di�erence quotient such as:

Azj � [F (x0 + �zj)� F (x0)]=� or Azj � [F (x0 + �zj)� F (x0 � �zj)]=(2�);

where � is an appropriate small number. Simple formulas for computing � are, respectively, � =
�0(jjx0jj+ �0) (with �0 = 10�6) and � = �0=jjzjjj (with �0 = 10�2).

Two issues of concern at each time step are the convergence of Newton's iterations and the cost
of solving the linearized problem (4.8). For steady-state problems, another concern is the global
convergence of the method. In practice, two di�erent diÆculties may be encountered, the divergence
of Newton's iterations and the stagnation of the global loop.

As is well-known, Newton's method will converge only if the initial guess x0 is close enough to the
solution. To enhance the global convergence characteristics of Newton's method, a number of so-called
global convergence strategies are often utilized. In the simplest of these, called `damped' Newton, the
update (4.7) is replaced by

xi+1 = xi + �iÆi (4.9)

in which the damping factor �i is less than one and selected so as to achieve suÆcient reduction
in the form of kF (xi + �iÆi)k2. Trust-region methods are often preferred. Independent of these
improvements, the above algorithm may encounter a number of other diÆculties related to the time-
stepping procedure or the linear solver. Possible cures can be found by using one, or a combination,
of the following strategies:

(a) reduce the time step,

(b) select the initial guess carefully,

(c) improve the robustness of the linear system solver by, e.g., increasing the Krylov-space dimension
or using a better preconditioner,

12



(d) use stabilization techniques for discretization,

(e) use multigrid methods or adaptive meshing techniques, etc.

In this paper, a few techniques related to option (c) are proposed and numerically tested. All non-
linear CFD problems considered in this paper are solved using the non-linear version of FGMRES(m),
sometimes referred to as a Jacobian-Free nonlinear FGMRES.

5 Numerical Experiments

The goal of the numerical tests which are reported in this section is to help understand various
variations of the ARMS procedure, as well as to show the e�ect of the choice of some of the parameters.
First, we consider both the performance in the solutions of the linear systems extracted from the
nonlinear iterative procedure as well for the nonlinear iteration itself. Then, we consider the global
convergence of a few nonlinear CFD problems.

5.1 Test on a linear system from compressible 
ow

In the following tests, we �rst consider a linear system extracted from the simulation of a laminar
compressible 
ow over a 
at plate at Mach= 0.5 and Reynolds = 10000. The geometry is that of a

at pro�le and the mesh uses mixed tetraedras and hexaedras. The matrix size is n = 122; 321 and
the number of nonzero elements is nnz = 6; 751; 053.

5.1.1 E�ect of block-size and number of levels

The parameters bsize (block-size) and nlev (number of levels) are intimately related. The larger the
block size, the smaller is the size of the Schur complement relative to that of the original system. The
parameters used for the experiment are listed below

bsize nlev fillinter filllast fillLU droptolI droptollast tolDD

1000 varies 50 40 40 0.001 0.01 0.1

In the table bsize denotes the block-size selected for the block-independent sets. The actual block-
size may di�er from the input value of bsize which acts as a threshold { a block is accepted as soon at
its size is larger than bsize in the traversal. The subscript I indicates that the parameter is used for
the intermediate matrices, while last refers to the last level. A drop tolerance indexed with I is for
the ILU factorization of each B -matrix at each level as well as for the construction of the temporary
matrices ~G, ~W , see, e.g., equations (3.8). The parameter droptolLU is for the ILU factorization of
the last Schur complement. The parameter tolDD is the threshold value used for the relative diagonal
dominance criterion discussed in Sections 3.1 and 3.2. The number of levels nlev is the maximum
number of levels allowed. Similarly, the actual number of levels found may di�er from the input value
of nlev. In this experiment no interlevel iterations are performed. Figure 4 shows the number of
iterations and the iteration time required to solve the linear systems when the number of levels varies.

Here, we should mention that when time is considered, then there is no simple rule, or easy way,
to determine whether increasing the number of levels will help. This is because, the number of levels
is tied to other choices. For example, it is easy to see that if there is substantial dropping at each
level, the schur complements that are constructed become less accurate and therefore, more levels will
harm convergence. In this case it is best to use one level. This is more or less the situation with the
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Figure 4: Residual norm vs number of iterations (left) and iteration time (right) for various number
of levels

method parameters used in this experiment. It is also worth noting that zero levels (equivalent to
ILUT) is often not competitive relative to ARMS. In this particular case, ILUT does still fairly well in
terms of overall time. It is better than using 4 or 6 levels for example. In terms of memory used, it is
remarkable that in all the tests with ARMS (nlev >= 1), the �ll factor (i.e., the ratio of the number
of nonzero elements in the preconditioning over that of the matrix is about the same (around 1.62).
For ILUT this ratio is smaller and close to 1.27.

5.1.2 E�ect of inner iterations and iteration cycles

There are many variations of the ARMS preconditioner once the multilevel ARMS factorization has
been constructed. One of the simplest ways to enhance the robustness of the preconditioner is to
perform some form of inner iterations. The current version of arms allows three such variations which
were described in Section 3.4.

In the next test, we experiment with the WARMS variant (in this variant inner iterations are
performed only at the last level and the top level). The number of inner iterations allowed at these
levels is varied. Tests have been made with nlev = 1 and nlev = 2. The other parameters are as
follows

bsize nlev fillinter filllast fillLU droptolI droptollast tolDD

100 6 50 40 40 0. 01 0.01 0.1

As can be seen a very loose dropping criterion is selected, so that the resulting factorization is not
accurate. The performance of the ILUT factorization using similar parameters is shown for comparison.
For the ILUT preconditioner, the �ll factor, i.e., the factor of the number of nonzero elements used by
the LU factorization over the number of nonzero elements in A, is a small 0.67. For those tests using
nlev = 1, the �ll factor is around 0:79. Thus, the storage requirement in this case is quite modest.
The ILUT preconditioner uses slightly less storage, but a slightly more accurate version yielded similar
results (stagnation).
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It is expected that as the number of inner iterations increases, for the �rst level and the last, the
number of global fgmres iterations should decrease. This will tend to enhance robustness of the global
scheme. However, because of dropping, the last level Schur complement matrix is not likely to be too
accurate, and as a result, one expects that solving the last Schur complement system accurately is not
cost-e�ective. This is veri�ed. Another observation, is that using only one level can be very e�ective
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Figure 5: Residual norm vs number of iterations (left) and iteration time (right) for various inner-outer
iteration combinations. The �rst integer in IT indicates the number of GMRES iterations at the top
level, while the second is the number if GMRES iterations at the last level

in reducing the overall execution time. It is rather remarkable that convergence can still be reached
with a preconditioner that is so inaccurate.

5.1.3 E�ect of diagonal dominance �ltration

It was mentioned earlier that diagonal dominance �ltration is a simple yet very e�ective technique to
improve robustness for highly inde�nite matrices. There are several ways in which diagonal dominance
�ltration can be performed.

In the next experiment we show how a good choice of tolind can help improve performance. It
has been our experience that it always pays to take a small positive value for tolind, i.e., to reject a
(relatively) small percentage of rows with poor diagonal dominance, to the complement set.

We consider again the same matrix issued from the laminar 
ow example seen in the previous
subsection. The parameter tolind is varied from 0:0 to 0:15 with a step of 0:05. Beyond tolind = 0:15,
ARMS has diÆculties converging or shows an unstable preconditioner. The other parameters used for
the test are shown in the following table:

bsize nlev fillinter filllast fillLU droptolI droptollast tolDD

100 2 50 40 40 0.001 0.01 varies

Results are shown in Figure 6.
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Figure 6: Residual norm vs number of iterations (left) and iteration time (right) for various values of
tolind

5.2 Tests with reorderings

In section 3.3 we discussed combining standard reorderings with a multilevel strategy. If [ord] is a
given ill-reducing ordering (e.g., AMF) then in the methods ARMS-[ord] the least diagonally dominant
rows are ordered last and the ordering [ord] is applied to the resulting B block.

In the following tests we compare the strategies outlined in 3.3 with the standard ARMS which
uses the block independent set ordering described in Section 3.1. Two test matrices were used. The
�rst one is from an application which simulates Magneto-Hydrodynamics 
ows.

In the tests that follow, we solve problems which arise from the MHD. A pre-set periodic induction
�eld u is used in the MHD equations. The physical region is the three-dimensional unit cube [�1; 1]3

and the discretization uses a Galerkin-Least-Squares discretization. The magnetic di�usivity coeÆcient
is � = 1. The matrix is of size n = 470; 596 and has nnz = 23; 784; 208 nonzero entries.

We compared the following �ve methods: ARMS-RCM, ARMS-MMD, ARMS-MND, ARMS-AMF,
ARMS-BIS, where BIS refers to the original Block-independent set reordering of 3.1. The parameters
used for the experiment are listed below. Note that the block size is used only by ARMS-BIS.

bsize nlev fillinter filllast fillLU droptolI droptollast tolDD

1000 3 50 30 30 0.0001 0.001 0.3

The results are shown in Table 1. Very similar results were obtained with a set of parameters
leading to a slighly less accurate factorization. While the number of iterations to achieve convergence
does not vary too much, it is interesting to observe that the memory requirement to achieve this
performance shows a pronounced di�erence. The best overall performers in this case are the MMD
and AMF techniques.

We also compared the 5 methods on a set of matrices arising from the simulation of a driven cavity
problem. The region is 2-dimensional and the discretization uses bi-quadratic functions for velocities
and linear (discontinuous) functions for pressures. Using 40 cells in each direction yields a matrix of
size n = 17; 922 and nnz = 567; 467 nonzero elements. Though small, the linear system which result
from this discretization are not too easy to solve. The system was generated for a Reynolds number
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Method Fill-ratio Iterations fact time its time

ARMS-RCM 2.14 58 4.62e+03 3.21 e+02
ARMS-MMD 1.32 68 1.21e+03 2.91 e+02
ARMS-MND 1.87 68 1.30e+03 3.82 e+02
ARMS-AMF 1.32 66 1.18e+03 2.83 e+02
ARMS-BIS 1.92 69 7.10e+02 3.95 e+02

Table 1: Results with 4 di�erent variations of ARMS based on di�erent reorderings, for the MHD
matrix

Method Fill-ratio Iterations fact time its time

ARMS-RCM 2.37 y 3.29e+01 y
ARMS-MMD 2.18 68 1.00e+00 1.30 e+01
ARMS-MND 2.45 76 1.13e+01 1.94 e+01
ARMS-AMF 2.22 74 1.35e+01 1.46 e+02
ARMS-BIS 1.96 y 8.61e+00 y

Table 2: Results with 4 di�erent variations of ARMS based on di�erent reorderings, for the CAVA0200
matrix

of Re = 200 at the second Newton step. The parameters used for this experiment are the same as
those in the previous experiment and the results are shown in Table 2.

A second test was conducted to explore the situation when a more accurate factorization is used.
The set of parameters used will emphasize dropping based on drop tolerance rather than on keeping a
maximum number of elements per row. This is achieved by taking filI = fillast = 100. The number of
levels and block-size are as before (bsize = 1; 000; nlev = 3). We used two sets of choices for the droptol
parameters, namely droptolI = 0:001; droptollast = 0:01 and then droptolI = 0:0001; droptollast =
0:001. Results are shown in Table 3. It is interesting to notice that overall there is a fairly consistent
pattern with the 4 reordering techniques just tested. The RCM and RCM-based ordering BIS, do not
perform as well as the more sophisticated reorderings MMD and AMF. The performances of Multiple
Minimum degree and Approximate Minimum Fill are very close to each other. It is also interesting to
observe that a moderately accurate factorization does pretty well. Finally, we note that the dropping
strategy which is based more on drop tolerance rather than on maximum �ll per row does better
overall than one which uses both (compare with Table 2). This is often observed with ILUT-type
techniques.

5.3 Application to the simulation of Ponomarenko MHD dynamo instability

The Ponomarenko dynamo instability [24] is generated by a solid-body helical motion u = (ur; u�; uz)
of an incompressible 
uid in a cylinder (r � R1), surrounded by a cylindrical medium (R1 � r � R2).
Both materials are electroconducting and characterized by their electroconductivity (resp. �1 and �2)
and by their magnetic permeability (resp. �1 and �2). The velocity �eld is de�ned as u = (0; !r; Uz)
with respect to cylindrical coordinates (r, � and z). The pich of the solid-body helical motion is
de�ned as � = Uz

u�(r=R1)
= Uz

R1! . Here, ! is the angular velocity. For the kinetic MHD problem, the

ow is supposed steady so ! and Uz are constant. The magnetic �led B, is the solution of the MHD
equations (4.1-4.2). There exists a critical magnetic Reynolds number Rem at which the magnetic
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Method Fill-ratio Iterations fact time its time

With droptolI = 0:001; droptollast = 0:01

ARMS-RCM 2.60 29 1.44e+01 4.93
ARMS-MMD 2.78 30 1.01e+01 5.19
ARMS-MND 2.77 29 1.11e+01 5.08
ARMS-AMF 2.70 29 1.30e+01 4.93
ARMS-BIS 3.06 38 5.58e+00 5.29

With droptolI = 0:0001; droptollast = 0:001

ARMS-RCM 4.10 26 5.01e+01 5.97
ARMS-MMD 3.80 28 2.18e+01 6.08
ARMS-MND 3.97 28 2.30e+01 6.36
ARMS-AMF 3.88 27 3.24e+01 5.98
ARMS-BIS 4.05 29 1.15e+01 4.47

Table 3: Results with 4 di�erent variations of ARMS based on di�erent reorderings, for the CAV0200
matrix

�eld becomes unsteady. This critical value can be captured using a direct numerical solution, i.e.
solving MHD equations in a time-accurate fashion and for a long period of time. Since this problem
is linear, the precondtioner is built only at the �rst time step. The performance of the precondtioner
is measured in terms of the memory and CPU time consumed. The results shown in this section
correspond to the physical parameters � = 1:3 and �1 = �2. The initial magnetic �eld is given
by : B(t = 0) = (P (r)cos(�);�(P (r) + rP 0(r))sin(�); P (r)cos(�)), where P (r) = (r � R2)

2. No-slip
boundary conditions B = 0 are imposed on the lateral surfaces (r = R2) and the periodicity is imposed
between the two faces z = 0 and z = H with H = 4��. The mesh used contains 33297 nodes and
158720 tetraedras, see Figure 7.

The matrix size and number of nonzero elements are n = 125; 052 and nnz = 6; 354; 832 respec-
tively. Direct numerical simulations were performed using a nondimensional time step of 0:15 and
at least 2000 time steps. A critical magnetic Reynolds number was found at Rem = 17:5 for our
simulation, to be compared with the critical value of Rem = 17:7 found by Gailitis [14]. Figure 8
shows the history of total magnetic energy. There is an instant when this energy starts to increase.
This means that the magnetic �eld extracts energy from the 
ow �eld. For this test problem, we
compared ILUT and ARMS preconditioners using the following parameters

bsize nlev fillinter filllast fillLU droptolI droptollast
3000 5 nnz/n nnz/n nnz/n 0.0005 0.0005

In order to obtain a time-accurate solution, the convergence criteria for GMRES iterations is that the
residual norm be reduced by a factor of 0:0005. A direct simulation of 2000 time steps takes almost 9
hours of CPU time on a 2Ghz PC machine. We found that ARMS preconditioner saves almost 10%
of CPU time as compared to ILUT while using almost the same amount of memory. The histories
of the residual norm (�gure 8) for ARMS and ILUT are undistinguishable. Finally, �gure 9 shows
isocontours of the magnetic energy. This is well concentrated around radius R1 in a helical shape.
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Figure 7: Mesh used for the Ponomarenko MHD test.

5.4 Tests on compressible 
ows

We consider the problem of a 
ow over a 
at plate using a relatively �ne mesh in the neighborhood
of the plate. It is well known that some convergence diÆculties can be encountred when looking for a
steady solution of a low mach number (Mach � 0:2), especially when using the conservative variables as
the dependent unknowns. In the case of slightly compressible 
ows, one can use other sets of variables
[13] employing the pressure as the dependent variable instead of the density. Another procedure uses
what is called 'a preconditioning' of the Navier-Stokes equations where the time dependent term V ;t

is multiplied by a preconditioning matrix P aimed at damping the spurious sound waves. In this work
we prefer to use the same �nite element method for all 
ow regimes and we rely on the algebraic
preconditioners and the stabilization techniques to speed up the iterative procedure.

The mesh uses mixed tetraedras and hexaedras, the total number of elements is 150; 064. The �rst
nodes are located at a distance of 510�4 from the plate (�gure 10).

The matrix size is n = 174; 701 and the number of nonzero elements is nnz = 9; 630; 337. We �rst
consider a 
ow at a Mach number of 0:2 and at a Reynodls number of 104. The parameters used for
this experiment are listed below
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Figure 8: Ponomarenko MHD test, history of the residual norm with a zoom around the instability
(top) and magnetic energy (bottom).

bsize fillinter filllast fillLU droptolI droptollast
500 nnz/n or 2 nnz/n nnz/n or 2 nnz/n nnz/n or 2 nnz/n 0.0001 0.001

As can be seen from this table, the �ll-in parameters of the preconditioner have been related
to the sizes of matrix nnz and n using some heuristic simple formulas. For the case of nlev = 0,
the preconditioner corresponds to ILUT. Regarding the ARMS preconditionner, several tests showed
that a good value of nlev is 5. A smaller value generates a more stable but much more expensive
preconditioner. For this problem, bsize is 500. A larger value makes the preconditioner more expensive
to build. It was observed also that the �ll-in parameters have a big impact on the quality of the
preconditioner and on the memory used. The solution procedure uses the time-stepping approach.
After every 5 time steps the preconditioner is rebuilt and the time step is increased by an amount
of 0:1 (i.e. we used a variable nondimensional time step �t according to �t = �t + 0:1). Figure 11
shows typical convergence histories. It is clearly shown that the ILUT preconditioner with a �ll-in
nnz=n tends to a stagnation while for the same �ll-in the ARMS based preconditioner behaves pretty
well. Howerver, doubling the �ll-in parameter makes ILUT preconditioner behave almost identically
to ARMS preconditioner. This remark generally holds for many tests performed so far on various kind
of CFD problems. ILUT can compete with ARMS but requires more �ll-in.
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Figure 9: Ponomarenko MHD test. Isocontours of the magnetic energy.

On the other-hand, the �ll-in parameters have a direct impact on the memory used. Although the
ARMS preconditioner requires a smaller �ll-in than ILUT, it uses some small additional memory to
keep the multilevel structure. As mensioned earlier, a decision was made to sacri�ce some computation
to save memory, in keeping this structure. Speci�cally, the matrices Gl and Wl in (3.8) are discarded
once the Schur complement given by (3.7) is computed. The products with the matrices Wl and
Gl are performed by using Ll; Fl and El; Ul respectively, which are saved. The disadvantage of this
approach is that it may entail a nonneglogible additional operation count when the matrices Ll and
Ul are large. For the ARMS preconditioner, we found that a �ll-in of nnz=n is suÆcent but for ILUT
we recommand 2nnz=n. In terms of CPU, ARMS is found to be almost 15 percent more expensive
than ILUT for tha same convergence quality. However, this performance is not always obtained. In
other tests we found that ARMS can be faster than ILUT depending on how often the preconditoner
is rebuilt and on the diÆculty of the problem. Indeed, some CPU time saving can be obtained in favor
of ARMS if the number of Krylov directions used per time step is found much lower than that required
by ILUT. Figure 12 shows the pro�le of the nondimensional longitudinal velocity at few stations on
the plate (5:0 � x � 6:0) and at station x = 7. They are compared to the Blasius pro�le which is the
soltuion for an incompressible 
ow at zero-pressure gradient.

We performed another test using the same geometry and the same mesh, in the transonic regime,
i.e. the Mach number was set to 0:85 and the Reynolds number was Re = 104. The parameters used
for this test are listed below

bsize nlev fillinter filllast fillLU droptolI droptollast
2000 nlev 2*nz/n 2*nz/n 2*nz/n 0.0001 0.0001

The time marching procedure is used with a variable local time step (i.e the element-time step is

computed according to �t = CFL h2

h�+2=Re , where h measures the element size, � the maximum wave

speed and CFL the courant number which increases after every 10 time steps CFL = CFL + 1).
The initial 
ow �eld is obtained for a converged solution at a Reynolds number of Re = 102. At each
time step, only one Newton iteration is allowed, the matrix-free FGMRES algorithm is used with a
maximum Krylov subsapce dimension of 40 and the inner iteration is stopped when the euclidian norm
of the residual is reduced by a factor of 0:05. We observed that this test case is particularly demanding
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Figure 10: Mesh over a 
at plate, close view (right)

on the iterative solver, so the �ll-in parameters were set to 2nnz=n. The global convergence (up to
200 time steps where the residual was reduced to three-order of magnitude) for ILUT and ARMS
are almost identical, but FGMRES algorithm takes many more directions to converge with ILUT as
compared to when the ARMS preconditioner is used. Figure 13 shows an example of the convergence
history for time step number 20. Finally, �gure 14 shows the iso-Mach contours for this test case.

Conclusion

We have shown a few preconditioning techniques which are derived from the Algebraic Recursive
Multilevel Solver framework. There is virtually no limit in the number of possibilities available in
this framework. The main ingredients are a means of selecting nodes to leave for the coarse level, a
reordering of the nodes that are kept for the �ne level, and various dropping techniques for constructing
the next Schur complement. We have seen that performing inner iterations can make up for an
inaccurate preconditioner and reestablish convergence in some diÆcult cases. We have also shown
that using standard reordering methods as a means of de�ning levels can work quite well for the
harder and larger matrices.
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