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Abstract

This paper presents a preconditioner based on solving approximate Schur complement
systems with overlapping restricted additive Schwarz methods (RAS). The construction of the
preconditoner, called SchurRAS, is as simple as in the standard RAS. The communication
requirements for each application of the preconditioning operation are similar with those of
the standard RAS approach. In the particular case when the degree of overlap is one, then
SchurRAS and RAS involve exactly the same communication volume per step. In addition,
SchurRAS has the same degree of parallelism as RAS. In some numerical experiments with
a model problem, the convergence rate of the method was found to be similar to that of
the Multiplicative Schwarz (MS) method. The Schur based RAS usually outperforms the
standard RAS both in terms of iteration count and CPU time. For a few two dimensional
scaled problems, SchurRAS was about twice as fast as the stardard RAS on 64 processors.

1 Introduction

In the past few decades, incomplete LU (ILU) preconditioners, combined with Krylov subspace
acceleration, have yielded techniques which offer a good compromise between robustness and ef-
ficiency when solving general large sparse linear systems of equations, see, e.g., [12, 17]. The
extension of these techniques to parallel computing environments has been done in two distinct
ways. The first is to extract parallelism via a reordering of the unknowns. The second is to resort
to domain decomposition ideas. Multicoloring is a standard way of uncovering parallel tasks in
an algorithm such as Gaussian elimination. For example, parallel ILU-type preconditioners based
on graph partitioning and multicoloring were recently presented [8, 6, 11]. Constructing a par-
allel ILU preconditioner with multicoloring starts with a coloring of the interface variables. The
elimination proceeds with the interior nodes first, and this phase is perfectly parallel. Then the
interface variables are eliminated in certain order which is based on the colors of the interfaces.
This basic idea was already exploited for a parallel implementation of ILU(0), in 1994 [10] (see
also the 1996 edition of [12]).

Concerning the second class of methods mentioned above, Domain Decomposition Methods
(DDM) have given rise to a general-purpose strategy for constructing global preconditioners for
sparse linear systems [12, 17]. These methods were initially developed for solving Partial Dif-
ferential Equations (PDEs), but there is an increasing interest in DDM-like preconditioners for
general sparse linear systems, obtained from a purely algebraic viewpoint, see, e.g., [5, 2]. In
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domain decomoposition methods, the initial problem domain is partitioned into a number of sub-
domains, possibly with overlapping interfaces. Such extensions lead to Distributed sparse systems

[12], whereby the equations and associated unknowns are assigned to processor with the help of a
graph partitioning approach. Using this viewpoint, many of the domain decomposition methods
can be retrofitted to the solution of distributed sparse linear systems. The method then is to
compute an approximate solution from solutions in the subdomains – exploiting knowledge about
the operator, discretization, and other properties of the problem, when possible. In the simplest
case of the Additive Schwarz Methods (ASM), the iterative process consists of simply solving in-
dependent problems and updating residuals in each domain after each iteration. Variants of ASM
are obtained by varying the amount of overlap and the subdomain solvers. If the subdomains do
not overlap the procedure results in a method that essentially amounts to a Block Jacobi precon-
ditioner. At this point it is important to note that Schwarz-type procedures are straightforward
to extend to general sparse linear systems, at least from an algorithmic point of view. Though
the body of theory that is available in DDM for PDEs does not easily extend without additional
information, domain decomposition gives rise to fairly efficient methods for sparse linear systems,
which have the advantage of being easy to implement [2].

In [3] Cai and Sarkis introduced an effective variant of the Schwarz procedure, called the
Restricted Additive Schwarz (RAS) method for the case where subdomains are overlapped and each
subdomain problem is approximately solved with incomplete factorization. The initial motivation
that lead to the discovery of for RAS was to reduce communication costs – by omitting half of the
communication in the standard overlapping AS method. However, it turns out that this is only
incidental to the efficiency of the method because this omition has the unexpected effect of also
reducing the number of iterations.

In practice, ASM-type preconditioners are preferable to multicoloring ILU preconditioners in
that they yield a better performance in most cases [4, 1]. ASM usually outperforms non-overlapping
Block Jacobi preconditioners both in terms of iteration counts and execution times because the
block Jacobi preconditioner ignores all inter-domain couplings. To improve the performance for
non-overlapping domain decomposition, Schur complement-based preconditioners were advocated
as alternatives to the simple block Jacobi techniques [13, 9]. Though Schur complement precon-
ditioners take fewer iterations to converge, they lead to higher execution times to converge in
some cases because of the additional costs incurred by the inner iterations when solving the Schur
complement systems.

This paper presents a technique (SchurRAS) which in effect, brings together the best of ASM
on the one hand and Schur complement methods on the other. As in RAS, the new algorithm
combines overlapping and non-overlapping iterations. However, these iterations now involve Schur
complements, i.e., they work on interface variables.

The rest of the paper is organized as follows. Section 2 introduces distributed sparse systems
and Schwarz procedures, as well as Schur complements. Section 3 presents the restricted version of
the Schur complement preconditioner, Section 4 gives some details on the parallel implementation
of SchurRAS. Numerical experiments are shown in Section 5 and some conclusions are drawn in
Section 6.

2 Distributed systems and distributed preconditioners

When solving a linear system Ax = b on a distributed memory computer it is common to start by
partitioning the adjacency graph of the coefficient matrix A by a graph partitioner [7]. Recall that
the adjacency graph of A is a graph G = (V,E), where V is the set of all vertices, representing
the unknowns of the system, and E is the set of all edges representing the binary relation “aij
is a nonzero entry” between vertices i and j [12]. Assuming that the matrix A has a symmetric
nonzero pattern, the adjacency graph G is undirected. The partitioning of G will result in p non-
overlapping subgraphs V1, · · · , Vp. Typically, the group of equations associated with the set Vi will
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be assigned to processor i, along with the corresponding unknwons. Thus, each processor holds a
set of equations (rows of the linear system) and vector components associated with these rows. Note
that we assume a ’vertex-based’ partitioning. This means that vertices are assigned to processors
(instead of edges or elements in a finite element problem). In this situation, unknowns can be
categorized into three classes: (1) Interior variables which are coupled only with local variables by
the equations; (2) Local interface variables which are coupled with non-local (external) variables as
well as local variables; and (3) External interface variables which are unknowns in other processors
are coupled with local variables. Figure 1 shows an illustration.

When putting together the equations assigned to a given processor, one can observe that the
coefficient matrix consists of two pieces: the first called Ai, acts on local variables and the other,
called Xi acts on remote variables. Thus, the global linear system Ax = b can be rewritten in each
processor as

Aixi +Xixi,ext = bi, (1)

where xi are the vector of local unknowns, xi,ext are the external interface variables, bi is the
corresponding local part of the right hand side vector. The above system is referred to as the
“local system”.

Internal points

External interface
points

 Local interface points

Figure 1: A local view of a distributed sparse matrix.

For convenience, a local reordering of the data is often exploited by splitting the local vector
xi into two parts: the subvector ui of interior nodes followed by the subvector vi of local interface
nodes. The local right hand side vector bi is conformally split into the subvectors fi and gi, so
that:

xi =

(
ui
vi

)

; bi =

(
fi
gi

)

. (2)

With this reordering, equation (1) takes the form:
(
Bi Ei

Fi Ci

)

︸ ︷︷ ︸

Ai

(
ui
vi

)

+

(
0

∑

j∈Ni
Eijvj

)

︸ ︷︷ ︸

Xixi,ext

=

(
fi
gi

)

. (3)
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Here, Ni is the set of indices for subdomains that are adjacent to the subdomain i. The term Eijvj
is the contribution to the local equation from neighboring subdomain j. The zero block in the
second term of the left-hand side of (3) is due to the fact that local internal nodes are not coupled
with external nodes.

2.1 Schwarz procedures for distributed systems

Let the global domain Ω be decomposed into p non-overlapping subdomains Ωi, obtained from a
partitioning of V into p non-overlapping subgraphs V 0

i . Here the superscript 0 is added to indicate
that the domains do not overlap. Each subdomain Ωi can then be extended to a larger subdomain
Ω1
i to form one-level overlapped subdomain by including all immediate neighboring nodes of V 0

i .
We may similarly define δ-level overlapped subdomain Ωδ

i with the set of nodes V δ
i . Associated

with each subdomain Ωδ
i , we can define the restriction operator

Ri,δ : Ω −→ Ωδ
i

z −→ zi,δ

where zi,δ = Ri,δz is the vector of Ωδ
i which consists only of components of z belonging to Ωδ

i . It
is common to use the transpose RT

i,δ as the corresponding extension operator

RT
i,δ : Ωδ

i −→ Ω

zi,δ −→ z

where z = RT
i,δzi,δ is the zero-extension of a vector zi,δ on Ωδ

i to Ω. The local matrix Ai,δ associated

with the subdomain Ωδ
i can be expressed as Ai,δ = RT

i,δARi,δ. The additive Schwarz preconditioner
can be written as [16]

B[δ,δ] =

p
∑

i=1

RT
i,δA

−1
i,δRi,δ. (4)

In the case when there is no overlap, i.e., when δ = 0, we obtain the special case of the block-Jacobi
preconditioner:

B[0,0] =

p
∑

i=1

RT
i,0A

−1
i,0Ri,0. (5)

Finally, using the same notation, the restricted additive Schwarz proposed by Cai and Sarkis [3]
can be written as

B[0,δ] =

p
∑

i=1

RT
i,0A

−1
i,δRi,δ. (6)

The solve with the matrix Ai is rarely performed exactly. Instead, one can obtain an Incomplete
LU factorization and solve the systems with an preconditioned Krylov method. Examining the
incomplete factorization carefully will also yield an approach based on Schur complements.

2.2 Schur Complement – based preconditioners

Eliminating ui from the top part of (3) leads to the relation

ui = B−1
i [fi − Eivi] (7)
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which upon substitution into the bottom part, results in the following equation for vi,

Sivi +
∑

j∈Ni

Eijvj = gi − FiB
−1
i Ei ≡ g′i, i = 1, · · · , p (8)

where Si is the “local” Schur complement matrix:

Si = Ci − FiB
−1
i Ei. (9)

Note that this elimination of the ui’s is local, in that it can be carried out on each processor
in parallel since interior unknowns of each subdomain are not coupled with variables of other
subdomains.

Equations (8) for all subdomains constitute the global Schur complement system which in-
volves only all interface variables vi, i = 1, · · · , p. The global Schur complement matrix has a
natural block structure:











S1 E12 E13 · · · E1p

E21 S2 E23 · · · E2p

...
. . .

...
...

. . .
...

Ep1 Ep2 Ep3 · · · Sp





















v1

v2

...

...
vp











=











g′1
g′2
...
...
g′p











. (10)

The above system can be written as

Sv = g′,

where v consists of all interface variables v1, v2, . . . , vp stacked into a long vector The matrix S is
the global Schur complement matrix.

If the global schur complement system (10) is solved exactly, the u variables can be obtained
from (7), and the exact solution of the whole system will then be obtained. Preconditioning
techniques can be obtained by solving the Schur complement system approximately.

3 RAS versions of Schur complement preconditioners

From the local linear system (3), interior variables ui can be expressed as

ui = B−1(fi − Eivi) . (11)

Once interface variables vi are available, all interior variables ui can be computed via (11). This
process can be carried out in parallel. If we simply drop the term Eij in (10), vi can be computed
via S−1

i g′i without any communication among processors. This amounts to a block Jacobi precon-
ditioner. In passing, we note that the block Jacobi preconditioner for the original linear system
can be induced by the block Jacobi preconditioner for the global Schur complement system[12, 13].
Due the local nature of the block Jacobi preconditioner, the resulting iteration will usually converge
slowly, since one may expect that changes in a given domain will take quite a few steps before
propagating to all domains.

One way to cure this is to attack the global Schur complement system directly, using Krylov
subspace methods with block Jacobi or distributed ILU(0) as preconditioners[13, 9]. Solving the
global Schur complement system more accurately, will result in a preconditioner that is usually
superior to the standard block-Jacobi preconditioner for the original system. Part of this superiority
comes from the fact that Schur complement-based preconditioners tend to require fewer iterations
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than ASM to converge. However, note that because the inner steps for solving the global Schur
complement systems are more expensive, the overall performance may be poorer in some cases[9].

Part of the problem with the Schur-complement based methods developed in [9, 13] lies in
the ineffectiveness of the block Jacobi preconditioner which is used to solve the global Schur com-
plement system. Since RAS shows better performance than the block Jacobi for the original linear
system one can think of solving the global schur complement system using an RAS-like procedure
for the Schur complement. We will refer to this approach as SchurRAS. Because the condition
number of the Schur complement system is better than that of the original linear system[16] and
RAS is a better preconditioner than the block Jacobi preconditioner, we may expect to obtain
a more “exact” solution for the global Schur complement system. Therefore, SchurRAS should
outperform the block jacobi preconditioner. This will be borne out by the experiments.

3.1 The SchurRAS preconditioner

The local matrix Ai,δ can be written in the following block form

Ai,δ =

(
Bi,δ Ei,δ

Fi,δ Ci,δ

)

(12)

where Bi,δ is the matrix associated with interior nodes of the subdomain Ωδ
i . Recall that interior

nodes are those nodes which are coupled with unknowns from other domains. Assume that the
LU or ILU factorization of Bi,δ is available:

Bi,δ ≈ Li,δUi,δ

and consider the following block-ILU factorization of Ai,δ,

Ai,δ ≈

(
Li,δ 0

Fi,δU
−1
i,δ I

)(
Ui,δ L−1

i,δEi,δ

0 Si,δ

)

=

(
Li,δ 0

Fi,δU
−1
i,δ I

)(
I 0
0 Si,δ

)(
Ui,δ L−1

i,δEi,δ

0 I

)

≡ Li,δDi,δU
i,δ . (13)

Then, the preconditioner (4) using this approximation for Ai,δ can be expressed as

B[δ,δ] =

p
∑

i=1

RT
i,δU

−1
i,δ D

−1
i,δ L

−1
i,δR

T
i,δ . (14)

We can treat Ui,δ,Di,δ,Li,δ as three separate operators, in which case it helps to expand each of
them as an operator on the whole space. Then Equation (14) can be recast as

B[δ,δ] =

p
∑

i=1

(RT
i,δU

−1
i,δRi,δ) (R

T
i,δD

−1
i,δRi,δ) (R

T
i,δL

−1
i,δRi,δ) . (15)

Similarly, in the non-overlapping case the block-Jacobi preconditioner (5) becomes

B[0,0] =

p
∑

i=1

(RT
i,0U

−1
i,0Ri,0) (R

T
i,0D

−1
i,0Ri,0) (R

T
i,0L

−1
i,0Ri,0) (16)

while, the RAS preconditioner takes the form

B[0,δ] =

p
∑

i=1

(RT
i,0U

−1
i,δRi,δ) (R

T
i,δD

−1
i,δRi,δ) (R

T
i,δL

−1
i,δRi,δ) . (17)
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Note that in the above equations, the solves with Di,δ, correspond to solving Schur com-
plement systems. The operations (RT

i,δL
−1
i,δRi,δ) and (RT

i,δU
−1
i,δRi,δ) are akin to a restriction and a

prolongation operator respectively. If we assume for a moment that the factorization Bi,δ = Li,δUi,δ

is exact, then one can expect that all that is required is an exact solution to the Schur complement
system, to obtain an exact solution of the global problem. Keeping in mind the interpretation
of (RT

i,0L
−1
i,0Ri,0) and (RT

i,0U
−1
i,0Ri,0), as “prolongation” and “restriction” operators, a careful look

at (16) reveals that only the term RT
i,0D

−1
i,0Ri,0 needs to be improved to lead to an improvement

to the global preconditioner. Recall that the assumption here is that the factorization of Bi,0 is
exact. We can therefore focus on this operator and obtain a more exact solve by possibly using a
preconditioned GMRES iteration [13, 9]. What is known about RAS can now be exploited and we
arrive naturally at the following definition of SchurRAS preconditioner:

B =

p
∑

i=1

(RT
i,0U

−1
i,0Ri,0) (R

T
i,0D

−1
i,δRi,δ) (R

T
i,0L

−1
i,0Ri,0) (18)

One may ask why we do not use the overlapping versions of the prolongation and restriction
operators (RT

i,δL
−1
i,δRi,δ) and (RT

i,δU
−1
i,δRi,δ) in the above expressions. The main reason is our

assumption of an accurate solve for the Schur complement system.
Comparing (17) and (18), we can see that SchurRAS and RAS have almost the same com-

putational costs. Only the operator Ri,δ involves communications between neighboring processors.
In particular, this means that SchurRAS and RAS involve the same communication when apply-
ing the preconditioner to a vector. According to (3), the term Eij remains unchanged after the
(block) Gaussian elimination process. Accordingly, the couplings of the unknowns among neigh-
boring subdomains for the global Schur complement system are the same as those of the original
linear system. In particular, when δ = 1, SchurRAS and RAS involve exactly the same volume of
communication.

4 Parallel Implementation

This section discusses some implementation details of the preprocessing phase in which the pre-
conditioner is computed and the iteration phase in which the preconditioner is applied at each
step.

4.1 Constructing the Preconditioning Matrix

Consider the local matrix Ai defined by (3). To compute the preconditioner, we make use of a
relationship that was exploited in [13], between the Schur complement of Ai with respect to Ci,
i.e., Si = Ci − FiB

−1
i Ei, and the block LU factorization of Ai. Specifically, we have

Ai = LiUi ≡

(
Li,B 0
FiU

−1
i,B I

)(
Ui,B L−1

i,BEi

0 Si

)

. (19)

What is interesting is that the above factorization can be obtained via a simple variation of Gaus-
sian Elimination referred to as the “Restricted” or “Partial” Gaussian elimination [15, 14]. The
algorithm proceeds as any form of Gaussian elimination, but does not pursue the elimination in
the (2,2) block of the matrix Ai. It is described next.

Algorithm 4.1 Restricted IKJ version of Gaussian elimination

1. For i = 2, n, Do
2. For k = 1, min(i-1,m), Do
3. ai,k := ai,k/ak,k
4. For j = k+1, n, Do

7



5. ai,j := ai,j − ai,k ∗ ak,j
6. End Do
7. End Do
8. End Do

Clearly, dropping will be used in this approximate factorization, resulting in an approximation
S̃i to Si. For clarity, we use the same symbol Si for this approximation.

Once Si is computed we then extend it by including rows associated with all external variables
vj that are adjacent to subdomain i. The extended matrix S ′i for the Schur complement matrix Si

has the following form

S′i =

(
Si Ei,ext

Gi Hi,

)

. (20)

In the above definition, Ei,ext denotes simply the inter-domain coupling matrix. The matrices Gi

and Hi are matrices from neighboring subdomains which act on overlapping nodes. The matrix
Hi is a Schur complement corresponding to overlapping variables with respect to internal variables
from other processors. Algorithm 4.1 describes the procedure for constructing the preconditioning
matrix of SchurRAS.

Algorithm 4.2 Construction of SchurRAS

1. Construct approximate local Schur complement matrix Si.
2. Extend Si to S′i by including rows corresponding to

external variables received from neighboring processors.
3. Compute the ILU factorization of S ′i.

It is also interesting to note that the SchurRAS procedure for two subdomains can be thought
of as a variant of the global ILU factorization performed in parallel on each subdomain with different
global orderings. First, S1 and S2 can be constructed in parallel on each processor as described in
Section 2.2. This corresponds to eliminating u1 and u2 from the global point of view. Then, we
can obtain the extended Schur complement matrices S ′1 and S′2, which have the following forms

S′1 =

(
S1 E12

E21 S2

)

, S′2 =

(
S2 E21

E12 S1

)

. (21)

Last, the ILU factorizations for S ′1 and S′2 are performed in parallel on each processor. It is easy
to understand that the whole process corresponds to a global ILU factorization performed on
processor 1 with the order u1, u2, v1, v2 and with the order of u2, u1, v2, v1 on processor 2.

In contrast, the additive Schwarz preconditioner (with overlap) processes the ILU factor-
ization for the rows associated with the overlapping variables differently: it does not take into
account contributions from interior nodes into the external overlapping variables. In other words,
the S2 block in the left-side of (21) would be replaced by a matrix similar to the the C2 matrix on
processor 2 (albeit with a different ordering). Similarly for the right-side matrix S ′2.

This argument should make it clear that we expect the Schur-based preconditioner SchurRAS
to outperform the additive Schwarz at least on two processors.

4.2 Applying the Preconditioner

Once the Schur complement system (8) has been computed, we could also extend the right hand
side into the vector (g′i, g

′

i,ext). Here, g′i,ext is obtained from neighboring subdomains. The extended
local equation on subdomain i for the global Schur complement system SV = g ′ can be written as
follows:
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(
Si Ei,ext

Gi Hi

)(
vi

vi,ext

)

=

(
g′i

g′i,ext

)

, (22)

where vi,ext corresponds to the components of external variables on subdomain i, g′i,ext denotes
components of associated right hand side vectors from neighboring subdomains.

After equation (22) is approximately solved (e.g., using an ILU factorization), we obtain vi
by simply dropping the overlapping term vi,ext, see [3]. Finally, ui can be computed by backsub-
stitution, from (11). The whole process is described in the next Algorithm.

Algorithm 4.3 Applying SchurRAS to a vector z

1. Compute g′i = L−1
i z.

2. Exchange interface variables in g′i.
3. Compute vi by solving equation (22)
4. Compute ui using (11).

5 Numerical Experiments

This section presents a few experiments with the SchurRAS preconditioning technique. The first
test is with a model test problem on a regular rectangular grid. The second considers a more
realistic linear system related to a magnetohydrodynamics (MHD) problem. The experiments were
performed on an SGI Origin 3800 with 64 CPUs at the Institute of Computational Mathematics
and Scientific/Engineering Computing, Chinese Academy of Sciences, China.

5.1 Scaled problem: two–dimensional case

Consider the elliptic partial differential equation

−∆u+ 100
∂

∂x
(exyu) + 100

∂

∂y

(
e−xyu

)
− 10u = f (23)

on a square region with Dirichlet boundary conditions, discretized with a five-point centered finite-
difference scheme on a nx × ny grid, excluding boundary points. The mesh is mapped to a virtual
px × py grid of processors, such that a subrectangle of rx = nx/px points in the x direction and
ry = ny/py points in the y direction is mapped to a processor. In the following experiments, the
mesh-size in each processor is kept constant at rx = 100, ry = 100. As the number of processors
increases, the problem size increases proportionally. For example, on 4 processors the mesh is
(2rx, 2ry) leading to a problem size of 40, 000 and on 16 processors the mesh is (4rx, 4ry) leading
to a problem size of 160, 000. The resulting problems become harder as the number of processors
grows. In a perfectly scalable situation, the final execution time for solving the problem with
size n = 160, 000 on 64 PEs should be identical with the time for solving the problem of size
n = 40, 000 on 4 PEs. Note that in order to maintain the aspect ratio of the physical domain, we
need to consider square processor grids of increasing size.

In the following tests, ILUT is used as the local preconditioner. The fill-in parameter is 20
and the drop tolerance is set to 0.001. Table 1 shows a comparison of preconditioners. Here, its
indicates the number of iteration, tset denotes the time for building the preconditioner, and tit
is the iteration time. BJ, RAS and SchurRAS stand for the block Jacobi, the restricted additive
Schwarz , and the Schur additive Schwarz method, respectively. The amount of overlap is 1 for
RAS and SchurRAS. FGMRES [12] with the subspace size of 60 was used as an accelerator in all
tests. The iteration is stopped when the residual norm is reduced by a factor of 10−6.

As shown in table 1, the construction phase for all three preconditioners exhibits good scal-
ability: the time for constructing preconditioners is almost a constant for three preconditioners as
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the number of processors increases. It is relatively more expensive to construct the preconditioning
for the SchurRAS due to the extra cost of constructing the approximate Schur complement matrix
with Algorithm 4.1. If ARMS[14] is used as the local preconditioner instead of ILUT, then this
additional cost can be reduced because the Schur complement matrix can be naturally obtained as
a by-product of the ARMS preconditioning matrix. Table 1 also shows that when iteration counts
and iteration times are considered, SchurRAS is the fastest of the three preconditioners. As the
number of processors increases, the increase in the iteration counts for SchurRAS is more moderate
that with the other 2 methods. The number of iterations taken by the SchurRAS on 64 processors
is almost exactly half that required by RAS, which is itself almost exactly half that required by
the block-Jacobi. The observations regarding iteration times are similar: The resulting iteration
time for SchurRAS on 64 processors is about half that of the RAS, which is about 55% that of
BJ. This means in particular, that the computational costs to apply the preconditioner to a vector
is almost the same for SchurRAS and RAS. According to [16], the multiplicative Schwarz (MS)
requires about half the iterations of the additive Schwarz. If this were also the case for this model
problem (the operator is not quite a Laplacean) then one could say that SchurRAS and MS have
a similar convergence rate.

Table 1: Comparison of preconditioners without inner iteration for a 2D PDE problem with fixed
problem size. The times are in seconds.

BJ RAS SchurRAS
np its tset tit its tset tit its tset tit
4 28 0.105 0.284 18 0.127 0.167 12 0.149 0.112
9 42 0.117 0.482 27 0.138 0.278 18 0.176 0.175
16 54 0.118 0.732 37 0.139 0.430 25 0.174 0.267
25 68 0.123 0.992 49 0.140 0.620 32 0.179 0.385
36 91 0.125 1.366 57 0.142 0.939 39 0.180 0.547
49 138 0.127 2.223 74 0.147 1.248 47 0.180 0.786
64 232 0.127 3.589 115 0.147 1.972 56 0.185 0.982

5.2 Using inner iterations

It is natural to ask whether or not the performance can be improved by employing an inner
iteration for the Schur complement system. Specifically we can use GMRES acceleration to solve
the Schur complement using SchurRAS as a preconditioner. The test problem is the same as
the one in the previous section. The subspace size of GMRES is 5 and the tolerance for inner
iteration is 10−6 (stop iteration when initial residual norm is reduced by a factor of 10−6). Table 2
compares two different preconditioners. One is the block Jacobi combined with GMRES(5) for
solving the Schur complement system. The corresponding induced preconditioner, denoted by
Schur–BJ, was presented in [13]. The other preconditioner, denoted by Schur–SchurRAS, is the
preconditioner induced by solving the Schur complement system with GMRES(5) with SchurRAS
as a preconditioner. A comparison between Table 1 and Table 2, reveals that the number of
iterations for SchurRAS and Schur–BJ are essentially identical. At the same time, and to our
surprise, Table 2 also shows that Schur–SchurRAS also takes about the same number of iteration
to converge as SchurRAS. The interpretation of what has happened is as follows. In all cases,
the resulting Schur complement system is the same since it involves the same (interface) variables
and the same approximations coming from the same ILUT. By iterating on the Schur complement
system, this system is solved to an accuracy that has become better than the accuracy used
to compute the Schur complement system itself (ILUT). While these iterations are helpful in
the BJ case (they solve the Schur complement more accurately), they seem to be useless in the
SchurRAS case. The only explanation for this is that SchurRAS solves the complement systems
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very accurately, i.e., within the range of accuracy with which the Schur complement matrices are

computed. The end result is that the SchurRAS is still the fastest since it involves no inner
iterations.

Table 2: Comparison of preconditioners with inner iteration for a 2D PDE problem with fixed
problem size. The times are in seconds.

Schur–BJ Schur–SchurRAS
np its tit its tit
4 12 0.127 12 0.137
9 19 0.223 17 0.243
16 25 0.308 24 0.354
25 31 0.414 30 0.474
36 39 0.625 38 0.561
49 47 0.885 45 0.967
64 56 1.076 54 1.167

5.3 Test with a matrix from an MHD simulation

The test matrix used in the following experiment originates from the simulation of Magneto-
Hydrodynamics flows. The flow equations are represented as coupled Maxwell’s and the Navier-
Stokes equations. The conservative magnetohydrodynamic system is modeled by the Maxwell
equations, written as:

∂B

∂t
−∇× (u×B) + η∇× (∇×B) +∇q = 0 (24)

∇ ·B = 0 , (25)

where η, B, u and q are, respectively, the magnetic diffusivity coefficient, magnetic induction field,
velocity field, and the scalar Lagrange multiplier for the magnetic-free divergence constraint. In
fully coupled magnetohydrodynamics, this system is solved along with the incompressible Navier-
Stokes equations. In the tests that follow, we solve problems which arise from the Maxwell equations
only. A pre-set periodic induction field u is used in Maxwell’s equation (24). The physical region
is the three-dimensional unit cube [−1, 1]3 and the discretization uses a Galerkin-Least-Squares
discretization. The magnetic diffusivity coefficient is η = 1. The matrix is of size n = n = 470, 96
and has nnz = 23, 784, 208 nonzero entries.

The following input parameters have been selected to solve this problem: the residual is to
be reduced by 106, the FGMRES restart value is 60. The fill-in parameter used for ILUT is 40 and
the dropping tolerance is 0.001. SchurRAS always takes fewer iterations than RAS and BJ. Note
for example that SchurRAS takes 76 iterations to converge on two processors, which is even less
than the number of iterations 78 required by BJ on one processor. The execution times are 84.46s
and 161.27s, respectively. The efficiency is 0.95. It is verified that SchurRAS on two processors is a
variant of global ILU factorization. It takes the same number of iterations as BJ one processor, or
even fewer. RAS and BJ converge in 86 and 117 iterations on two processors, respectively. On the
SGI Origin 3800, this amounts to 128.18s and 94.43s, respectively. The corresponding efficiencies
are 0.629 and 0.854, respectively. SchurRAS always takes fewer iterations than BJ and RAS. As the
number of processors increases, the number of iterations required by SchurRAS exhibits moderate
growth, as shown in Figure 2. Because the computational costs of SchurRAS are similar to those
of RAS, the reduction in the iteration number also leads to a reduction in the execution time as
shown in Figure 3.
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Figure 2: Iterations required by three methods for solving MHD problem

6 Conclusions

We presented a new preconditioner, called SchurRAS, which consists of solving the approximate
Schur complement system with the restricted form of the additive Schwarz method. This precon-
ditioner can be thought of as the combination of the overlapping additive Schwarz preconditioner
and the non-overlapping Schur complement preconditioner. The new technique has two main ad-
vantages. First, the construction of the preconditioning matrix for SchurRAS is not only easy
but also nicely scalable. This is in contrast with parallel ILU-based preconditioners or more stan-
dard Schur-complement techniques. Second, SchurRAS has the same degree of parallelism as the
additive Schwarz.

The experimental tests show that SchurRAS is superior to the widely used additive Schwarz
preconditioner and the Schur complement based preconditioner. For a model two dimensional
scaled problem, the convergence rate of SchurRAS is similar to that of the multiplicative Schwarz
preconditioner. For the same model problem and using 64 processors, we found that SchuRAS is
about twice as fast as the restricted additive Schwarz,
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