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Abstract

The Automated Multilevel Substructing method (AMLS) was recently presented as an alternative to
well-established methods for computing eigenvalues of large matrices in the context of structural engi-
neering. This technique is based on exploiting a high level of dimensional reduction via domain decom-
position and projection methods. This paper takes a purely algebraic look at the method and explains that
it can be viewed as a technique based on a first order approximation to a nonlinear eigenvalue problem.
A ‘corrective projection’ viewpoint leads us to explore variants of the method which use Krylov sub-
spaces instead of eigenbasis to construct subspaces of approximants. The nonlinear eigenvalue problem
viewpoint yields a second order approximation as an enhancement to the first order technique inherent to
AM_S. Numerical experiments are presented to validate the approaches presented.

1 Introduction

The numerical solution of large sparse symmetric eigenvalue problems continues to be at the forefront of
current research in scientific computing. In the last few decades, projection methods such as the Lanczos
algorithm and its variants, have dominated the scene. For example, a block version of this method combined
with shift-and-invert [7], whereby the problem Ku = AMu is replaced by (K — o M)u = (A — o) Mu, is
used in major commercial structural engineering packages such as MCS.NASTRAN [10]. ARPACK [12],
a package based on an implicitly restarted Arnoldi/Lanczos process, is currently the best known public-
domain eigenvalue package for large eigenvalue problems.

The Lanczos process scales poorly with the number of eigenvalues to be computed, because of the
need to orthogonalize large Krylov bases. In recent years, an alternative approach has emerged in structural
engineering which has been reported to be superior to the standard shift-and-invert Lanczos approach. The
algorithm, called Automated Multilevel Substructuring method (AMLS) is rooted in a domain decompo-
sition framework. It has been reported as being capable of computing thousands of the smallest normal
modes of dynamic structures on commodity workstations and of being orders of magnitude faster than the
standard approach [11].

The paper [3] presents a theoretical framework for the algorithm from the point of domain decom-
position, using adequate functional spaces and operators on them. The goal of our paper is to present a
different, yet complementary viewpoint, which is entirely algebraic. AMLSis essentially a Schur comple-
ment method. Schur complement techniques are well understood for solving linear systems and play a major
role in Domain Decomposition techniques [15, 16]. Relatively speaking, the formulation of this method for
eigenvalue problems has been essentially neglected so far. One could of course extend the approach used
for linear systems in order to compute eigenvalues, by formulating a Schur complement problem for each
different eigenvalue, (e.g., by solving the eigenvalue problem as a sequence of linear systems through shift-
and-invert). A more complete framework was suggested in early work by Abramov [1, 2] and Chichov [5].
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These authors presented what may termed a spectral Schur complement method. It can easily be verified
that a scalar X is an eigenvalue of a matrix A partitioned as

4= (& o)

if and only if it is an eigenvalue of S(\) = C — E(B — XI)~'F (this is clearly restricted to those A’s
that are not in the spectrum of B). This nonlinear eigenvalue problem may be solved by a Newton-type
approach. Alternatively, one can also devise special iterative schemes based on the above observation. An
approach of this type is clearly limited by the fact that a Schur complement (or several consecutive ones
in an iterative process) is required for each different eigenvalue. It can, however, work well for computing
one, or a few, eigenvalues or in some other special situations. For example, this nonlinear viewpoint led
to the development of effective shifts of origin for the QR algorithm for tridiagonal matrices [14] (see also
Parlett [13]).

The fundamental premise of AMLS, and its attraction, is that it is capable of extracting very good
approximations with only one Schur complement. To achieve this, AMLSrelies heavily on projection tech-
niques. It builds good bases from one Schur complement, and expands them in an effective way to bigger
and bigger domains.

This paper will begin with a brief overview of AMLSand an introduction of the notation. It will
then introduce spectral (or nonlinear) Schur complements, and explore their relations to AMLS. With this
relation established, two enhancements of the basic AMLS scheme are presented. The first introduces Krylov
subspaces to the technique, and the second considers a more accurate (second order instead of first order)
scheme.

2 TheAMLSapproach

Let A € C**™ be a Hermitian matrix,

B FE
a=(p2) ®
such that B € C(»—P)x(n=p) C ¢ CP*P and E € C(»—P)*P_ Consider the linear eigenvalue problem
A1 = A\a, which can be written as,
B FE aB B

where ## € C"P and @° € CP. Component Mode Synthesis (CVB) is a classical technique in structural
dynamics for the computation of the smallest normal modes of a structure [6, 8]. In CMS, a structure
is typically approximated by a discrete domain Q which is then decomposed into several substructures
separated by an interface I". Each of the substructures is approximated by a sumdomain €2; C Q. Notice
that the subdomains €2; can either overlap or not. In this paper we consider only the latter case. Thus, the
unknowns in the interior of each subdomain ; are completely decoupled from the unknowns in all other
subdomains. Coupling among substructures is represented by the unknowns on the interface I" and the
unknowns in each ; that are adjacent to I". Figure 1 provides a graphical illustration in the simplest case
of two subdomains.
Consider now the simple model problem:

—V%i =\ 3)

on a rectangular domain Q. If we employ a standard 5-point stencil centered differences discretization of
(3) and count the unknowns in the subdomains €2; first and the unknowns on T" last, then (2) is the algebraic
eigenvalue problem that arises from the discretization of (3). Notice that matrix B contains the unknowns



Figure 1: The simple case of two subdomains 21, Q9 and an interface I

across the domains €2;, C contains the unknowns on the interface I" and E contains the coupling between
the unknowns in B and C. Furthermore, since the unknowns in the domains €2; are decoupled, B will be
block diagonal.

The idea of CMS is to begin by solving the problem Bv = pwv. Since B is block diagonal, this is
equivalent to solving each of the decoupled smaller eigenvalue problems corresponding to each subdomain
Q; (in parallel). Then, CVS injects additional vectors to account for the coupling among subdomains. This
is done invoking a carefully selected operator for the interface nodes.

Recently, Bennighof and Lehoucq [3], have presented an automated multilevel substructuring method
(AMLS), that extends the basic framework of CVS in a multilevel method, capable of computing thousands
of the smallest normal modes of structures on commodity workstations. AM_Swas reported to be orders
of magnitude faster than competitive commercial software based on the traditional shift-and-invert Lanczos

approach [11].
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Consider the matrix
which is a block Gaussian eliminator for matrix (1), selected so that

v (B O
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where S is the Schur complement
S=C-E*B'E. (5)

We now consider the application of AMLSfor only a single level of subdivision. The original problem (2)
is replaced by the equivalent generalized eigenvalue problem U* AUw = AU*Uw, which can be written as

B _p-1 B
(5 §) (i) =2 (oo 5") (), ®

where Mg = I + E*B~2E. AM_Scomputes approximations to the eigenvalues and eigenvectors of the
original problem by means of a projection method applied to the generalized problem (6). The subspace of



approximants is constructed from eigenvectors of a version of (6) in which the coupling in the right-hand
side matrix (i.e., U*U) is ignored. This gives the two decoupled eigenvalue problems:

Bv = pv O
Sw = nMsw. (8)

Once the desirable eigenpairs have been obtained from (7-8), they are utilized in a projection method
(Rayleigh-Ritz) applied to the original problem (6). The basis used for this projection is of the form

. v; ] . 0 .
{vi:(o) i1=1,...,mp; wj:(wj) lea""ms}’

where mp < (n — p) and mg < p. It is important to note that the projection is applied to (6) rather than
to the original problem (2). There is an inherent change of basis between the two and, for reasons that
will become clear later, the basis {; }:, {w,};, is well suited for the transformed problem rather than the
original one.

The essence of AMLS s to “solve the problem (6) without the coupling and then use some eigenvectors
obtained to solve the problem with its coupling™. It is interesting to note that a very similar idea is utilized
with great success in structural engineering: to solve a problem related to a dynamical system, one first
obtains the modes of the problem without damping, then uses these modes to define a subspace in which
the full problem (with damping) is solved. We refer to Algorithm 2.1 for an algorithmic description of
ANMLSfor one level of subdivisions (SPD stands for symmetric positive definite matrices). In the multilevel
case, this algorithmic step is applied recursively for every subdomain of the original domain. Observe that
in practice the block Gaussian eliminator matrix U (line 4) is not formed. Instead, Gaussian elimination is
applied to compute the Schur complement S and the matrix Mg, since

N I -B'E
lfl]_'(E*B—l Mg )'

In this paper we are interested in an analysis of the basic approximation mechanism of AMLS. This
analysis will serve to devise a few improvements to the basic method. For simplicity, our study will be
restricted to the single level of subdomains.

ALGORITHM 2.1 AM_Sfor asingle level of subdomains
Input: SPD matrix A € C**™, integersng < n, mg <n
andn. (number of eigenvalues sought)
Output: Then, smallest eigenvalues of A

1. DefineB = A(1 : 13,1 :ng),C=A(ng + 1: end,ng + 1 : end)
andE = A(1 : np,ng + 1 : end)
. Compute Cholesky factorization R*R = B
. Compute Schur complement S = C — E* B~'E (using the factor R)
. DefineU = [I,—B'E;0,1]
. Compute Ms = I + (E*B~1)(B1E) (using the factor R)
. Computemns smallest eigenvalues of Suf = Mgu§
andsetUg = [uf,...,uis]
. Computem g smallest eigenvalues and corresponding eigenvectors Vg of B
. Defi ne the matrix Z = [V, 0; 0, Us]
8. Compute then. smallest eigenvalues of (Z*U*AUZ)x = (Z*U*U Z)z
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3  Spectral Schur complements

The following equations result from (6)

Bu? = \@P - B 'Eu’), 9)
Su® = A—E*B B 4+ Mgu®). (10)

Assuming that X is not an eigenvalue of B we can substitute (9) into (10) to obtain
Su¥ =X (AE*BY(B — A\I)"'B7'Eu’ + M),
which results in the equivalent nonlinear eigenvalue problem
[S—A(E*B72E) = NE*B™'(B—X)"'B7'E] v* = M. (11)
Rewriting the above problem in an expanded notation we obtain the following nonlinear eigenvalue problem
[C— E*B™Y(B+ A + X(B—\)"")B'E]u® = X®. (12)

We can show that the above problem is equivalent to a nonlinear eigenvalue problem involving the spectral
Schur complement
S(\)=C - E*(B-\)'E. (13)

The first resolvent equality (see [9]),
(B=XI)"'-B '=XB-AI)"'B™!

can be substituted in the expression of the left hand matrix in (12) which we denote by S’()\),
S(A) = C—E*B'(I+AB'+AB-A)""-AB)E

= C-E*(B'+AB'(B-A)")E

= C-E*(B'-B'+(B-A)")E

= C-E*B-))'E

S(A).

In fact, the Schur complement S can be viewed as the first term of the Taylor series expansion of S(\) with
respect to A around A = 0. The standard expansion of the resolvent (see [9])

(B=A)"' =B (AB )k =) " MpE, (14)
k=0 k=0
leads to the following series for S(\)
S(\) = C-E*Y (\*B*NE
k=0
= C—E*(B"'"+AB>+XB+..)E. (15)

In AMLSthe nonlinear eigenvalue problem (12) is approximated by the generalized eigenvalue prob-
lem

Su® = AMgu®, (16)



which, after some algebraic manipulation, leads to the equations
(C—E*(B™'+AB™%)E)u® = M5. (17)

This can be considered as a truncated version of the original nonlinear problem (12), where we ignore the
terms A*B~*~1 for k > 2 in the expansion of the resolvent (B — AI)~!. This observation immediately
leads to some possible suggestions on how to improve the approximation by including additional terms of
the infinite expansion. Section 5 will describe a second order approximation to (12) obtained by adding
the term A2 B—3. We begin by analyzing how AM_Sexpands the approximation of the lower part «* to an
approximation [uZ; uS]* of an eigenvector of the complete problem (6).

4 The projection view-point

Consider again the nonlinear Schur complement (13). The eigenvalues of the original problem, which do
not belong to the spectrum of B, can be obtained from those of the nonlinear eigenvalue problem

S(A)z = Az.
Proposition 4.1 Let A\, «° be an eigenpair of the nonlinear eigenvalue problem (11), i.e., such that:
SNu® =z’

Then, X is an eigenvalue of (2) with associated eigenvector:

(—(B - A{g)lEuS> (18)

u

Proof. The proof consists of a simple verification. [ |

Now assume that we have a good approximation to the nonlinear Schur complement problem, i.e.,
to a solution X\ and «° of the nonlinear problem (11). It is clear that the best we can do to retrieve the
corresponding eigenvector of (2) is to use substitution, i.e., to compute the top part of (18):

uB = —(B - A\I)"1Eu”, (19)

which will give us the top part of the exact eigenvector. This entails factoring the matrix (B — AI) for
each different eigenvalue A, which is not practical. As was seen in the previous section, AMLSextracts an
approximation to the nonlinear problem (11) by solving the generalized eigenvalue problem (17) and then
it replaces the substitution step (19) by a projection step. Specifically, once an approximate pair A, is
obtained, AMLS computes approximate eigenvectors to the original problem by a projection process using
the space spanned by the family of vectors:

(O A7)

in which v2 are eigenvectors of B associated with its smallest eigenvalues. Note that these two sets of
vectors are of the form U ”33 ) for the first, and U (% ) for the second, where U was defined earlier by

Equation (4). The question is: why is this a good way to replace the substitution step (19)? Another issue
is the quality we might expect from this process.
Ideally, the prolongation matrix U should be replaced by one which depends on the eigenvalue A,

|
et (I —(B-AD"'E
oy~ (1 B ME),



Indeed, if we were to use the prolongator U()\) instead of U, then U(A) <u05> would be an exact eigen-

vector. Of course, it is not practical to use a different prolongator U()\) forJeach different eigenvalue .
What is interesting and important to note is that U(\) and U are likely to be close to each other for small
(in modulus) eigenvalues A. Furthermore, the difference between the two consists mostly of components
related to eigenvectors of B which are associated with eigenvalues close to . It is helpful to examine this

difference
vor-u(B) = (5 SRy ()

(—,\ (B - /\I)—lB—lEuS>
0 )

In order to compensate for this difference, it is natural to add to the subspace eigenvectors of B in which this
difference will have large components, i.e., those closest to zero. This is at the heart of the approximation
exploited by AMLSwhich incorporates the first set in (20). Let us assume that we have the expansion in the
eigenbasis of B

Np
Eu’ = Zakvk, (21)
k

where Ng = n — p is the dimension of B. Let @.” be the B-part of the approximation provided by AMLS.

Then N
B ~B —-1p-1 S

u” —u° =-AN(B—-X)""B " Eu’ = _—

( : % (ke = A

)\ak
Vk-

As expected, when A = 0, the projection process will yield exact eigenvectors. The error in the eigenvector
of (2) will be of the order of the distance between the above vector and the space spanned by the added
eigenvectors of B. If we call X B the restriction to the B-part of the space of approximants, then

dist(uB,XB) = min ||uB —aP
vE span (V1,..,Vmp)

T A
oy
)\ . r=rr
| |<Z |1k — A2 |Mk|2) ’

k>mp

and therefore

Al
dist(u®?,XP) < max 7| Eu®||s. 22
( ) < k>mp |,uk—)\||uk|“ I (22)

Under the mild assumption that A < g, , it is clear that

dist(u®, XB) < A

< || Bu® 2. (23)
|,u’m13 - )‘“:U’m3|

Note that for A < g, , we will have dist(u®, XB) ~ O(|\/ 13, ).

5 Higher degree approximations

In Section 3 it was explained that AMLSapproximates the nonlinear eigenvalue problem (12) by the gen-
eralized eigenvalue problem (16). In particular, this problem can be seen as a truncated, first order ap-
proximation of (12). Let us now consider a second order approximation obtained by solving the quadratic
eigenvalue problem

NE*BPE+X(I+E*B*E)-S|v® = 0. (24)



This problem can be solved by a linearization which leads to an equivalent generalized eigenvalue problem

(see for example [17])
0 I u® I 0 u®
(5 &) () = 2 (o &) (o) @

where K =I + E*B~2Eand R = E*B~3E.

In Section 4 we showed that adding eigenvectors of B to the space of approximants can improve the
basic approximation provided by the nonlinear Schur complement. In order for the eigenvectors provided
by this approximation to fit in well with the projection step, we need to modify this step so that the terms
—(B — XI)~'Eu* are well approximated. One way to achieve this is to add more eigenvectors of B.
However, a more relevant alternative in this case is to add a third set of vectors to the basis of approximants

(20), namely the set:
—B_QEU‘JS

g ( Vs —-B-'EUs —B-%EUs )

To this end, we construct the matrix

0 Us 0 (26)

where Vg is a matrix of eigenvectors corresponding to the smallest eigenvalues of B and Ug is a matrix
of eigenvectors associated with the smallest eigenvalues of (25), in modulus. We then solve the projected
generalized eigenvalue problem

zZ* ( EB* g )Zm =\Z*Zz. 27)

Algorithm 5.1 illustrates a second order version of AMLS, based on this approach.

ALGORITHM 5.1 Second order AMLS
Input: SPD matrix A € C**", integersng < n, mg <n
andn. (number of eigenvalues sought)
Output: n. of the smallest eigenvalues of A

1. DefineB=A(1:1,1:n5),C=A(ng+1:end,ng+ 1:end)
andE = A(1:np,ng + 1: end)
Compute Cholesky factorization R*R = B
Compute Schur complement S = C — E*B~'E (using the factor R)
Compute K = I + (E*B~')(B~'E) and R = (E*B~')B~1(B~1E) (using the factor R)
Computemgs smallest in modulus eigenvalues and eigenvectorsUg of (24) by solving (25)
Computem g smallest eigenvalues and eigenvectors Vg of B
Defi ne the matrix Z asin (26)
Compute then. smallest eigenvaluesof (Z*AZ)x = (Z*Z)x

NSO AWDN

Consider now the effect of this addition. We are looking again at the distance between «? and the
closest vector from the space of approximants X B. Consider the vector (?) = —B~2FEuS. Assuming that
the expansion (21) is available, then

N
5 Aa
B _~B (2) _ 2 . —1p-2 S _ AL
u U 'Y ==\ (B—-—A) "B “FEu —E V.
( ) ~ (ke — A)u, *



Therefore, the distance of «® from the space of approximants X £ is such that

dist(u®,XB) = min  |[u® —@® — @ — o,
vEspan{Vp}

| |2 1/2
o

)‘2

. (Z PSS |uk|4)

and therefore,

AP

dist(u®, XB) < max —— S ——||Eu”|,. 28
5 X5 < o 12 )
Under the mild assumption that A < p, , we have the bound
2
dist(u®, XP) < Al 1EuS 5. 29)

|l"mB - )‘”l" 13|2

A comparison with the bound (23) for the first order approximation, indicates that one may expect a good
improvement. Numerical experiments in Section 7 will verify this prediction.

6 Expandingthe projection space with Krylov subspaces

Section 4 described AM_Sas a projection technique which uses expanded subspaces of the form (20) to
extract Ritz values and vectors. We denote by Vg the subspace

Vg = span {( ‘B;SE“JS ) } , (30)
J

where uf are eigenvectors of the generalized eigenvalue problem (10). In this section we propose a different
approach that is based, however, on similar reasoning. Observe that, ideally, the top part of Vs should be
—(B — AI)~'Eus. Therefore, instead of attempting to compensate for the difference (B — AI)~' — B,
we can approximate the resolvent (B — AI) 1 itself. The key is to expand the subspace Vg with the vectors
[Vi; 0], where Vi is an orthonormal basis for the Krylov subspace K,,,(B~*, EUs) and Ug is a matrix of
approximate eigenvectors of (10). Algorithm 6.1 is a description of a method based on this approach, which
will be subsequently called Krylov AMLS. Observe, that as in standard AM_Sthe block Gaussian eliminator
matrix U (line 4) is never formed. Instead, a Gaussian elimination process is applied directly on its matrix
arguments.

ALGORITHM 6.1 Krylov AMLS
Input: SPD matrix A € C™*™, integersnpg < n, mg < n, mg
andn, (number of eigenvalues sought)
Output: n, of the smallest eigenvalues of A

1. DefineB=A(1:1m,1:n3),C=A(ng+1:end,ng+ 1:end)
andE = A(1 : ng,ng + 1 : end)
Compute Cholesky factorization R*R = B
Compute Schur complement S = C — E*B~'E (using the factor R)
Defi neU = [I,—BE;0,1]
Compute Mg = I + (E*B~')(B~'E) (using the factor R)
Computem.s smallest eigenvalues of Su; = Msu3 and setUs = [uf, ..., uj, ]
Compute orthogonal basis Vi for the Krylov subspace K., ,.(B~1, EUs)
Defi nethe basis: Zx = [Vk,0;0,Ug]
Compute then, smallest eigenvalues of (Z3,U* AU Zk )z = (Z3,U*UZk)x

CONDTAWN



For simplicity, we examine the case where Ug has just one column. Observe that since BflEu;9 €
Km(B™1, Euf), the error in the eigenvector of (2) will be of the order of the distance

(B—AI) 'Eui —ul, where wue€n(B ', Eu).

Note that u = Pm(B—l)Euf for a certain polynomial P,, of degree m — 1. If X & denotes again the
restriction to the B-part of the space of approximants, then expanding the resolvent (B — AI)~! yields,

dist(u?, XB) = ngin
k

oo m—1
VIIUE P OY,
k=0 k=0

Thus if pmi, IS the smallest eigenvalue of B

' 1 /\ m—1

Therefore, if the ratio A/umin is small, then we can expect a very small distance ||(B — A\I)~1Eu® —
Km(B™1, Euf)||. However, in practice we only have approximations to the eigenvalues and eigenvectors
of the generalized eigenvalue problem (10) (our spectral Schur complement). Using a sufficiently large
dimension m for the Krylov subspace k,,,(B~1, Eﬁf) it is possible to extract good approximations to uf.

The bound (31) justifies the use of the block Krylov subspace K,,(B~1, EUs), where Ug is a matrix
of eigenvectors uf of (10). Numerical experiments in Section 7 will confirm that using block Krylov
subspaces will result in significantly improved approximations relative to the approximations of standard
ANMLS.

7 Numerical Experiments

The goal of the numerical tests described in this section is to verify the theoretical predictions of Sections
4,5, and 6.

7.1 AM.Sand Krylov AMLS

Bounds (23) and (31) suggest that if the smallest eigenvalue i, of B is much larger than the smallest
eigenvalue \ of matrix A, then the Krylov subspace framework in AMLSwill yield better results than stan-
dard AMLS. We tested this prediction in the following experiment. The test matrix is BCSSTK11 from
the Harwell-Boeing collection (availale from the matrix market, see [4]). This is a symmetric positive def-
inite matrix of size n = 1,473, which has nnz=34241) nonzero entries. The matrix was symmetrically
reordered using the nested dissection graph partitioning algorithm so that the matrix B will have block
diagonal structure with two blocks (corresponding to two subdomains).

Figure 2 illustrates the non-zero structure of the matrix before (left) and after the partitioning (right).
The sizes of the resulting two blocks of B are n; = 696 and no = 683. The smallest eigenvalue of the
matrix is A & 2.9641 and the smallest eigenvalue of B iS pmin ~ 40.3973, so that A/pmin =~ 0.0734.
We computed the five smallest eigenvalues and respective eigenvectors uf ,j =1,...,5 of the generalized
Schur eigenvalue problem (8). We then computed the k& = 10,20, 30 and 40, smallest eigenvalues and
corresponding eigenvectors of the block diagonal simple eigenvalue problem (7). For the Krylov subspace
framework in AMLS, we computed a basis for the block Krylov subspace K,,(B~!, EUgs), where the
columns of Ug are the eigenvectors uf, form = 2,4,...,8. Figure 3 illustrates the absolute relative error
obtained for the 5 smallest eigenvalues of the matrix for the selected values of k£ and m. We selected the
values of m and k so that the dimension of the projection space will be equal in all cases. Observe that
Krylov AMLS outperforms standard AM_Sin all cases except when the dimension of the Krylov subspace is

10
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Figure 2: The non-zero structure of matrix BCSSTK11 before (left) and after (right) the nested dissection
partitioning.

very small. It is interesting to note that Krylov AMLS for m = 4 (20 added vectors to the subspace Vg (30))
clearly outperforms standard AMLSfor k£ = 40 (40 added eigenvectors of B).

We now consider the case where the ratio A/umin is close to 1. Observe that from interlacing prop-
erties of eigenvalues of Hermitian matrices, this ratio cannot be larger than 1. For this reason, we now
omit to perform the nested dissection partitioning of the original matrix. As in the previous case we select
the size of B to be ngp = n; + ne = 1,379. In this case pmin =~ 3.3975 and thus \/pumin ~ 0.8724.
Figure 4 illustrates the absolute relative error obtained for the 5 smallest eigenvalues of the matrix for the
same span of values of k£ and m as in the previous experiments. It is clear that in this case the gains of
the Krylov AMLS framework compared to standard AM_Sare not as compelling as when the ratio A/ gmin
is much smaller than 1.

7.2 Experimentswith second order AMLS

To test the second order AMLSwhich was described in Section 5, we used matrix BCSSTK11, reordered
as in the previous experiment. The second order polynomial eigenvalue problem (24) is solved via the lin-
earized problem (25). We first show that we are able to retrieve improved approximations to the smallest
eigenvalues of the nonlinear Schur eigenvalue problem (13) by means of the second order method. Fig-
ure 5 illustrates the absolute relative error for the approximations of the five smallest eigenvalues of (13),
which correspond to the five smallest eigenvalues of the original matrix. It is clear that the second order ap-
proximation produces improved approximations. We now use these approximations, and the corresponding
eigenvectors, in the Rayleigh-Ritz projection with the basis (26).

For standard AM_Swe used an increasing number m g of added eigenvectors of B: mpg = 20, 40, 60
and 100. On the other hand, for the second order AMLSwe used mp = 10 eigenvectors of B and mg =
2 x 10 additional vectors: 10 for B—1EUg and another 10 for B-2EUg. Thus, in all cases matrix Usg had
10 columns which are eigenvectors corresponding to the smallest eigenvalues (in modulus) of the quadratic
eigenvalue problem (24). Figure 6 illustrates the results. The accuracies achieved by the second order
method are significantly better than the standard method. Notice that even when we used mg = 100
eigenvectors of B for standard AMLS, the error of the second order AMLS method was still in the order of
the square of the error of standard AMLS.

11
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Figure 3: Relative errors for the five smallest eigenvalues of matrix BCSSTK11 computed, after a
nested dissection reordering, by AMLSand Krylov AMLSfor dimension of projection space equal to
k = 10,20, ..., 40.

7.3 Combining second order AMLSwith Krylov subspaces

We now experiment with the combinations of second order AMLSwith Krylov subspaces. Note that this
entails computing a block Krylov subspace with B—! rather than a set of eigenvectors of B (c.f. the algo-
rithmic description in Algorithm 5.1). The test matrix we use results from a 5-point stencil discretization
of the simple model problem (3) on the unit square, with n, = n, = 30 internal mesh nodes in each
direction, so that the matrix size is n = 900. The matrix is reordered in order for the principal submatrix
B to be block diagonal with two blocks and size ng = 840. Initially, we are interested in the two smallest
eigenvalues. We use five vectors in Us, corresponding to the five smallest in modulus eigenvalues of (24).
For second order AMLSwe use ten eigenvectors of B, corresponding to its ten smallest eigenvalues, while
in the block Krylov version we use E[uf, 3] as starting vectors, where uf,j =1, 2 correspond to the two
smallest in modulo eigenvalues of (24). We then compute a basis of length ten. Figure 7 (left) illustrates
the results. It is clear that introducing Krylov basis vectors, instead of eigenvectors of B, yields improved
results which are especially pronounced for the smallest eigenvalues. For larger eigenvalues however, the
situation is reversed. This is due to the fact that the starting vectors of the block Krylov subspace are poor
in directions towards Eu?,j = 3,.. ..

We then used five eigenvectors from (24) and computed a Krylov subspace of length twenty five. For
comparison, we also augmented the eigenbasis in second order AMLSto a total of 25 eigenvectors. Figure
7 (right) illustrates the results. It is clear that in this case the additional starting vectors in the block Krylov
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Figure 4: Relative errors for the five smallest eigenvalues of matrix BCSSTK11 computed, without
a nested dissection reordering, by AMLSand Krylov AMLSfor dimension of projection space equal to
k = 10,20, ..., 40.

subspace have a positive effect in improving the error for the corresponding largest eigenvalues, while
the approximations for the two smallest eigenvalues remain practically unchanged. Compared to using
eigenvectors of B, we observe that for the two smallest eigenvalues the block Krylov subspace approach
remains superior, though the difference is not as pronounced as in the previous case. This is due to the
increased length of the projection basis. On the other hand, for the larger eigenvalues we witness similar
approximation for both approaches.

7.4 Combining AMLSand Krylov AMLS

An alternative type of combination occurs when in Krylov AMLSwe augment the approximation subspace
with eigenvectors of B that correspond to its smallest eigenvalues. The reasoning for such a combination
is based on the fact that in order for the block Krylov subspace K, (B~!, EUs) to adequately approximate
the resolvent (B — AI)~1! for several different eigenvalues A, without significantly increasing the Krylov
steps m, we need to include many eigenvectors in the starting vectors matrix Ug. In an attempt to avoid this
we can insert eigenvectors of B in the subspace as in standard AMLS. Thus, the projection matrix is

(VB Vg O
2= ) (32)
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Figure 5: Absolute relative errors for the five smallest eigenvalues of matrix BCSSTK11 as they were
approximated by the five smallest eigenvalues of (16) and by the five smallest, in modulus, eigenvalues of
(25).

where Vg is a matrix of eigenvectors of B and Vi is an orthonormal basis for the block Krylov subspace.
The projected eigenproblem is (Z*U*AUZ)z = (Z*U*U Z)z, where Z is as defined above and U is the
block Gaussian eliminator matrix (4). In Figure (4) (top-right) we observe that it is possible that for the
larger eigenvalues of the matrix, Krylov AMLS may be inferior to standard AMLS.

This is now explored further. We experimented with the same matrix as in the previous section (dis-
cretization of the model problem (3). Let again Ug contain eigenvectors corresponding to the five smallest
eigenvalues of (16) and Vi be an orthonormal basis for K,,(B~1, E[uf, u5]) with m = 5. Thus Vi has
ten columns. Let now Vg contain eigenvectors that correspond to the ten smallest eigenvalues of B. Figure
8 (left) illustrates the absolute relative errors for the approximations of the ten smallest eigenvalues of the
original matrix as they were computed by standard AMLSand Krylov AMLS. In both cases the dimension
of the projection space is equal to twenty. It is evident that for larger eigenvalues Krylov AMLS s inferior.
This is due to the fact that the starting matrix E[uf,u3] is very poor in directions corresponding to larger
eigenvalues. We then added to Krylov AMLSten eigenvectors of B, that correspond to its smallest eigen-
values. For comparison, in standard AMLSwe use twenty eigenvectors of B, so that the dimension of the
projection spaces would be equal to thirty in both cases. In the right plot of Figure 8 we illustrate the results.
It is clear that we are able to obtain errors similar to standard AM_S for the larger eigenvalues, while we still
obtain much better results for the smallest eigenvalues.

The practical application of the above hybrid will depend on the particular situation. A large block
of initial vectors in Krylov AMLSwill give very good accuracy, however with the analogous increase to the
computational cost. Thus, adding eigenvectors of B may help keep this added cost moderate.

8 Conclusion

The AMLSalgorithm can be viewed as a method which exploits a first order approximation to a nonlinear
eigenvalue problem to extract a good subspace for a Rayleigh-Ritz projection process. This technique leads
to approximations from a single Schur complement derived from a domain decomposition of the physical
problem. Exploiting this observation, we have shown several possible enhancements to the original scheme.
It is hoped that further improvements will be possible by exploiting similar approaches. For example, it
would be interesting to explore the feasibility of an iterative scheme based on AMLS. Currently, AMLSis
a one-shot algorithm in the sense that certain approximate eigenvectors are build from the last level up to
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Figure 6: Absolute relative errors for the 10 smallest eigenvalues of matrix BCSSTK11 computed by stan-
dard AMLS (—o—) and 2nd order AMLS (—A—).

the highest level and no further refinements are made. The current framework does not permit to iteratively
refine these approximations. Yet, an analogy with the solution of linear systems tells us that this should
be possible. This is important since the eigenvalues obtained in this manner do not always yield the high
accuracy demanded in certain application areas.
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