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Abstract. This paper describes a Multilevel Incomplete QR (MIQR) factorization for solving large sparse least-squares
problems. The algorithm builds the factorization by exploiting structural orthogonality in general sparse matrices. At any
given step, the algorithm finds an independent set of columns, i.e., a set of columns that have orthogonal patterns. The other
columns are then block orthogonalized against columns of the independent set and the process is repeated recursively for a
certain number of levels on these remaining columns. The final level matrix is processed with a standard QR or Incomplete
QR factorization. Dropping strategies are employed throughout the levels in order to maintain a good level of sparsity. A
few improvements to this basic scheme are explored. Among these is the relaxation of the requirement of independent sets of
columns. Numerical tests are proposed which compare this scheme with the standard incomplete QR preconditioner and the
robust incomplete factorization (RIF) preconditioner.
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1. Introduction. This paper considers iterative solution methods for linear least-squares problems of
the form

min
x

‖b − Ax‖2, (1.1)

where A ∈ R
m×n (m ≥ n) is a large sparse matrix with full rank. Problems of this type arise in many

scientific and engineering applications including data analysis, computational fluid dynamics, simulation,
signal processing, and control problems, to name just a few. As engineers and scientists are benefitting from
increased availability of data as well as computational resources, these problems are inevitably becoming
harder to solve due to their size as well as their ill-conditioning. For example, the papers [4, 34] mention
a problem of this type which arises from an animal breeding study with 60 million unknowns. In the very
different area of three-dimensional computer graphics, one encounters certain least-squares problems which
have complexity proportional to the number of geometry primitives [22] which, in desirable models, should
include millions of polygons. Problems from such applications are usually very sparse, and can be solved
iteratively or by sparse orthogonal factorizations. Iterative solution methods may have an advantage over
direct methods, depending on the underlying sparsity pattern.

However, if iterative methods are to be used, then preconditioning is essential. Although it is known
that iterative solution algorithms are not effective without preconditioning, there has been little effort put in
developing preconditioners for least-squares problems in recent years. This is in contrast with the solution
of standard (square) linear systems, where enormous progress has been made in designing both general
purpose preconditioners and specialized preconditioners that are tailored to specific applications. Part of
the difficulty stems from the fact that many methods solve the system (1.1) by implicitly solving the normal
equations

AT Ax = AT b , (1.2)

whose solution is the same as that of (1.1). The condition number of the coefficient matrix of normal
equations system (1.2) is the square of that of the original matrix A. As a result, the normal equations will
tend to be very ill-conditioned. In this situation preconditioning is critical for robustness. However, severe
ill-conditioning of the matrix will also tend to make it difficult to obtain a good preconditioner.

Though it is possible to solve the least-squares problem (1.1) by solving normal equations (1.2), forming
the system of normal equations explicitly and then solving it is not a recommended approach in general as
this suffers from various numerical difficulties, see [6, 14] for details. For small dense problems, the best

∗ This work is supported by NSF grant ACI-0305120 and INT-0003274, and by the Minnesota Supercomputing Institute
†Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455.

email: {nli,saad}@cs.umn.edu

1



2 N. LI AND Y. SAAD

overall solution method is to use a good orthogonal factorization algorithm such as the Householder QR,
see, e.g., [14]. If A = QR is the “thin” QR factorization of A [14], then the solution of Equation (1.1) can
be obtained by solving Rx = QT b for x. For an comprehensive survey of direct methods, see [6].

Alternatively, iterative methods such as LSQR [27] and SOR [26] have been advocated for solving least-
squares problems of the type (1.1) when A is large. A well-known approach is one that is based on solving the
normal equations by the Conjugate Gradient (CG) method. The resulting algorithm is sometimes termed
CGNR [31] and sometimes CGLS [6]. The latter acronym is adopted here. This paper only considers CGLS as
the accelerator and focusses on developing effective preconditioners. Since we refer to preconditioned CGLS
throughout the paper, we now give a brief description of the algorithm, assuming that a preconditioner M
for AT A is available. Recall that a preconditioner is a certain matrix M which approximates the original
coefficient matrix (in this case AT A) and such that it is inexpensive to solve an arbitrary linear system
Mx = b.

Algorithm 1.1. Left-Preconditioned CGLS
1. Compute r0 := b − Ax0, r̃0 := AT r0, z0 := M−1r̃0, p0 := z0.
2. For i = 0, · · · , until convergence Do :
3. wi := Api

4. αi := (zi, r̃i)/‖wi‖
2
2

5. xi+1 := xi + αipi

6. ri+1 := ri − αiwi

7. r̃i+1 := AT ri+1

8. zi+1 := M−1r̃i+1

9. βi := (zi+1, r̃i+1)/(zi, r̃i)
10. pi+1 := zi+1 + βipi

11. EndDo

Many variants of the above algorithm exist. In particular, when M is available in the form of a product
M = LLT , where L is lower triangular, then the preconditioning operation can be split in two parts and a
split-preconditioned CGLS option can be derived. A right-preconditioned option can be developed as well.
We only consider the left-preconditioned variant in this paper.

Developing preconditioners for the normal equations, or for Problem (1.1), can be approached in a
number of ways. A naive approach would be to form the squared matrix AT A and try to find an incomplete
Cholesky factorization of this matrix. The fact that this matrix is symmetric positive definite, does not make
it easy to find a preconditioner for it. Indeed, most of the theory for preconditioning techniques relies on some
form of diagonal dominance. In addition, forming the normal equations suffers from other disadvantages,
some of which are the same as those mentioned above for the dense case, in particular there is some loss of
information when forming AT A [6]. Moreover, AT A can be much denser than the original matrix. In fact
one dense row of A will make the entire AT A matrix dense.

Another approach, one that is taken here, is to try to compute an approximate orthogonal factorization
of A. This approach is not new as will be seen in Section 2 which discusses related work. If A ≈ QR, then
AT A ≈ RT R and this matrix can be used as a preconditioner M . Notice that this approach ignores the
factor Q which is not used. In this paper we exploit multilevel ideas similar to those defined for the Algebraic
Recursive Multilevel Solver (ARMS) in [33, 24]. The idea of Multilevel Incomplete QR (MIQR) factorization
can be easily described with the help of recursion. It is important to observe at the outset that when A is
sparse, then many of its columns will be orthogonal because of their structure. These are called structurally
orthogonal columns. It is therefore possible to find a large set S of structurally orthogonal columns. This set
is called an independent set of columns. Independent sets were the main ingredient used in ARMS [33, 24].
Once the first independent set S is obtained, we can block orthogonalize the remaining columns against the
columns in S. Since the matrix of the remaining columns will still be sparse in general, it is natural to think
of recursively repeating the process until a small number of columns are left which can be orthogonalized
with standard methods. The end result is a QR factorization of a column-permuted A. With this simple
strategy MIQR gradually reduces a large sparse least-squares system into one with a significantly smaller
size. It is worth pointing out that although we focus on overdetermined systems (m > n), the techniques
described are applicable to square matrices (m = n) and underdetermined matrices (m < n) as well.

Recent developments in the solution of standard linear systems have shown that multilevel precondi-
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tioners have excellent scalability and robustness properties, see, e.g., [33, 9, 31, 1, 2, 3]. However, it appears
that when it comes to the solution of large general sparse least-squares problems, similar multilevel methods
have not been considered so far, in spite of an increasing demand for solving such problems.

The remainder of this paper is organized as follows. After a short section on related work (Section 2),
we discuss in Section 3 the issue of finding independent sets of columns, as this is an important ingredient
used in MIQR. Then, a detailed description of MIQR is presented in Section 4 followed by strategies to
improve the performance of MIQR as well as other implementation details. Numerical results are reported
in Section 5 and the paper ends with concluding remarks in Section 6.

2. Related Work. Several general-purpose preconditioners based on techniques such as SSOR, incom-
plete orthogonal factorization, and incomplete Cholesky factorization have been proposed and analyzed in
the literature.

In 1979, Björck introduced a preconditioner based on the SSOR method [5]. In the proposed method,
AT A is written as AT A = L + D + LT , where L is lower triangular. The normal equations are then
preconditioned by

M = ω(2 − ω)(D + ωL)D(D + ωLT ).

To avoid forming AT A explicitly, row (or column) projection methods have also been exploited and applied
to normal equations [10]. In these methods, only a row or a column of A is needed at any given relaxation
step. Block versions of these methods have also been studied [7, 19].

In a 1984 pioneering article, Jennings and Ajiz proposed preconditioners based on incomplete versions
of Givens rotations and the Gram-Schmidt process [17]. Thereafter, several other preconditioners based
on incomplete orthogonal factorizations have been studied [29, 35, 28]. If A = QR is the exact thin QR
factorization of A, where R is an n × n upper triangular matrix and Q is an m × n orthogonal matrix,
then AT A = RT R, and it is usually inexpensive to solve the equation RT Rx = y. The incomplete version
of the QR factorization (IQR) can be used as a preconditioner for Equation (1.2). Unlike the matrix
Q produced by incomplete Givens rotations, which is always orthogonal, the factor Q produced by the
incomplete Gram-Schmidt process is not necessarily orthogonal. Nonetheless, the incomplete Gram-Schmidt
based preconditioners are robust and can avoid breakdown when A has full rank. However, one drawback
is that the incomplete Gram-Schmidt factorization requires a large intermediate storage for Q. In order
to reduce memory requirements, dropping strategies are employed in both Q and R. Let PQ and PR be
zero patterns chosen for matrices Q and R respectively. The incomplete QR factorization based on the
Gram-Schmidt process can be described by the following modification of the ILQ algorithm given in [29].

Algorithm 2.1. Incomplete QR Factorization (IQR)
1. For j = 1, ..., n Do:
2. Compute rij := (aj , qi), for i = 1, 2, · · · , j − 1,
3. Replace rij by zero if (i, j) ∈ PR,

4. Compute qj := aj −
∑j−1

i=1 rijqi,
5. Replace qij by zero if (i, j) ∈ PQ, i = 1, 2, · · · ,m
6. Compute rjj := ‖qj‖2,
7. If rjj == 0 then stop; Else compute qj := qj/rjj .
8. EndDo

Similarly to dropping strategies used in ILUT [30], PQ and PR can be determined dynamically, based
on the magnitude of the elements generated. In the above algorithm, the step represented by line 2 computes
the inner products of the j-th column of A with all previous columns of Q. Most of these inner products are
equal to zero because of sparsity. Therefore, it is important to ensure that only the nonzero inner products are
calculated for efficiency. The strategy proposed in [29] calculates these inner products as a linear combination
of sparse vectors. Specifically, let rj = [r1j , r2j , · · · , rj−1,j ]

T and Qj−1 = [q1, q2, · · · , qj−1], then rj = QT
j−1aj

is a sparse matrix by sparse vector product. This product can be computed as a linear combination of the
rows in Qj−1, i.e., only the rows corresponding to the nonzero elements in aj are linearly combined. Since
the matrix Q is normally stored column-wise, a linked-list pointing to the elements in each row of Q needs
to be dynamically maintained. This strategy is also utilized in the implementation of the proposed MIQR
algorithm.
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Preconditioners based on the incomplete modified Gram-Schmidt process have also been developed.
The Cholesky Incomplete Modified Gram-Schmidt (CIMGS) algorithm of Wang et al. is an incomplete
orthogonal factorization preconditioner based on the modified Gram-Schmidt process [35]. The paper ex-
plores rigorous strategies for defining Incomplete Cholesky factorizations, based on the relation between the
Cholesky factorization of AT A and the QR factorization of A. Other authors studied direct ways to obtain
the Cholesky factorization [18, 6]. This type of approach obtains the incomplete Cholesky factorization of
C = AT A, where C may or may not be formed explicitly. As an alternative, Benzi and Tůma proposed a
Robust Incomplete Factorization (RIF) preconditioner which computes an incomplete LDLT factorization of
AT A without explicitly forming it [4]. Their approach utilizes a conjugate Gram-Schmidt process to calculate
the factorization ZT CZ = D, where Z is unit upper triangular and D is diagonal. The LDLT factorization
is obtained by letting L−1 = ZT . In section 5 a few comparisons are made between this approach and the
MIQR technique proposed in this paper.

There were also a number of attempts to precondition positive definite matrices which may be far from
diagonally dominant. In a 1980 paper, Manteuffel [25] suggested shifting a positive definite matrix to get
an incomplete Cholesky factorization. This work was pursued more recently in [32], where other diagonal
shifting techniques were studied for both incomplete orthogonal factorizations and incomplete Cholesky
factorizations.

The idea of utilizing independent sets of columns (rows) in the context of least-squares, or more
precisely for normal equations, is not new, see, e.g., [19, 20]. The main goal of these two papers was to
exploit independent sets to improve parallelism. Independent sets of columns will be the main ingredient
in obtaining an MIQR factorization. In terms of parallel algorithms, Elmroth and Gustavson developed
recursive parallel QR factorizations that can be used in direct solvers for dense normal equations [12, 13].

3. Independent Sets of Columns. The MIQR algorithm proposed in this paper exploits successive
independent sets of columns. This section discusses column independent set orderings.

Given a matrix A = [a1, a2, · · · , an], where a1, a2, · · · , an are column vectors, a subset {aj1 , aj2 , · · · , ajs
}

is called an independent set of columns of A if columns l and k of A are structurally orthogonal for any
l, k ∈ {j1, j2, · · · , js} and l 6= k. Figure 3.1(a) shows an example of such an independent set of five columns
(marked as open circles). The issue of finding independent sets of columns is not new and has been discussed
in depth in the literature in different contexts, see, e.g. [11, 21, 23, 31]. Here, we formalize the problem into
that of finding an independent set in a graph.

3.1. Finding Independent Set of Columns. Two columns ai and aj of A will be said to be adjacent
if their patterns overlap. This means that if âk is the column vector obtained from ak by replacing all its
nonzero entries by ones, then ai and aj are adjacent iff âT

i âj 6= 0. The opposite of adjacent is structurally
orthogonal : two columns ai and aj are structurally orthogonal if âT

i âj = 0.

Let Â be the pattern matrix obtained from A by replacing all its nonzero entries by ones. We call
Column Orthogonality Graph (COG) of A the graph with n vertices representing the n columns of A, and
with edges defined by the nonzero pattern of ÂT Â. This means that there is an edge between vertex i and
j iff âi and âj are adjacent.

Note that an edge from vertex i to vertex j is defined if cos θij 6= 0, where θij is the angle between
vectors âi and âj . Define the following matrices,

B =

[
â1

‖â1‖
,

â2

‖â2‖
, · · · ,

ân

‖ân‖

]
and C = BT B . (3.1)

Since the generic entry cij of C can be written as cij ≡ cos θij , then the graph COG(A) is nothing but the
adjacency graph of C. Therefore, the problem is to find a maximal independent set of a graph. Let E be
the set of all edges in COG(A) and V the set of its vertices. Recall that an independent set S is a subset of
the vertex set V such that

if x ∈ S, then (x, y) ∈ E or (y, x) ∈ E ⇒ y /∈ S,
i.e., any vertex in S is not allowed to be adjacent with any other vertex in S either by incoming or outgoing
edges. An independent set S is maximal if

S′ ⊇ S is an independent set ⇒ S′ = S.
Note that the maximal independent set is not necessarily the independent set with maximum cardi-

nality. In fact, to find the latter is NP hard. In the following, the term independent set will always mean a
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Fig. 3.1. (a) An independent set of five columns (open circles) in a 25 × 12 matrix. (b) The independent set of columns
are permuted to the first five columns of the matrix.

maximal independent set. The following greedy algorithm, see e.g., [31], can be used to find an independent
set S. In the algorithm, U is the set of all unmarked vertices, which initially includes all the vertices.

Algorithm 3.1. Independent set ordering
1. Let S := φ and U := {1, 2, · · · , n}. j := 1.
2. Do While U 6= φ and j ≤ maxSteps:
3. Let k := next unmarked vertex in U .
4. S := S ∪ {k}. Mark and remove k from U .
5. Mark all vertices adjacent to k and remove them from U .
6. j := j + 1.
7. EndDo

Let |S| be the size of S. Assume that the maximum degree of all vertices in S is dS . According to
Algorithm 3.1, the total number of vertices marked in line 5 is n− |S|. At the same time, whenever a vertex
is added to S, at most dS vertices will be marked, which means the total number of vertices marked is at
most dS |S|. Therefore, we have n − |S| ≤ dS |S| and as a result

|S| ≥
n

1 + dS

. (3.2)

This suggests that we may obtain S with a larger number of vertices by visiting first the vertices with smaller
degrees [31].

Algorithm 3.2. Independent set ordering with increasing degree traversal
1. Find an ordering i1, i2, · · · , in of the vertices by increasing degree.
2. Let S := φ and U := {i1, i2, · · · , in}. j := 1.
3. While U 6= φ and j ≤ maxSteps:
4. Let ik := next unmarked vertex in U .
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5. S := S ∪ {ik}. Mark and remove ik from U .
6. Mark all ik’s adjacent vertices and remove them from U .
7. j := j + 1.
8. EndDo

Algorithm 3.2 first sorts the vertices in increasing degree order, and then applies the greedy algorithm.
In general, Algorithm 3.2 will find a larger size independent set at the cost of an initial sorting of the vertices.
Algorithm 3.2 is used in the implementation of MIQR.

3.2. Estimates for the size of the independent set. The lower bound of the independent set size
given by (3.2) is a rough one. The goal of this section is to find a more accurate estimate of the size of the
independent set using a simple probabilistic model.

Consider an m × n sparse matrix A with Nnz nonzero entries, and assume that these nonzero entries
are randomly distributed. In particular each column will have on average the same number of nonzero entries
which is ν ≡ Nnz/n. Under this assumption, Algorithms 3.1 and Algorithm 3.2 would be equivalent and
therefore, we can restrict our study to Algorithm 3.1. We denote by µ the average number of nonzero entries
per row, so µ ≡ Nnz/m.

For any column vector a of A, we first calculate the expected number of column vectors that are not
structurally orthogonal to a. If a has only one nonzero element, then there are on average n−1−(µ−1) = n−µ
possible columns among n − 1 that will be orthogonal to a, so the probability that any given column be
orthogonal to a is (n−µ)/(n−1). Since a has v nonzero elements on average, the probability that any given
column be orthogonal to a is

p =

(
n − µ

n − 1

)ν

. (3.3)

As a result the probability that any given column is not orthogonal to a is 1−p. Thus, the expected number
of column vectors that are not structurally orthogonal to a is

η = (n − 1) ×

(
1 −

(
n − µ

n − 1

)ν)
. (3.4)

Note that η is simply the average degree of a node in COG(A) in the very first step of Algorithm 3.1, since
it represents the average number of columns that are not orthogonal to a given column of A.

Consider now an arbitrary step j of Algorithm 3.1. We will call Nj the number of columns left to
be considered, i.e., the number of unmarked columns in U at the end of step j of Algorithm 3.1. Initially
N0 = n. The notation simplifies somewhat if we also define nj ≡ Nj − 1.

Lemma 3.1. Let Nj be the expected number of unmarked columns at the end of the j-th step of
Algorithm 3.1 and let nj ≡ Nj − 1. Then nj satisfies the following recurrence relation

nj =

((
1 −

ν

m

)(
1 +

1

nj−1

))ν

nj−1 − 1 . (3.5)

Proof.We begin by observing that if we consider the matrix consisting of the unmarked columns of A
at any given step then its average number of nonzero entries per column remains unchanged and equal to
ν. In contrast, the removal of one column will change µ. If µj is the average number of nonzero entries per
row for the matrix of unmarked columns, then

µj =
ν × Nj

m
=

(nj + 1)ν

m
. (3.6)

Assume that the independent set obtained is S = {i1, i2, · · · , is}, where i1 is the first vertex added into S, i2
is the second vertex added into S, and so on. When ij is added, the estimated number of vertices that are
newly marked in line 5 in Algorithm 3.1 is simply the expected number of columns that are not orthogonal
to a given column for the matrix of unmarked columns. This is simply the expression (3.4) in the very first
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step, i.e., when j = 1. For a general step it will be the same expression with n replaced by Nj and µ by µj .
Note that ij itself is also marked. The new number of unmarked columns is therefore

Nj = Nj−1 − 1 − (Nj−1 − 1) ×

(
1 −

(
Nj−1 − µj−1

Nj−1 − 1

)ν)
.

This yields the following expression for nj

nj =

(
nj−1 + 1 − µj−1

nj−1

)ν

nj−1 − 1 =

(
1 −

µj−1 − 1

nj−1

)ν

nj−1 − 1 .

Substituting, µj−1 given by (3.6) yields the expression

nj =

(
1 −

(nj−1+1)ν
m

− 1

nj−1

)ν

nj−1 − 1 =

(
1 −

ν

m
+

1 − ν
m

nj−1

)ν

nj−1 − 1

=

((
1 −

ν

m

)(
1 +

1

nj−1

))ν

nj−1 − 1

which is the expression to be proved.

The important point about the expression (3.5) is that it is exact. However, it does not seem possible
to obtain a simple closed form expression for nj . One would be tempted to make the approximation 1/nj ≈ 0
but this is not valid since toward the end nj will become small. On the other hand, one can find rough
bounds for nj and substitute them above.

Thus, since n ≥ nj for all j we have

nj ≥ [(1 − ν/m)(1 + 1/n)]νnj−1 − 1 .

Let

α ≡ [(1 − ν/m)(1 + 1/n)]ν and γ ≡
1

1 − α

Note that since α = [(1 − ν/m)(1 + 1/n)]ν is the reduction coefficient for the case j = 1, then 0 < α < 1.
Then we have nj ≥ αnj−1 − 1 and since 1 = γ − αγ this becomes (nj + γ) ≥ α(nj−1 + γ). So,

(ns + γ) ≥ α(ns−1 + γ) ≥ · · · ≥ αs(n0 + γ) → (ns + γ) ≥ αs(n0 + γ)

This means that αs ≤ (ns + γ)/(n0 + γ). Noting that n0 = N0 − 1 = n − 1, and defining K = ns we have
αs ≤ (K + γ)/(n − 1 + γ), which upon taking logarithms and recalling that α < 1, yields,

s ≥ smin ≡
log [1 + (1 − α)K] − log [1 + (1 − α)(n − 1)]

log α
. (3.7)

The accuracy of the estimates derived above will be tested in Section 5. It will be verified in the experiments
that the lower bound (3.7) is not sharp. In fact the experiments indicate, with good consistency, that a
better estimate is to uses 2smin as an estimate of the actual size of s. On the other hand the estimate given
by the direct application of the formula (3.5) can be quite accurate.

4. Multilevel Incomplete QR Factorizations (MIQR). This section presents the Multilevel In-
complete QR (MIQR) preconditioning method for solving sparse least-squares systems. It begins with a
discussion of the complete version of the multilevel QR factorization (Section 4.1). Then, strategies are
proposed to approximate the factorization for preconditioning purposes (Section 4.2).



8 N. LI AND Y. SAAD

4.1. Multilevel QR Factorization (MQR). When the matrix A in Equation (1.1) is sparse, it will
most likely have an independent set of columns aj1 , aj2 , · · · , ajs

. Let PT
1 be the permutation matrix which

permutes aj1 , aj2 , · · · , ajs
into the first s columns. Then we have

APT
1 = [A(1), A(2)], (4.1)

where A(1) = [aj1 , aj2 , · · · , ajs
] is an m× s matrix and A(2) is an m× (n− s) matrix. Figure 3.1(b) shows an

example of such an ordering. Without loss of generality and for simplicity, we still use [a1, a2, · · · , as] and
[as+1, as+2, · · · , an] to denote the columns of A(1) and A(2) respectively.

Since the columns in A(1) are orthogonal to each other, (A(1))T A(1) is a diagonal matrix. Then A(1)

can be trivially factored as A(1) = Q1D1 with

Q1 =

[
a1

‖a1‖2
,

a2

‖a2‖2
, · · · ,

as

‖as‖2

]
, and D1 = diag(‖a1‖2, ‖a2‖2, · · · , ‖as‖2) .

Let now

F1 = QT
1 A(2)

A1 = A(2) − Q1F1.

Then Equation (4.1) can be rewritten as

APT
1 = [A(1), A(2)] = [Q1, A1]

[
D1 F1

0 I

]
. (4.2)

This is a block version of the Gram-Schmidt process, and we have

QT
1 A1 = 0, (4.3)

because QT
1 A1 = QT

1 (A(2) − Q1F1) = QT
1 A(2) − F1 = 0.

In the simplest one-level method, we apply a standard QR factorization to the reduced m × (n − s)
system A1:

A1P̃
T
2 = Q2R̃2,

where P̃T
2 is an (n− s)× (n− s) permutation matrix (P̃T

2 is the identity matrix when pivoting is not used),

Q2 is an m × (n − s) orthogonal matrix and R̃2 is an (n − s) × (n − s) upper triangular matrix. Equation
(4.2) can then be rewritten as

A = [Q1, Q2]

[
I 0

0 R̃2

] [
I 0

0 P̃2

] [
D1 F1

0 I

]
P1 (4.4)

or

A = QR2P2R1P1 = QR̂, (4.5)

if we use the following notations,

Q = [Q1, Q2], R1 =

[
D1 F1

0 I

]
, R2 =

[
I 0

0 R̃2

]
, P2 =

[
I 0

0 P̃2

]
, and R̂ = R2P2R1P1.

If A has full rank, then R̃2 is nonsingular. It is easy to show that Q is orthogonal because

QT
1 Q2 = QT

1 (A1P̃
T
2 R̃−1

2 ) = (QT
1 A1)P̃

T
2 R̃−1

2 = 0.

As is the case in similar situations related to Gram-Schmidt with pivoting, the final result is equivalent
to applying the standard Gram Schmidt process to a matrix obtained from A by permuting its columns.
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Indeed, starting with (4.4), we have

APT
1 = [Q1, Q2]

[
I 0

0 R̃2

] [
I 0

0 P̃2

] [
D1 F1

0 I

]

= [Q1, Q2]

[
I 0

0 R̃2

] [
D1 F1

0 P̃2

]

= [Q1, Q2]

[
I 0

0 R̃2

] [
D1 F1P̃

T
2

0 I

]
P2

which yields the following QR factorization of a column permuted A:

APT
1 PT

2 = [Q1, Q2]

[
D1 F1P̃

T
2

0 R̃2

]
. (4.6)

Since A is sparse, F1 and A1 are usually sparse as well. Sparsity can also be improved by relaxing
the orthogonality and applying dropping strategies in the incomplete version as will be discussed in Section
4.2. Moreover, because A1 is likely to be still large, the above reduction process can be applied to A1

recursively instead of obtaining its QR factorization with a standard algorithm. The recursion continues
until the reduced matrix is small enough or the matrix cannot be further reduced.

Let A0 ≡ A. Then, generally, the factorization at levels i = 1, 2, . . . , p can be recursively defined as
follows:

Ai−1P̃
T
i = [A

(1)
i−1, A

(2)
i−1] = [Qi, Ai]

[
Di Fi

0 I

]
(4.7)

where A
(1)
i−1 has si columns and similarly to the one-level case P̃T

i is the column permutation which orders
the set of independent columns first. Let

Di = diag
(
‖A

(1)
i−1ej‖2

)

j=1,··· ,si

(4.8)

Qi = A
(1)
i−1D

−1
i (4.9)

Fi = QT
i A

(2)
i−1 (4.10)

Ai = A
(2)
i−1 − QiFi. (4.11)

We will also define as before,

Pi =

[
I 0

0 P̃i

]
,

where the identity block completes the matrix P̃i into an n × n matrix.
The Multilevel QR algorithm can be simply defined as follows.

Algorithm 4.1. MQR
0. A0 ≡ A
1. For i = 1, . . . , p Do

2. Compute permutation P̃i and apply it to Ai−1: Ai−1P̃
T
i = [A

(1)
i−1, A

(2)
i−1]

3. Compute Qi, Di, Fi = QT
i A

(2)
i−1, and Ai = A

(2)
i−1 − QiFi

4. EndDo

5. ApP̃
T
p+1 = Qp+1R̃p+1 (Standard QR with/without pivoting)

We can now establish a result which generalizes the relation (4.6).
Lemma 4.1. At the i-th step of the MQR procedure, the following relation holds,

APT
1 · · ·PT

i = [Q1, · · · , Qi | Ai]

[
R11 R12

0 I

]
(4.12)
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where R11 is a (square) upper triangular matrix, with a size equal to the column size of [Q1, · · · , Qi].

Proof.The proof is by induction on i. We begin by pointing out that P̃1 ≡ P1. Since A0 ≡ A, Equation
(4.7) shows that the result is trivially true for i = 1. We now assume that (4.12) is true for i and will show
that it is true for i + 1. From (4.7) we can write

Ai = [Qi+1, Ai+1]

[
Di+1 Fi+1

0 I

]
P̃i+1

which, when substituted in (4.12) yields,

[Q1, · · · , Qi, Ai]

[
R11 R12

0 I

]
=

[
Q1, · · · , Qi, [Qi+1, Ai+1]

[
Di+1 Fi+1

0 I

]
P̃i+1

] [
R11 R12

0 I

]

= [Q1, · · · , Qi, [Qi+1, Ai+1]]




R11 R12

0

[
Di+1 Fi+1

0 I

]
P̃i+1




= [Q1, · · · , Qi, Qi+1, Ai+1]




R11 R12P̃
T
i+1

0

[
Di+1 Fi+1

0 I

]



[
I 0

0 P̃i+1

]

This shows that

APT
1 · · ·PT

i PT
i+1 = [Q1, · · · , Qi, Qi+1 | Ai+1]




R11 R12P̃
T
i+1

0

[
Di+1 Fi+1

0 I

]



which is the desired result for level i + 1.

If the procedure stops at the p-th level, then Ap is the final reduced system and we factor it as

ApP̃
T
p+1 = Qp+1R̃p+1

Note that P̃T
p+1 is the identity matrix when pivoting is not used. Then, the above lemma shows that

APT
1 · · ·PT

p PT
p+1 = [Q1, · · · , Qp, Qp+1]

[
R11 R12P̃

T
p+1

0 R̃p+1

]
(4.13)

This yields a permuted QR factorization, since it is easily shown that the columns of [Q1, Q2, . . . , Qp+1] are
orthonormal.

Lemma 4.2. Let A be of full rank, and define PT = PT
1 PT

2 · · ·PT
p+1 and Q = [Q1, · · · , Qp, Qp+1]. Then

Q is unitary and the MQR procedure computes a permuted QR factorization of A, i.e., we have

APT = QR (4.14)

where R is an upper triangular matrix.
Proof.Part of the result is established in (4.13). The only situation when the algorithm will break

down is when a diagonal entry in Di is zero or when the last factorization fails. This is impossible in case
A is of full rank. It only remains to show that the matrix [Q1, · · · , Qp, Qp+1] in (4.13) is indeed unitary.
Within the same block Qi the columns are orthogonal structurally and they are normalized. So QT

i Qi = I.
For j > i we have QT

i Qj = 0. Indeed, the columns of Qj are linear combinations of columns of Ai because
j > i. However, by construction Ai is orthogonal to Qi so we have QT

i Qj = 0.

An illustration of the sizes and the positions of D1, F1, · · · , Dp, Fp, and R̃p+1 can be visualized in
Figure 4.1(a), where a four-level QR factorization process (p = 4) has been applied to matrix WELL1850
(Some information on this matrix can be found in Section 5). Figure 4.1(b) shows the corresponding matrix
Q = [Q1, · · · , Qp, Qp+1]. Note that in order to obtain a better quality picture, the Q and R factors are
scaled differently in the figure (the column/row size of R is the same as the column size of Q).
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Fig. 4.1. The MQR structure for matrix WELL1850 (1850 × 712, nnz = 8758)

Another formulation of the factorization which will be used later, is to write

A = QR̂, (4.15)

where R̂ = Rp+1Pp+1RpPp · · ·R1P1 ∈ R
n×n and Q = [Q1, · · · , Qp, Qp+1] ∈ R

m×n. Under similar notations
as the one level process, Ri has the form

Ri =




I 0 0
0 Di Fi

0 0 I


 , i = 1, 2, · · · , p

and

Rp+1 =

[
I 0

0 R̃p+1

]
.

4.2. Multilevel Incomplete QR Factorization. If the multilevel QR factorization is complete, we
have

AT A = R̂T R̂.

Since R̂ is a product of permutation matrices and upper triangular matrices, it is normally inexpensive to
solve the equation (R̂T R̂)x = y. Therefore, an approximation M ≈ R̂T R̂, obtained through an incomplete
multilevel QR factorization process, can be used as a preconditioner for solving Equation (1.2). In the
following, a few strategies are considered for developing practical variants of the exact multilevel QR (MQR)
algorithm just described. These will lead to the MIQR preconditioner.

4.2.1. Relaxed Independent Set of Columns. At each level of MQR, we would like to find a
larger independent set of columns so that the reduced matrix is smaller. However, there are cases when an
independent set with a large size does not even exist. For example, in an extreme case where all entries in
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one row of a matrix are nonzero, any two column vectors of the matrix are adjacent to each other, i.e., an
edge exists between any two vertices in COG(A). In this case, the largest independent set will consist of
one vertex only.

For the purpose of preconditioning, the orthogonality requirement can be somewhat relaxed since only
an approximation of the factorization is needed. Therefore, in order to obtain a larger independent set, as
well as to reduce fill-in, we will treat two column vectors as being “orthogonal” whenever the acute angle
between them is “close” to a right angle. Specifically, for a given small value τθ > 0, an edge from vertex
i to vertex j is considered to belong to COG(A) if | cos θij | ≥ τθ. This replaces the original condition that
cos θij 6= 0. The scalar τθ is termed the angle threshold. We denote the Column Orthogonality Graph
obtained under the angle threshold τθ by COG(A, τθ).

Let C(τθ) be the matrix obtained by replacing all elements less than τθ in absolute value in the matrix
C defined by (3.1) with 0. Clearly, the graph COG(A, τθ) is the adjacency graph of the matrix C(τθ).
Recall that the entries in C (and C(τθ)) are cosines of columns of B, which represent the patterns of the
columns of A. Alternatively, the cosines can be calculated using the real values in A instead. To do so,
B = [ a1

‖a1‖
, a2

‖a2‖
, · · · , an

‖an‖ ] is used to calculate C instead of B given by (3.1). Once COG(A, τθ) is obtained,

Algorithm 3.1 or 3.2 can be applied to COG(A, τθ) to find an independent set. The independent set found
in this way is in general significantly larger than that found by applying the same algorithm on COG(A).
The effectiveness of this relaxed independent set ordering strategy is illustrated in Section 5.

4.2.2. Dropping Strategies. The multilevel process yields denser and denser intermediate matrices
Fi in general. To ensure a moderate memory usage, we usually drop small terms from Fi. Since a relaxed
orthogonality strategy is employed (see previous section), this same strategy is applied when computing the

matrix Fi. Recall that Fi = QT
i A

(2)
i−1, where Qi includes normalized columns in the independent set S found

at level i, and A
(2)
i−1 includes all remaining columns which are not in S. Therefore, any element in Fi is

an inner product between a column vector in S and another column vector not in S. For a given angle
threshold τθ, the element is replaced by 0 if the cosine of the angle between these two column vectors is

less than τθ in absolute value. Assume that Fi = {fuv}, Qi = [q1, q2, · · · , qs], and A
(2)
i−1 = [a1, a2, · · · , at].

Then fuv = qT
u av = ‖av‖2 cos θuv, where θuv is the angle between qu and av. Thus, fuv is dropped if

|fuv| < τθ‖av‖2.
The final reduced matrix is normally much denser than the original matrix A. If it is small enough (e.g.,

around one hundred columns), a standard QR factorization can be applied. Note that this matrix can now
be treated as dense in order to take advantage of effective block computations. Otherwise, an incomplete
QR factorization is applied. Although the final reduced matrix can be factorized by any incomplete QR
factorization method, the incomplete Gram-Schmidt process (Algorithm 2.1) is used in our implementation.
The dropping strategy used is similar to the dual threshold-based dropping strategy in ILUT. Fill-ins are
dropped dynamically when the columns of Q and R are being formed and based on the magnitude of the
columns generated.

4.2.3. MIQR. With the relaxed independent sets of columns and dropping strategies described above,
the MIQR algorithm can be described as follows.

Algorithm 4.2. Multilevel Incomplete QR Factorization with Angle Threshold (MIQR(τθ))
1. k := 0; A(0) = A; p = maxlev.
2. While k < p Do:
3. Construct Column Orthogonality Graph under angle threshold τθ: COG(Ak, τθ).

4. Find an independent set permutation P̃k+1 for COG(Ak, τθ).

5. Apply permutation [A
(1)
k , A

(2)
k ] = AkP̃T

k+1.

6. Let Dk+1 := diag(||a
(k)
1 ||, · · · , ||a

(k)
s ||), where A

(1)
k = [a

(k)
1 , · · · , a

(k)
s ].

7. Let Qk+1 := A
(1)
k D−1

k+1 and Fk+1 := QT
k+1A

(2)
k .

8. Apply a dropping strategy to Fk+1.

9. Ak+1 := A
(2)
k − Qk+1Fk+1.

10. Apply a dropping strategy to Ak+1.
11. k := k + 1.
12. EndDo
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13. Apply IQR (or QR) on Ap: ApP̃
T
p+1 ≈ Qp+1R̃p+1

Some implementation details are now discussed. Theoretically, we can continue the multilevel in-
complete QR factorization process until the reduced matrix is very small or the system cannot be further
reduced. Practically, the overhead of the multilevel process increases substantially as more levels are taken.
At the same time, since the multilevel process yields denser and denser matrices, the number of independent
columns available becomes much smaller. Therefore, it is best to stop the multilevel process when a certain
number of levels (maxlev in Algorithm 4.2) is reached or the problem size reduced is not significant (e.g.
less than thirty percent of the previous problem size).

Recall that at each level COG(A, τθ) is the adjacency graph of C(τθ) which is available from the
matrix C = BT B, see, (3.1). However, the matrix C need not be calculated explicitly. Since we determine
the degrees of the vertices one by one, only a single row of C is needed at any given time. In other words,
to determine the degree of vertex i, only the i-th row of C needs to be calculated. This row contains the
inner products between the i-th column of B and all other columns. As indicated in [29], see also in Section
2, these inner products can be efficiently calculated as a linear combination of the rows of B. For this
reason, although a reduced matrix is naturally formed and stored column-wise during the multilevel QR
factorization process, we maintain an index array for easily accessing its elements row-wise. Furthermore,
since C is symmetric, only its upper part (i.e., the inner products between the i-th column of B and columns
from i + 1 to n) needs to be calculated.
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Fig. 4.2. The MIQR structure for matrix WELL1850 (1850 × 712, nnz = 8758)

As is standard practice, the permutation matrices P̃k are not formed explicitly. Instead, a permutation
array perm(k) is employed to hold the new ordering of the columns at each level, along with the inverse
permutation array iperm(k). With this strategy, the columns of matrix Ak are kept in their original ordering
and the permutation step (line 5 in Algorithm 4.2) can be avoided. To construct an MIQR preconditioner,

the matrix array {D1, F1,D2, F2, · · · ,Dp, Fp, R̃p+1} and the permutation arrays perm(k) and iperm(k) are
stored. Similarly to Figure 4.1, this matrix array can be organized in an n×n matrix as illustrated in Figure
4.2, where τθ = 0.1 is used and IQR is applied to the final reduced matrix. Moreover, since the matrices
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Qk are not needed for the preconditioning purpose, they are discarded at the end of the k-th level recursion
respectively.

Other than the dropping strategies discussed in Section 4.2.2, an optional dropping rule may be applied
to Ak+1 as well (line 10 in Algorithm 4.2). For example, any nonzero element in Ak+1 whose absolute value
is less than a threshold τ times a certain norm of the column, is replaced by 0. However, in the tests reported
in Section 5, we did not apply dropping to Ak+1 (i.e., τ = 0).

As mentioned before, the matrix R̂ defined as in (4.15) is a product of permutation matrices and

upper triangular matrices. To precondition the normal equations, we need to solve the systems R̂x = y and
R̂T x = y. Let sk, (k = 1, 2, · · · , p) be the size of the independent set of columns at level k. Define r1 = 1

and rk = rk−1 + sk−1 for k = 2, · · · , p + 1. Algorithms 4.3 and 4.4 are used to solve the systems R̂x = y and

R̂T x = y respectively.

Algorithm 4.3. Solving R̂x = y
1. x(1 : n) := y(1 : n).
2. For k = 1 : p Do:
3. Apply permutation perm(k) to x(rk : n).
4. x(rk : rk+1 − 1) := D−1

k x(rk : rk+1 − 1).
5. x(rk+1 : n) := x(rk+1 : n) − FT

k x(rk : rk+1 − 1).
6. EndDo

7. Solve R̃p+1z = x(rp+1 : n) for z.
8. x(rp+1 : n) := z.

Algorithm 4.4. Solving R̂T x = y
1. x(1 : n) := y(1 : n).

2. Solve R̃p+1z = y(rp+1 : n) for z.
3. x(rp+1 : n) := z.
4. For k = p : −1 : 1 Do:
5. x(rk : rk+1 − 1) := D−1

k [x(rk : rk+1 − 1) − Fkx(rk+1 : n)].
6. Apply permutation iperm(k) to x(rk : n).
7. EndDo

4.3. Analysis. In this section we will analyze the errors generated by the incomplete Multilevel QR
factorization that are due to dropping small terms. Two questions are important to consider. The first is:
how far does the result deviate from satisfying the relation APT = QR? The second is: how much does Q
deviate from orthogonality in the presence of dropping?

The basic step of MIQR can be described by approximate versions of the relations (4.7 – 4.11). Specif-
ically, the equations that define Fi and Ai will change while Qi, Di can be assumed to be exact.

Di = diag
(
‖A

(1)
i−1ej‖2

)

j=1,··· ,si

(4.16)

Qi = A
(1)
i−1D

−1
i (4.17)

F̃i = QT
i A

(2)
i−1 + EF,i (4.18)

Ãi = A
(2)
i−1 − QiF̃i + Ei (4.19)

The term Ei comes from dropping entries when forming the block Ai while the term EF,i comes from
dropping when forming the matrix Fi, see Algorithm 4.2. Then assuming Ai−1 is exact, the relation (4.7)
becomes,

Ai−1P̃
T
i = [A

(1)
i−1, A

(2)
i−1] = [Qi, Ãi]

[
Di F̃i

0 I

]
+ [0, Ei] (4.20)

Notice the remarkable absence of EF,i from the error in (4.20). The error is imbedded in F̃i. Before
continuing, we can further notice that if there is no dropping when building Ai, then Ei ≡ 0 and the relation
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(4.7) becomes exact. This means that in the end we would expect to have the relation APT = QR exactly
satisfied, but Q is not necessarily unitary. Now we consider the general case and will attempt to analyze the
difference between APT and QR.

Consider the result of Lemma (4.1) which would be desirable to generalize. In the following we attempt
to extend the argument used in the proof of Lemma 4.1. We write the above relation for level i + 1 as

Ãi =
[
Qi+1, Ãi+1

] [
Di+1 F̃i+1

0 I

]

︸ ︷︷ ︸
Zi+1

P̃i+1 + [0, Ei+1]︸ ︷︷ ︸
Gi+1

P̃i+1 .

Substituting in (4.12) (where Ai is replaced by the computed Ãi at the i-th step) yields,

[
Q1, · · · , Qi, Ãi

] [
R11 R12

0 I

]
=

[
Q1, · · · , Qi | [Qi+1, Ãi+1]Zi+1P̃i+1 + Gi+1P̃i+1

] [
R11 R12

0 I

]

=
[
Q1, · · · , Qi | [Qi+1, Ãi+1]

] [
R11 R12

0 Zi+1P̃i+1

]
+ [0, Gi+1P̃i+1]

=
[
Q1, · · · , Qi, Qi+1, Ãi+1

] [
R11 R12P̃

T
i+1

0 Zi+1

] [
I 0

0 P̃i+1

]

+[0, Gi+1]

[
I 0

0 P̃i+1

]

In the sequel we will denote by Ri the matrix

[
R11 R12

0 I

]
at step i. So the above relation translates

into
[
Q1, · · · , Qi, Ãi

]
Ri =

[
Q1, · · · , Qi, Qi+1, Ãi+1

]
Ri+1Pi+1 + [0, Gi+1]Pi+1 . (4.21)

The left-hand side of the above relation is equal to APT
1 · · ·PT

i + Ei, where Ei denotes the total error made
at step i of the factorization. Using a similar notation for the first term of the right-hand side will transform
(4.21) into

APT
1 · · ·PT

i + Ei = (APT
1 · · ·PiP

T
i+1 + Ei+1)Pi+1 + [0 Gi+1]Pi+1 (4.22)

This means that Ei = Ei+1Pi+1 + [0 Gi+1]Pi+1 and it establishes the remarkably simple recurrence
relation for the total error

Ei+1 = EiP
T
i+1 − [0, Ei+1] (4.23)

where the zero block in the right-hand side has the same number of columns as [Q1, Q2, · · · , Qi]. In particular
we have

‖Ep+1‖ ≤

p+1∑

i=1

‖Ei+1‖ .

However, this inequality does not say everything about the errors. For example, it is clear that the last
columns (after permutation) will undergo more perturbations than the first ones and they will therefore be
less accurate. This is understandable since, for example, the columns of the first level are not perturbed by
the other columns.

Consider now the accuracy of the process with respect to orthogonality. For simplicity, we will consider
only the situation where there is no dropping in forming Ãi, i.e., the case where Ei = 0. Furthermore, we
also assume that the Qis, considered individually, are exactly orthonormal, i.e., QT

i Qi = I. In this case, it
is easy to see from (4.23) that the relation APT = QR is exactly satisfied. However, dropping in the entries
of Fi will cause loss of orthogonality.
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Consider only one step of the process. From (4.17), (4.18) and (4.19) (with Ei = 0) we obtain,

QT
i Ãi = QT

i (A
(2)
i−1 − QiF̃i) = QT

i A
(2)
i−1 − (QT

i A
(2)
i−1 + EF,i) = −EF,i .

Next we wish to establish a relation between this term and QT
i Q. Specifically, because of the recursive

nature of the algorithm, at step i we have a relation similar to that given by Lemma 4.2. A little additional
notation is needed. Let Qi = [Qi, · · · , Qp+1] and PT

i = PT
i · · ·PT

p+1. Then,

ÃiPi = QiRi

where Ri is an upper triangular matrix. Multiplying to the left by QT
i yields,

QT
i ÃiPi = QT

i QiRi

so that

−EF,iPiR
−1
i = QT

i [Qi, · · · , Qp+1] .

The above relation shows in a simple way how the error made at step i will propagate to the matrices
QT

i Qj for j > i. The result involves the inverse of an unknown triangular matrix. The matrix Ri establishes

the relation between the Qj ’s and the matrix Ãi. For example, for i = 1 we would get all the matrices QT
1 Qj

for j > 1 in terms of EF,1 the error related to dropping in the F matrix in the first step.
An interesting and important question which we do not address in this paper is the issue of effective

dropping. In the papers [8, 9], an idea was considered for dropping in such a way that the preconditioned
matrix is close to the identity. This is in contrast with other methods which try to make the preconditioner
close to A. Though this idea involves the inverse of the preconditioner, heuristics can be used to provide
quite effective methods. In the context of incomplete QR, this may be doable but it will undoubtedly be
more complex.

5. Numerical results. In this section, we test the performance of the MIQR method on ten least-
squares problems from real applications. Table 5.1 provides some basic information about the test matrices.
In the table, m is the number of rows, n is the number of columns, nnz is the total number of nonzeros, µ
is the average number of nonzeros per row, and ν is the average number of nonzeros per column. Matrices
ILLC1850 and WELL1850 are available from the Matrix Market 1. The next two matrices are from a 3D mesh
parameterization problem 2. These matrices are generated using the method of least-squares conformal maps
as described in [22]. The last six matrices (SMALL2, MEDIUM2, LARGE, LARGE2, VERYL, VERYL2)
arise in animal breeding studies [15, 16].

We first test the accuracy of the estimate on the number of independent set of columns as described in
Section 3.2. Table 5.2 shows the lower bounds (in field “New Low. s”) estimated by Equation (3.7) (K = 1)
and the values estimated by solving Equation (3.5) numerically (in field “Est. Val. s”) for the ten matrices.
These lower bounds and estimated values are compared with the real values calculated by Algorithm 3.2
(in field “Real Val. s”). For reference, we also calculate the rough lower bounds estimated by Equation
(3.2) (in field “Old Low. s”), where the average degree η (Equation (3.4)) is used as the value of dS . It is
clear that the values calculated using (3.7) provide much closer lower bounds. Recall that (3.5) and (3.7)
are derived under the assumption that the nonzero elements of a matrix are randomly distributed. In spite
of this assumption, the estimated values can still provide good approximations for the matrices from real
applications.

Table 5.3 presents the results of finding the independent columns using different angle tolerances τθ as
described in Section 4.2.1. In the table, τθ = 0.00, 0.05, 0.10, 0.15 and 0.20 (corresponding to angles 90◦,
87.13◦, 84.26◦, 81.37◦, and 78.46◦ respectively) are tested. Algorithm 3.2 is used for all tests. For each τθ, we
list the number of independent columns found in the first two levels. From the table, as expected, the number
of independent columns found in each level is significantly increased as the angle tolerance increases. As an

1http://math.nist.gov/MatrixMarket/
2Provided to us by Minh Nguyen from the Graphics group at the University of Minnesota, Department of Computer Science

and Engineering.
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Matrix m n nnz µ ν Source
ILLC1850 1,850 712 8,758 4.73 12.30 Surveying
WELL1850 1,850 712 8,758 4.73 12.30 Surveying
MESHPAR1 31,258 15,994 187,498 6.00 11.72 3D mesh parameterization
MESHPAR2 75,650 38,384 453,846 6.00 11.82 3D mesh parameterization
SMALL2 6,280 3,976 25,530 4.07 6.42 Animal breeding
MEDIUM2 18,794 12,238 75,039 3.99 6.13 Animal breeding
LARGE 28,254 17,264 75,018 2.66 4.35 Animal breeding
LARGE2 56,508 34,528 225,054 9.98 6.52 Animal breeding
VERY 174,193 105,882 463,303 2.66 4.38 Animal breeding
VERY2 348,386 211,764 1,389,909 3.99 6.56 Animal breeding

Table 5.1

Information on the test problems: size = m×n; nnz = the number of nonzeros; u = the average number of nonzeros per
row; v = the average number of nonzeros per column

Matrix New Low. s Est. Val. s Real Val. s Old Low. s
ILLC1850 58 196 220 16
WELL1850 58 196 237 16
MESHPAR1 1,114 3,594 2,191 269
MESHPAR2 2,658 8,613 5,090 639
SMALL2 610 1,438 1,171 193
MEDIUM2 1,974 4,544 3,297 633
LARGE 5,046 9,648 9,690 2108
LARGE2 5,357 12,681 9,957 1690
VERY 30,786 59,020 60,454 12815
VERY2 32,659 77,552 61,638 10269

Table 5.2

Independent set sizes: comparison of the lower bounds (3.7), the estimated numbers (3.5), the actual sizes, and the rough
lower bounds (3.2)

example, for matrix VERY2, without relaxing the criterion of finding independent columns (i.e., τθ = 0.00),
only 61,638 and 57,924 independent columns are found in the first two levels of reduction respectively, i.e.,
the problem size reduced after the first two levels is 119,562. With the angle tolerances, the problem sizes
reduced after the first two levels increase to 148,304, 166,439, 190,733, and 194,724 respectively for τθ = 0.05,
0.10, 0.15, and 0.20.

Next, we test MIQR on the ten least-squares problems and compare the results with IQR (Algorithm
2.1) and RIF ([4]) preconditioners. MIQR and IQR were coded in C. RIF provided by Benzi and Tůma was
in FORTRAN90. All codes were compiled in 64-bit mode with the -O2 optimization option. All experiments
were performed on an IBM SP machine, which has four 222MHz processors sharing 16GB memory. Note
that we did not take advantage parallelism in all of our tests, i.e., only one of the four processors was used at
a time. The right-hand sides available from the original data were used. This is in contrast from [4] where
artificial right-hand sides were employed. Algorithm 1.1 with a zero initial guess was used to solve all the
problems. The iterations were stopped when

‖AT b − AT Ax(k)‖2 < 10−8‖AT b − AT Ax(0)‖2

or the maximum iteration count of 2000 was reached. To better compare the preconditioners, we use an
indicator called a fill-in factor to indicate the memory usage for each method. The fill-in factor is defined as
the ratio between the memory used in a preconditioner and the memory used in the original matrix. The
memory used in MIQR is represented by the total number of nonzero entries in matrices D1, F1, · · · , Dp,

Fp, R̃p+1 as shown in Figure 4.2. We wish to compare the preconditioners under similar fill-in factors.
In Table 5.4, we test MIQR on the ten matrices under different angle tolerances τθ. In the table,

“Levels” is the number of levels used, “Res.#” is the number of columns of the final reduced matrix, “Fill-
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Matrix Level τθ = 0.00 τθ = 0.05 τθ = 0.10 τθ = 0.15 τθ = 0.20
ILLC1850 1 220 327 338 343 350

2 130 146 152 159 170
WELL1850 1 237 346 372 395 432

2 122 101 115 119 134
MESHPAR1 1 2,191 6,151 6,594 6,471 6,681

2 2,191 2,483 3,397 4,213 5,411
MESHPAR2 1 5,090 15,685 16,829 15,818 15,655

2 5,090 5,506 7,973 9,823 13,918
SMALL2 1 1,171 1,623 1,995 2,793 2,884

2 1,147 1,022 1,087 683 684
MEDIUM2 1 3,297 4,836 6,154 8,092 8,308

2 3,110 3,274 2,941 2,273 2,340
LARGE 1 9,690 10,280 10,222 10,545 12,554

2 3,794 4,113 4,563 4,509 3,320
LARGE2 1 9,957 14,681 18,523 24,994 25,724

2 9,312 9,891 8,552 6,038 6,131
VERYL 1 60,454 61,032 64,107 66,579 77,343

2 22,095 23,495 25,781 25,000 20,203
VERYL2 1 61,638 89,500 114,752 153,992 157,109

2 57,924 58,804 51,687 36,741 37,615

Table 5.3

Numbers of independent columns found using different angle tolerances for the first two levels

in” is the fill-in factor, “Pre.T” is the preconditioning time in seconds, “ITS” is the number of iterations
for CGLS to convergence, “Its.T” is the iteration time in seconds, and “Tot.T” is the total time in seconds.
According to the table, and as expected, the size of the final reduced system decreases as the angle tolerance
increases. For example, after the same number of reduction levels, the reduced system sizes for matrix
MEDIUM2 are 4,724, 1,756, and 254 under angle tolerances 0.00, 0.10, and 0.25 respectively. As a result,
the memory usage of MIQR decreases correspondingly. It is also noticeable that allowing more fill-ins for
the MIQR preconditioner does not necessarily provide faster convergence rates. For matrix ILLC1850 as an
example, it takes CGLS 290 iterations to converge under a fill-in factor of 0.668 when τθ = 0.00. However, it
only takes 172 iterations under a smaller fill-in factor of 0.328 when τθ = 0.10. This is because the accuracy
of the MIQR preconditioner is not only determined by the fill-ins allowed but by many other factors. For
example, it is not known how dropping affects the orthogonality of the underlying Q factor. Recall that
AT A − M is not as important as I − M−1AT A when it comes to analyzing convergence.

We further examine the relationship between the angle tolerance, the fill-in factor, the number of
iterations, and the execution times for matrix MEDIUM2 in Figure 5.1. Figure 5.1(a) shows the fill-in
factors of the MIQR preconditioner as a function of the angle tolerance τθ. Figure 5.1(b) shows the number
of iterations required for CGLS to converge as a function of the angle tolerance τθ. Figure 5.1(c) shows the
preconditioning time, the iteration time, and the total time as a function of the angle tolerance τθ. Finally,
Figure 5.1(d) shows the total time used to solve problem MEDIUM2 as a function of the fill-in factor of the
MIQR preconditioner.

Table 5.5 compares MIQR with IQR and RIF. The symbol “-” in the table indicates that convergence
was not obtained in 2000 iterations. Note that matrices ILLC1850, WELL1850, LARGE, and VERYL have
also been tested in [4] but using artificial right-hand sides. From the table, it is clear that although the
setup times of MIQR were slightly more expensive than those of IQR under similar memory usage, both the
robustness and the total execution time were significantly improved. For matrices LARGE2 and VERYL2,
even when much more memory was allowed, IQR failed to converge in 2000 iterations. We also observe
that MIQR had better overall performances than RIF in general. For most matrices, MIQR requires fewer
number of iterations to converge than that required by RIF. This is especially true for matrices MESHPAR1,
MESHPAR2, and VERYL2, for which MIQR required significantly fewer iterations under similar memory
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Matrix τθ Levels Res.# Fill-in Pre.T ITS Its.T Tot.T
0.00 2 360 0.668 0.04 290 0.35 0.39

ILLC1850 0.10 4 77 0.328 0.04 172 0.18 0.22
0.20 4 34 0.219 0.02 183 0.17 0.19
0.00 2 353 0.482 0.04 85 0.10 0.14

WELL1850 0.10 5 60 0.322 0.06 68 0.06 0.12
0.20 5 10 0.224 0.02 133 0.12 0.14
0.00 2 11,612 0.763 7.25 460 14.27 21.52

MESHPAR1 0.04 2 7,536 0.567 5.52 405 10.81 16.33
0.08 2 6,424 0.513 4.60 530 13.59 18.19
0.00 3 25,458 1.097 34.89 731 71.13 106.02

MESHPAR2 0.05 3 12,672 0.650 22.02 800 60.84 82.86
0.10 3 8,938 0.495 13.00 1357 91.39 104.39
0.00 3 1,299 1.073 0.21 247 1.19 1.40

SMALL2 0.10 3 506 0.530 0.15 241 0.93 1.08
0.20 3 132 0.334 0.08 284 0.89 0.97
0.00 3 4,724 1.299 0.88 223 3.89 4.77

MEDIUM2 0.10 3 1,756 0.628 0.55 235 3.03 3.58
0.25 3 254 0.304 0.16 407 4.09 4.25
0.00 3 2,134 1.247 0.72 44 0.86 1.58

LARGE 0.05 3 1,446 1.014 0.52 69 1.21 1.73
0.10 4 594 0.867 2.22 128 2.12 4.34
0.00 3 12,087 1.234 3.13 361 20.62 23.75

LARGE2 0.10 3 3,769 0.515 2.25 442 18.29 20.54
0.20 3 292 0.251 0.37 461 15.47 15.84
0.00 4 8,176 1.120 6.88 118 17.11 23.99

VERYL 0.18 4 613 0.512 2.19 221 25.59 27.78
0.20 4 259 0.447 1.56 196 21.51 23.07
0.00 1 150,126 1.430 40.66 916 401.60 442.26

VERYL2 0.10 4 11,586 0.502 26.50 497 157.71 184.21
0.25 3 1,522 0.256 3.22 737 186.02 189.24

Table 5.4

Performance of MIQR under different angle tolerances (τθ = 0.000 and τθ = 0.015)

costs.

6. Conclusion. We have presented a preconditionning technique for solving large sparse least-squares
systems, which is based on a multilevel incomplete QR factorization. The algorithm exploits a divide
and conquer strategy which takes advantage of structurally orthogonal columns. This allows to gradually
reduce a large problem to a significantly smaller one with little computational effort. The algorithm first
finds an independent set of columns, which are structurally orthogonal. The remaining columns are then
orthogonalized against this first set of columns and the resulting set is orthogonalized recursively. In order
to increase the size of the independent sets of columns, we proposed a strategy which consists of relaxing
the orthogonality requirement. Numerical results have shown that this strategy is quite effective in finding
independent column sets with large cardinality. The MIQR preconditioner has been tested and compared
with a standard Incomplete QR factorization and with the Robust Incomplete Factorization (RIF). The
numerical tests show that MIQR is robust and efficient. We have not implemented a parallel version of the
algorithm. However, the method has been designed with parallelism in mind and a parallel implementation
should scale well.

In Section 5, we have observed that the performances of MIQR may be very different when the angle
tolerance varies. It remains to investigate a systematic way of selecting a good angle tolerance for a given
problem. As mentioned in Section 4.2.2, the current dropping strategies at all levels use simple techniques
which tend to yield a factorization that is accurate, i.e., such that APT − QR is small. As is the case for
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Fig. 5.1. MIQR performance on matrix MEDIUM2: (a) Fill-in factor vs. angle tolerance; (b) Total number of iterations
vs. angle tolerance; (c) Preconditioning time, iteration time, and total time vs. angle tolerance; (d) Total Time vs. fill-in
factor.

ILU factorizations, this is not necessarily a good strategy [8]. It may be possible to adapt Bollhöfer’s work
[8] to this context and develop more sophisticated dropping strategies which will in all likelihood improve
the robustness of the scheme.
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