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Abstract

Calculations for optical excitations in con�ned systems require knowledge of the inverse screening

dielectric function ��1(r; r0), which plays a crucial role in determining screened Coulomb potentials

and exciton binding energies. We present a new eÆcient real-space method of inverting and storing

large dielectric matrices (of dimension N > 104) for con�ned systems from �rst principles. The

method relies on the separability of � matrix in r and r
0 by expressing it as a sum of the identity

matrix and an outer product of two low-rank matrices. The method has allowed, for the �rst time,

full ab initio calculation of ��1(r; r0) of dimension N � 270; 000, and for quantum dots as large as

Si35H36. The e�ective screening in Si quantum dots up to 1.1 nm in diameter is found to be very

ine�ective with average dielectric constants ranging from 1.1 in SiH4 to 1.4 in Si35H36.
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Optical excitations in con�ned systems di�er greatly from those in extended systems due

to quantum con�nement and surface e�ects. For example, the 1.17 eV band gap of bulk

Si increases to several volts in SinHm nanocrystals. Over the last decade, there has been

a great deal of interest in accurate calculations of excitation energies in such important

nanostructures as hydrogenated silicon clusters as well as other con�ned semiconductor

quantum dots [1{12]. The �rst step in the calculation of the optical gap usually involves the

calculation of the quasiparticle gap, which is the energy needed to create a non-interacting

electron-hole pair. The second component is due to the direct Coulomb (ECoul) and exchange

(Eex) electron-hole interactions comprising the exciton binding energy. While this second

term is quite negligible in bulk materials (� 15 meV in crystalline Si), its value can increase

by one to two orders of magnitude, hence become comparable to the quasiparticle gaps for

nanoscale quantum structures [4, 5, 10]. This is due to both the increase of the unscreened

Coulomb energy in con�ned systems and the decrease in e�ective medium screening. As a

result, it is necessary to calculate exciton binding energies accurately in con�ned systems.

An important part of such calculations involves obtaining the inverse screening dielectric

matrix ��1(r; r0), which plays a crucial role in determining the magnitude of the screened

exciton Coulomb potential and energy.

The calculation of the full inverse screening dielectric matrix ��1(r; r0) from �rst principles

is computationally very demanding for con�ned systems. As a result, earlier approaches to

estimating the exciton Coulomb energy in a Si quantum dot have used drastic approxima-

tions such as the static dielectric constant of either bulk Si [13, 14] or the quantum dot itself

[12, 15]. More recent studies have incorporated the spatial dependence of screening inside

a quantum dot by using position-dependent model dielectric functions within generalized

Penn [11] or Thomas-Fermi models [16], as well as a tight-binding approach [17]. The two

main diÆculties associated with ab initio calculations of the full ��1(r; r0) arise in the inver-

sion of � and in calculations of such functions as g(r; r00) =
R
dr0��1(r; r0)f(r0; r00). Both of

these operations scale as N3, where N is the number of grid points. In addition, storing the

entire � or ��1 matrix may not be possible due to memory requirement when N is large, as

is the case for con�ned systems. In this paper, we present an eÆcient method of obtaining

and storing ab initio ��1(r; r0) for con�ned systems. We use the method to calculate pertur-

batively the exciton Coulomb energies in hydrogenated Si quantum dots as large as Si35H36.

For all the quantum dots studied, we �nd very ine�ective screening of the electron-hole
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Coulomb interaction. Our results help formulate possible model dielectric functions for such

con�ned systems based on ab initio calculations of the full dielectric matrix.

The ground state, dielectric matrix, and exciton Coulomb energy calculations presented

in this paper were performed in real space. For ground state calculations within the local

density approximation, a higher-order �nite-di�erence ab initio pseudopotential method was

used [18]. The clusters considered in this study, SiH4, Si2H6, Si5H12, Si10H16, Si14H20, and

Si35H36, were generated as bulk Si fragments, and the Si�Si and Si�H bondlengths were

optimized by minimizing the quantum forces. The sensitivity of the results with respect to

three important parameters, the grid spacing h, the radius R of the physical domain outside

which the wavefunctions are required to vanish, and the number of unoccupied states Nc

included in the band summations in � calculations, were carefully tested for each case. The

radius R of the physical domain was the most important parameter for calculations of the

exciton Coulomb energy ECoul, especially for smaller clusters. For example, although the

e�ective radius of SiH4 is � 2 �A, both the screened and unscreened ECoul reach a convergence

of 0.1 eV only for R � 20 � 25 �A, as shown in Fig. 1. This is mainly related to the slow

convergence of the lowest unoccupied molecular orbital (LUMO) as a function of the physical

domain size. Another manifestation of this slow convergence is the spurious negative electron

aÆnity calculated for small SinHm clusters embedded in not-large-enough domain sizes [4, 5].

All relevant physical parameters used in the calculations are shown in Table I.

After obtaining the highest occupied molecular orbital (HOMO) and LUMO from the

ground state calculation, the exciton Coulomb energy ECoul can be written in a �rst-order

perturbative formalism as

ECoul =

Z
dr1j e(r1)j

2V h

scr
(r1)

=

Z
dr1j e(r1)j

2

Z
dr��1(r1; r)V

h

unscr
(r)

=

ZZZ
��1(r1; r)

j e(r1)j
2j h(r2)j

2

jr� r2j
drdr1dr2: (1)

In this expression, V h

scr
and V h

unscr
are screened and unscreened potentials due to the hole,  e

and  h are the electron (LUMO) and hole (HOMO) wavefunctions, and ��1 is the inverse

of the static dielectric matrix. If we formally de�ne ~��1 asZ
��1(r1; r)

1

jr� r2j
dr � ~��1(r1; r2)

1

jr1 � r2j
; (2)
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then the exciton Coulomb energy can be written as

ECoul=

ZZ
~��1(r1; r2)

j e(r1)j
2j h(r2)j

2

jr1 � r2j
dr1dr2: (3)

As a �rst step in computing ECoul from Eq. (3), �(r; r0) needs to be calculated. Within

density functional linear response theory, � can be shown to have the following form [19]:

�(r; r0) = Æ(r� r
0)�

Z
dr1

�
1

jr� r1j
+

Æ2Exc

Æ�(r)Æ�(r1)

�
�0(r1; r

0) (4)

where Exc is the exchange-correlation functional, and �0(r; r
0) is the independent particle

polarizability:

�0(r; r
0) =

X
i;j

(fi � fj)
 �i (r) j(r) 

�

j (r
0) i(r

0)

"i � "j
(5)

as expressed in terms of the Kohn-Sham wavefunctions  i(r), the Kohn-Sham eigenvalues

"i and occupation numbers fi. With real wavefunctions and integer occupation numbers (as

suitable for con�ned semiconductor systems), the expression for the static dielectric response

function can be simpli�ed by also taking spin-degeneracy into account as

�(r; r0) = Æ(r� r
0) + 4

X
v;c

(Jvc(r) +Kvc(r))
 v(r

0) c(r
0)

"c � "v
(6)

where the summations v; c are over the valence and conduction orbitals, and the integrals

Jvc(r) and Kvc(r) are de�ned as

Jvc(r) =

Z
dr1

 v(r1) c(r1)

jr� r1j
(7)

Kvc(r) =

Z
dr1

Æ2Exc

Æ�(r)Æ�(r1)
 v(r1) c(r1) =

Æ2Exc

Æ�2(r)
 v(r) c(r) (8)

For calculating exciton Coulomb energies and many other physical quantities, the inverse

of the �(r; r0) matrix is needed. As mentioned earlier, in terms of computational cost,

this matrix inversion scales as N3 (N is the total number of grid points in the physical

domain). In addition, the storage required by the full matrix naturally scales as N2. Both

the computational cost and the storage requirement become critical problems aboveN � 104.

The form of the dielectric response function in Eq. (6) allows us to reduce this computational

cost and storage requirement signi�cantly by observing that �(r; r0) is separable in r and

r
0. This makes it possible to express the matrix � in terms of identity matrix I and rank

Nvc = Nv�Nc matrices U and V , where Nv and Nc are the number of valence and conduction
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orbitals, respectively. The matrices U and V are de�ned as U = 2(Jvc + Kvc) and V =

2 v c=("c � "v) for which the rows are labeled (from 1 to N) by grid points, and the

columns are labeled (from 1 to Nvc) by valence and conduction orbital pairs. This leads to

the following matrix expression for the response function,

� = I + UV T ; (9)

where V T is the transpose of matrix V . Expressing the � matrix in this fashion allows us to

calculate its inverse in terms of the inverse of the matrix X = I + V TU as follows:

��1 = (I + UV T )�1 = I � UX�1V T (10)

On a Cartesian grid of uniform spacing h, the elements of the inverse dielectric matrix can

�nally be written as

��1ij =
1

h3

 
Æij �

NvcX
k;l=1

UikX
�1

kl V
T
lj

!
: (11)

We note that X is a Nvc�Nvc matrix, which implies that compared to direct inversion of

the �matrix, this method of �nding ��1 is faster by a factor of (N=Nvc)
3, which can be as large

as several orders of magnitude depending on the physical domain size, the grid spacing h, and

the number of occupied orbitals. In addition, the full �(r; r0) or ��1(r; r0) no longer needs to

be stored. Instead, twoN�Nvc < N2 arrays (U and V ) need to be saved. Another advantage

of the separability of � is in the calculation of functions g(r; r00) =
R
dr0��1(r; r0)f(r0; r00). The

calculation of the e�ective screening function ~��1(r1; r2) in Eq. (2) is one example. Even

if one were able to store the entire ��1 matrix, the calculation of ~��1 would still be an N3

operation. With the current expression in Eq. (11), this operation can be performed with

two matrix-vector multiplications and scales as NvcN
2. A striking example of the savings

in computational time and memory can be given for the case of SiH4. Due to convergence

problems associated with the LUMO of this cluster as mentioned above, we used a domain

size of R = 20 a.u, a grid spacing of h = 0:5 a.u, and Nc = 26 unoccupied states. This results

in an � matrix of dimension N � 270; 000 and Nvc = 104. Storing the entire � matrix would

require � 600 GB of memory. Its direct inversion and calculation of ECoul from Eq. (1)

would take � 16 years on a 375 MHz Power3 processor. Instead, the new method requires

a modest 450 MB of memory and takes � 40 hours on the same machine.

The calculated exciton Coulomb and binding energies Eb = ECoul � Eex for all clusters

considered are shown in Table II, along with spin-triplet excitation values from Quantum

5



Monte Carlo (QMC) and GW-Bethe-Salpeter (GW-BS) calculations [4, 5]. Also shown

are the average e�ective dielectric constants �ave de�ned as the ratio of the unscreened

Coulomb energy to the screened Coulomb energy [�ave = ECoul(� = 1)=ECoul]. As expected,

the unscreened Coulomb energies are quite large due to quantum con�nement, ranging from

about 5 eV in silane to 3.2 eV for a quantum dot of diameter 1.1 nm (Si35H36). Furthermore,

we �nd that the screening in these quantum dots is very ine�ective, as demonstrated by the

large values of screened exciton Coulomb energies in Table II. Although �ave increases steadily

in going from SiH4 to Si35H36 (as expected from quantum con�nement models), the actual

values of �ave (from 1.1 to 1.4) are very small compared with the bulk dielectric constant

of 11.4. Comparison of the exciton Coulomb energies with binding energies Eb shows, as

expected, that the attractive direct Coulomb interaction is at least one order of magnitude

than the repulsive exchange interaction. Finally, the results obtained using the simple

perturbative formalism of Eq. (1) agree very well with exciton binding energies for spin-

triplet excitations calculated from the more sophisticated QMC and GW-BS formalisms.

We also examined the spatial variation of the screening function ~��1(r1; r2) in order to

address dielectric screening in quantum dots with better empirical models based on ab initio

calculations. Clearly, a computationally convenient model dielectric function is one that

depends only on the particle separation r = jr1 � r2j. We therefore set r1 = 0, and plotted

1=~��1(0; r2) as a function of the distance from the origin. Since the actual ~� is not spherically

symmetric (only the symmetry-related positions have the same value), we averaged ~��1(0; r2)

over the positions r2 with jr2j = r. The resulting function �(r) = 1=~��1(0; r) is plotted in

Fig. 2 for SiH4, Si5H12, and Si35H36 quantum dots. The e�ective screening functions �(r) are

seen to increase rapidly and peak at a distance typically smaller than the e�ective radius

of the quantum dot. After this peak, the screening function �(r) approaches unity, as it

should, since the quantum dot is in vacuum. This type of behavior is substantially di�erent

from those predicted by empirical Thomas-Fermi model dielectric screening functions used

in some earlier calculations. For example, the extension of Resta's model (developed for

bulk semiconductors) [20] to quantum dots [16] results in an e�ective �(r) that becomes

equal to the static dielectric constant of the quantum dots outside a radius R1. When such

models are used in exciton Coulomb energy calculations, they predict much smaller exciton

Coulomb energies than those calculated from ab initio screening dielectric matrices [21]. In

addition, since these models treat the quantum dot as a homogeneous region outside of R1,
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it becomes necessary to take into account extra empirical terms due to surface polarization

[16, 17, 22]. Our method, which makes it possible to obtain the full inverse dielectric matrix,

avoids all these problems, and results in large exciton Coulomb energies due to ine�ective

screening inside the quantum dot and the presence of a surface.

We have observed that �(r) obtained from our ab initio calculations can be �tted quite

well to a two-parameter model function of the form �m(r) = 1 + �r2e��r. The calculated

parameters � and � for various quantum dots and the resulting exciton Coulomb ener-

gies calculated with the model functions are given in Table III. As seen in this table, the

Em
Coul

values calculated from the �m(r) fall within 5 % of the ab initio values. Given the

approximations made in obtaining the model function (such as radial averaging and only

distance-dependence of �), this agreement with ab initio results is quite good, and promising

for future studies of eÆcient and accurate model dielectric functions for con�ned systems.

In summary, we have presented a new eÆcient way of inverting and storing large dielectric

matrices �(r; r0) of con�ned nanostructures from �rst principles using the separability of �

in r and r
0. This has allowed us for the �rst time to calculate perturbatively the ab initio

exciton Coulomb energies of Si quantum dots up to 1.1 nm in diameter, as well as ��1(r; r0)

matrices with dimensions of several hundred thousands. We found that the screening in

small Si quantum dots is very ine�ective with average dielectric constants ranging from 1.1

in silane to � 1.4 in Si35H36. New distance-dependent model dielectric screening functions

�tted to ab initio calculations give good results for exciton Coulomb energies. Such model

dielectric functions based on ab initio results should be very useful for eÆcient and accurate

studies of excited state electronic structure and response functions in nanocrystals.

This work was supported by the Computational Materials Science Network of the De-

partment of Energy, the National Science Foundation, and the Minnesota Supercomputing

Institute.
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FIG. 1: The unscreened (�) and screened (�) exciton Coulomb energies of SiH4 as a function of

the radius R of the spherical domain. The Si atom is placed at the center of the sphere. For this

calculation, the grid spacing h and the number of unoccupied states Nc were set to 0.8 a.u. and

16, respectively. The di�erence of the asymptotic values from the fully converged ones in Table II

is due to the fact that the energies shown here are not converged with respect to h and Nc.

FIG. 2: The averaged screening functions �(r) = 1=~��1(0; r) for the three quantum dots SiH4,

Si5H12, and Si35H36. Their e�ective radii are 1.7 �A, 2.9 �A, and 5.5 �A, respectively.

TABLE II: Calculated unscreened [ECoul(� = 1)] and screened exciton Coulomb energies, exciton

binding energies Eb, average dielectric constants �ave (de�ned in the text), and exciton binding

energies calculated using QMC and GW-BSE methods. All energies are in eV.

Cluster ECoul (� = 1) ECoul �ave Eb QMC,GW-BS

SiH4 5.06 4.50 1.12 4.28 4.3-4.4

Si2H6 4.90 4.22 1.16 4.04 4.10

Si5H12 4.80 3.87 1.24 3.65 3.55

Si10H16 4.20 3.31 1.27 3.10 3.35

Si14H20 3.79 2.96 1.28 2.83 �

Si35H36 3.17 2.38 1.33 2.30 �

TABLE I: Grid spacing h (in a.u.), radius R (in a.u.) of the domain in which the cluster is placed,

the Hamiltonian dimension N , and the number of valence-conduction orbital pairs (Nvc) used in

the calculations.

Cluster h R N Nvc

SiH4 0.5 20 267,761 104

Si2H6 0.6 16 79,501 280

Si5H12 0.6 16 79,501 864

Si10H16 0.6 14 52,971 1,456

Si14H20 0.6 14 52,971 2,698

Si35H36 0.8 17.5 43,819 8,800
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TABLE III: Parameters � and � obtained by �tting averaged dielectric function �(r) = 1=~��1(0; r)

to a model function �m(r) = 1 + �r2e��r. ECoul and Em
Coul

are the calculated exciton Coulomb

energies (in eV) using the ab initio �(r; r0) and the model �m(r), respectively.

Cluster � (a.u.�2) � (a.u.�1) ECoul Em
Coul

SiH4 0.73 1.13 4.50 4.67

Si5H12 1.47 0.92 3.87 3.68

Si35H36 1.49 0.71 2.38 2.33
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