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Abstract

This paper considers the problem of dimensionality reduction by orthogonal projec-
tion techniques. The main feature of the proposed techniques is that they attempt to
preserve both the intrinsic neighborhood geometry of the data samples and the global
geometry. In particular we propose a method, named Orthogonal Neighborhood Pre-
serving Projections, which works by first building an “affinity” graph for the data, in
a way that is similar to the method of Locally Linear Embedding (LLE). However, in
contrast with the standard LLE where the mapping between the input and the reduced
spaces is implicit, ONPP employs an explicit linear mapping between the two. As a re-
sult, handling new data samples becomes straightforward, as this amounts to a simple
linear transformation. We show how to define kernel variants of ONPP, as well as how
to apply the method in a supervised setting. Numerical experiments are reported to
illustrate the performance of ONPP and to compare it with a few competing methods.

1 Introduction

The problem of dimensionality reduction appears in many fields including data mining, ma-
chine learning and computer vision, to name just a few. The goal of dimensionality reduction
is to map the high dimensional samples to a lower dimensional space such that certain prop-
erties are preserved. Usually, the property that is preserved is quantified by an objective
function and the dimensionality reduction problem is formulated as an optimization prob-
lem. For instance, Principal Components Analysis (PCA) is a traditional linear technique
which aims at preserving the global variance and relies on the solution of an eigenvalue prob-
lem involving the sample covariance matrix. Locally Linear Embedding (LLE) [7, 11] is a
nonlinear dimensionality reduction technique which aims at preserving the local geometries
at each neighborhood.
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While PCA is good at preserving the global structure, it does not preserve the locality of
the data samples. In this paper, a linear dimensionality reduction technique is advocated,
which preserves the intrinsic geometry of the local neighborhoods. The proposed method,
named Orthogonal Neighborhood Preserving Projections (ONPP), projects the high dimen-
sional data samples on a lower dimensional space by means of a linear transformation V . The
dimensionality reduction matrix V is obtained by minimizing an objective function which
captures the discrepancy of the intrinsic neighborhood geometries in the reduced space. Ex-
perimental evidence seems to indicate that this feature is crucial in preserving the global
geometry as well, via the interaction of overlapping neighborhoods. In particular, this sug-
gests that ONPP can be effectively used for data visualization purposes and that it may be
viewed as a synthesis of PCA and LLE.

ONPP constructs a weighted k-nearest neighbor (k-NN) graph which models explicitly
the data topology. Similarly to LLE, the weights are built to capture the geometry of
the neighborhood of each point. The linear projection step is determined by imposing the
constraint that each data sample in the reduced space is reconstructed from its neighbors by
the same weights used in the input space. However, in contrast to LLE, ONPP computes
an explicit linear mapping from the input space to the reduced space. Note that in LLE the
mapping is implicit and it is not clear how to embed new data samples (see e.g. research
efforts by Bengio et al. [2]). In the case of ONPP the projection of a new data sample is
straightforward as it simply amounts to a matrix by vector product.

ONPP shares some properties with Locality Preserving Projections (LPP) [4]. Both
are linear dimensionality reduction techniques which construct the k-NN graph in order to
model the data topology. However, our algorithm uses the optimal data-driven weights of
LLE which reflect the intrinsic geometry of the local neighborhoods, whereas the uniform
weights (0/1) used in LPP aim at preserving locality without explicit consideration to the
local geometric structure. Note that Gaussian weights can be used in LPP but these are
somewhat artificial and require the selection of an appropriate value of the parameter σ,
the width of the Gaussian envelope. Although this issue is often overlooked, it is crucial
for the performance of the method and remains a serious handicap when using Gaussian
weights. Experimental results suggest that ONPP is effective in conveying meaningful local
and global geometric information from high dimensional samples to low dimensional ones. A
second significant difference between LLE and ONPP, is that the latter forces the projection
to be orthogonal. In LLE, the projection is defined via a certain objective function, whose
minimization leads to eigenvectors of a generalized eigenvalue problem.

2 Dimensionality reduction by projection

Given a dataset X = [x1, x2, . . . , xn] ∈ Rm×n and the dimension d of the reduced space, with
d ¿ m, the goal of dimensionality reduction is to produce a set Y which is an accurate
representation of X, but of smaller dimension. This can be achieved in different ways
by selecting the type of the reduced dimension Y as well as the desirable properties to be
preserved. By type we mean whether we require that Y be simply a low-rank representation
of X, or a data set in a vector space with fewer dimensions. Examples of properties to be
preserved include the global geometry, or neighborhood information.
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Projection-based techniques consist of replacing the original data X by a matrix of the
form

Y = V >X, where V ∈ Rm×d. (1)

Thus, each vector xi is replaced by yi = V >xi a member of the d-dimensional space Rd. If
V is a unitary matrix, then Y represents the orthogonal projection of X into the V -space.

The best known technique in this category is Principal Component Analysis (PCA).
PCA computes V such that the variance of the projected vectors is maximized, i.e, V is the
maximizer of

max
V ∈ Rm×d

V >V = I

∥

∥

∥

∥

∥

yi −
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n

n
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j=1
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∥

2

2

, yi = V >xi.

As can be easily shown, the matrix V which maximizes the above quantity is simply the
set of left singular vectors of the matrix X(I − 1

n
ee>), associated with the largest d singular

values (e is the vector of ones).

2.1 LPP and OLPP

Another related techniques is that of Locality Preserving Projections. LPP projects the data
so as to preserve a certain affinity graph constructed for the data. This graph can be defined
for example by taking a certain nearness measure and include all points within a radius ε of
a given vertex, to its adjacency list. Alternatively, one can include those k nodes that are the
nearest neighbors to xi. The weights can be defined in different ways as well. Two common
choices are weights of the heat kernel wij = exp(−‖xi −xj‖

2
2/t) or constant weights (wij = 1

if i and j are adjacent, wij = 0 otherwise). The adjacency graph along with these weights
defines a matrix W whose entries are the weights wij’s which are nonzero only for adjacent
nodes in the graph. Note that the entries of W are nonnegative and that W is sparse and
symmetric.

LPP defines the projected points in the form yi = V >xi by putting a high penalty for
mapping nearest neighbor nodes in the original graph to distant points in the projected data.
Specifically, the objective function to be minimized is

Elpp =
1

2

n
∑

i,j=1

wij‖yi − yj‖
2
2 (2)

Note that the matrix V is implicitly represented in the above function, through the depen-
dence of the yis on V .

The following theorem expresses the above objective function as a trace.

Theorem 2.1 Let W be a certain symmetric affinity graph, and define D = diag(di) with
di =

∑n
j=1 wij. Let the points yi be defined to be the columns of Y = V >X where V ∈ Rm×d.

Then the objective function (2) is equal to

Elpp = tr[Y (D − W )Y >] = tr[V >X(D − W )X>V ] (3)
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Proof. By definition:
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1
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An observation will simplify the first term of the above expression:

n
∑

i=1

diy
>

i yi = tr(DY >Y ) = tr[Y DY >]

and similarly, for the second term we have

n
∑

i,j=1

wijy
>

i yj =
n

∑

i

(Y ei)
>

n
∑

j=1

wjiyj

=
n

∑

i

e>i Y >(Y W )ei

= tr[Y >(Y W )]

= tr[Y WY >] .

Putting these expressions together results in (3).

The matrix L ≡ D − W is the Laplacian of the weighted graph defined above. Note that
e>L = 0, so L is singular.

In order to define the yis by minimizing (3), we need to add a constraint to V . From
here there are several ways to proceed depending on what is desired.

OLPP We can simply enforce the mapping to be orthogonal, i.e., we can impose the con-
dition V >V = I. In this case the set V is the eingenbasis associated with the lowest
eigenmodes of the matrix

Clpp = X(D − W )X> (4)

We refer to this first option as the method of Orthogonal Locality Preserving Projec-
tions. It differs from the original LPP approach, which uses the next option.
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LPP We can impose a condition of orthogonality on the projected set: Y Y > = I. Note that
the rows of Y are orthogonal, which means that the d basis vectors in Rn on which the
xi’s are projected are orthogonal. Alternatively, we can also impose an orthogonality
with respect to the weight D: Y DY > = I. (This gives bigger weights to points yi’s for
which di

∑

j wij is large).

ONPP to be discussed later uses an option that is close to the first one, but it replaces
the matrix D−W with a matrix that is quite different. The first option leads to the standard
eigenvalue problem:

X(D − W )X>vi = λivi . (5)

The classical LPP option leads to the generalized eigenvalue problem.

X(D − W )Xvi = λiXDXvi. (6)

In both cases the smallest d eigenvalues and eigenvectors must be computed.
A slight drawback of the scaling used by classical LPP is that the linear transformation

is no longer orthogonal. However, the weights can be redefined (in fact rescaled) a priori so
that the diagonal D becomes the identity. We found that the issue of scaling is an important
one.

An interesting connection can be made with PCA as was observed in [5]. Using a slightly
different argument from [5], suppose we take as W the (dense) matrix W = 1

n
ee>. This

simply puts the uniform weight 1/n to every single pair (i, j) for the full graph. In this case,
D = I and the objective function in (4) becomes

Clpp = X

(

I −
1

n
ee>

)

X> = Cpca

PCA compute the eigenvectors associated with the largest eigenvalues of a “global” (full)
graph. In contrast, methods based on Locality Preservation (such as LPP) compute the
eigenvectors associated with the smallest eigenvalues of a “local” (sparse) graph. PCA is
likely to be better at conveying global structure, while methods based on preserving the
graph will be better at maintaining locality.

3 ONPP

The main idea of ONPP is to seek an orthogonal mapping of a given data set so as to best
preserve a graph which describes the local geometry. It is in essence a variation of OLPP
discussed earlier, in which the graph is constructed differently.

3.1 The nearest neighbor affinity graph

Consider a dataset represented by the columns of a matrix X = [x1, x2, . . . , xn] ∈ Rm×n.
ONPP begins by building an affinity matrix by computing optimal weights which will relate
a given point to its neighbors in some locally optimal way. This phase is identical with that
of LLE [7, 11]. The basic assumption is that each data sample along with its k nearest
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neighbors (approximately) lies on a locally linear manifold. Hence, each data sample xi is
reconstructed by a linear combination of its k nearest neighbors. The reconstruction errors
are measured by minimizing the objective function

E(W ) =
∑

i

‖xi −
∑

j

wijxj‖
2
2. (7)

The weight wij represent the linear coefficient for reconstructing the sample xi from its
neighbors {xj}. The following constraints are imposed on the weights:

1. wij = 0, if xj is not one of the k nearest neighbors of xi;

2.
∑

j wij = 1, that is xi is approximated by a convex combination of its neighbors.

Note that the second constraint on the row-sum is similar to rescaling the matrix W in the
previous section, so that it yields a D matrix equal to the identity.

In the case when wii ≡ 0, for all i, then the problem is equivalent to that of finding a
sparse matrix Z, (Z ≡ I − W>) with a specified sparsity pattern, which has ones on the
diagonal and whose row-sums are all zero. It is interesting to note in passing that very
similar problems are encountered when computing preconditioners by sparse approximate
inverses, see, e.g., [9].

There is a simple closed-form expression for the weights. Observe at first that this
determination of the w′

ijs for a given point xi is a local one, in the sense that it only depends
on xi and its nearest neighbors. Any algorithm for computing the weight will be fairly
inexpensive.

Call G the local Grammian matrix associated with point i. The entries of G are defined
by

gpl = (xi − xp)
>(xi − xl) ∈ Rk×k.

Thus, G contains the pairwise inner products among the neighbors of xi, given that the
neighbors are centered with respect to xi. Denoting by X(i) a system of vectors consisting of
xi and its neighbors, we need to solve the least-squares (X(i) − xie

>)wi,: = 0 subject to the
constraint e>wi,: = 1. It can be shown that the solution wi,: of this constrained least squares
problem is given by the following formula [7] using the inverse of G,

wi,: =
G−1e

e>G−1e
. (8)

(recall that e is the vector of all ones). The weights wij satisfy certain optimality prop-
erties. They are invariant to rotations, scalings, and translations. As a consequence of
these properties the affinity graph preserves the intrinsic geometric characteristics of each
neighborhood.

3.2 The algorithm

Assume that each data point xi ∈ Rm is mapped to a lower dimensional point yi ∈ Rd, d ¿
m. Since LLE seeks to preserve the intrinsic geometric properties of the local neighborhoods,
it assumes that the same weights which reconstruct the point xi by its neighbors in the high
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dimensional space, will also reconstruct its image yi, by its corresponding neighbors, in the
low dimensional space. In order to compute the yi’s for i = 1, . . . , n, LLE employs the
objective function:

Φ(Y ) =
∑

i

‖yi −
∑

j

wijyj‖
2
2. (9)

In this case the weights W are fixed and we need to minimize the above objective function
with respect to Y = [y1, y2, . . . , yn] ∈ Rd×n.

Similar to the case of LPP and OLPP, we need to impose some constraints on the yis.
This optimization problem is formulated under the following constraints in order to make
the problem well-posed:

1.
∑

i yi = 0 i.e., the mapped coordinates are centered at the origin and

2. 1
n

∑

i yiy
>
i = I, that is the embedding vectors have unit covariance.

LLE does not impose any specific other constraints on the projected points, it only aims at
reproducing the graph. So the objective function (9) is minimized with the above constraints
on Y .

Note that Φ(Y ) can be written Φ(Y ) = ‖Y − Y W>‖2
F , so

Φ(Y ) = ‖Y (I − W>)‖2
F = tr

[

Y (I − W>)(I − W )Y >
]

(10)

The problem will amount to computing the d eigenvalues of the matrix M = (I − W>)(I −
W>)>, and the associated eigenvectors.

In ONPP an explicit linear mapping from X to Y is imposed which is in the form (1).
So we have yi = V >xi, i = 1, . . . , n for a certain matrix matrix V ∈ Rm×d to be determined.
In order to determine the matrix V , ONPP imposes the constraint that each data sample yi

in the reduced space is reconstructed from its k neighbors by exactly the same weights as in
the input space. This means that we will minimize the same objective function (10) as in
the LLE approach, but now Y is restricted to being related to X by (1). When expressed in
terms of the unknown matrix V , the objective function becomes

Φ(Y ) = ‖V >X(I − W>)‖2
F = tr

[

V >X(I − W>)(I − W )X>V
]

. (11)

If we impose the additional constraint that the columns of V are orthonormal, i.e. V >V =
I, then the solution V to the above optimization problem is the basis of the eigenvectors
associated with the d smallest eigenvalues of the matrix

M̃ = X(I − W>)(I − W )X> . (12)

The assumptions that were made when defining the weights wij at the beginning of this
section, imply that the matrix I − W is singular. In the case when m > n the matrix M̃ ,
which is of size m × m, is at most of rank n and it is therefore singular. In the case when
m ≤ n, M̃ is not necessarily singular. However, we observed in practice that ignoring the
smallest eigenvalue of M , which is zero in theory, is helpful. Note that the corresponding
eigenvector is not the trivial vector e as is the case in LLE. Note also that the embedding
vectors of LLE are obtained by computing the eigenvectors of matrix M associated with its
smallest eigenvalues.
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Algorithm: ONPP

Input: Dataset X ∈ Rm×n and d: dimension of
reduced space.
Output: Embedding vectors Y ∈ Rd×n.
1. Compute the k nearest neighbors of data points.
2. Compute the weights wij which give the best

linear reconstruction of each data point xi

by its neighbors (Equ. (8)).
3. Compute the projected vectors yi = V >xi,

where V is determined by computing the d + 1
eigenvectors of

M̃ = X(I − W>)(I − W )X>

associated with smallest eigenvalues.

Table 1: The ONPP algorithm.

An important property of ONPP is that mapping new data points to the lower dimen-
sional space is trivial once the matrix V is determined. Consider a new test data sample xt

that needs to be projected. The test sample is projected onto the subspace yt = V >xt using
the dimensionality reduction matrix V . Therefore, the computation of the new projection
simplifies to a matrix vector product.

In terms of Computational cost, the first part of ONPP consists of forming the k-NN
graph. This scales as O(n2). Its second part requires the computation of a few of the
smallest eigenvectors of M̃ . Observe that in practice this matrix is not computed explicitly.
Rather, iterative techniques are used to compute the corresponding smallest singular vectors
of matrix X(I −W )> [8]. The inner computational kernel of these techniques is the matrix-
vector product which scales quadratically with the dimensions of the matrix at hand.

3.3 Discussion

We can also think of developing a technique based on enforcing an orthogonality relationship
between the projected points instead of the V ’s. Making the projection orthogonal will tend
to preserve distances and so the overall geometry will be preserved. In contrast, imposing
the condition Y Y > = I, will lead to a criterion that is similar to that of PCA: the points yi

will tend to be different from one another (because of the orthogonality of the rows of Y ).
This is precisely what LLE does. In essence, the main difference between LLE and ONPP
is in the selection of the orthogonality to enforce.

The two optimization problems are shown below:

LLE : minY ∈Rm×d; Y Y >=I tr[Y MY >]
ONPP : minY =V >X;V ∈Rm×d; V V >=I tr[Y MY >]

.

It is also possible to enforce a linear relation between the Y and X data, but require
the same orthogonality as LLE. We will refer to this procedure as Neighborhood Preserving
Projections (NPP). In NPP, the objective function is the same as with ONPP and is given
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by (11). However, the constraint is now Y Y > = I which yields, V >XX>V = I. What
this means is that NPP is a linear variant of LLE which makes the same requirement on
preserving the affinity graph and obtaining a data set Y which satisfies Y Y > = I:

NPP : minY =V >X;V ∈Rm×d; Y Y >=I tr[Y MY >]

If we define G = XX>, then this leads to the problem,

min
V ∈ Rm×d, V >GV =I

V >MV . (13)

The solution if the above problem can be obtained by solving the generalized eigenvalue
problem (V >M)v = λGv. We note that in practice, the vectors V obtained in this way need
to be scaled, for example, so that their columns have unit 2-norms.

It is interesting to observe that the eigenvectors which will be found are actually gener-
alized singular vectors of the pair [X(I − W>), X]. In contrast, ONPP requires (standard)
left singular vectors of the matrix X(I − W>), whereas LLE requires left singular vectors
of I − W>. In the sequel we will focus primarily on ONPP, though the variations to be
described can be also be defined for LPP, OLPP, and NPP.

4 Supervised ONPP

ONPP can be implemented in either an unsupervised or a supervised setting. In the later
case where the class labels are available, ONPP can be modified appropriately and yield a
projection which carries not only geometric information but discriminating information as
well. In a supervised setting we first build the data graph G = (N,E), where the nodes N
correspond to data samples and an edge eij = (xi, xj) exists if and only if xi and xj belong to
the same class. In other words, we make adjacent those nodes (data samples) which belong
to the same class. Notice that in this case one does not need to set the parameter k, the
number of nearest neighbors, and the method becomes fully automatic.

Denote by c the number of classes and ni the number of data samples which belong to the
i-th class. The data graph G consists of c cliques, since the adjacency relationship between
two nodes reflects their class relationship. This implies that with an appropriate reordering
of the columns and rows, the weight matrix W will have a block diagonal form where the
size of the i-th block is equal to the size ni of the i-th class. In this case W will be of the
following form,

W = diag(W1,W2, . . . ,Wc).

The weights Wi within each class are computed in the usual way, as described by equation
(8). The rank of W defined above, is restricted as is explained by the following proposition.

Proposition 4.1 The rank of I − W is at most n − c.

Proof. Recall that the row sum of the weight matrix Wi is equal to 1, because of the
constraint (2). This implies that Wiei = ei, ei = [1, . . . , 1]> ∈ Rni . Thus, the following c
vectors





e1 0 · · · 0
0 e2 · · · 0
0 0 · · · ec



 ,
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are linearly independent and belong to the null space of I−W . Therefore, the rank of I−W
is at most n − c.

Consider now the case m > n where the number of samples (n) is less than their dimension
(m). This case is known as the undersampled size problem. A direct consequence of the
above proposition is that in this case, the matrix M̃ ∈ Rm×m will have rank at most n − c.
In order to ensure that the resulting matrix M̃ will be nonsingular, we may employ an initial
PCA projection that reduces the dimensionality of the data vectors to n− c. Call VPCA the
dimensionality reduction matrix of PCA. Then the ONPP algorithm is performed and the
total dimensionality reduction matrix is given by

V = VPCAVONPP,

where VONPP is the dimensionality reduction matrix of ONPP.

5 Kernel ONPP

It is possible to formulate a kernelized version of ONPP. Kernels have been extensively used
in the context of Support Vector machines (SVMs) [12]. Essentially, a nonlinear mapping
Φ : Rm → H is employed, where H is a certain high-dimensional feature space. Denote by
Φ(X) = [Φ(x1), Φ(x2), . . . , Φ(xn)] the transformed dataset in H.

The main idea of Kernel ONPP rests on the premise that the transformation Φ is only
known through its Grammian on the data X. In other words, what is known is the matrix
K whose entries are

Kij ≡ k(xi, xj) = 〈Φ(xi), Φ(xj)〉. (14)

This is the Gram matrix induced by the kernel k(x, y) associated with the feature space. In
fact, another interpretation of the Kernel mapping is that we are defining an alternative inner
product in the X-space, which is defined through the inner product of every pair (xi, xj) as
< xi, xj >= kij.

Formally, ONPP can be realized in a kernel form by simply applying it to the set Φ(X).
Observe first that

K ≡ Φ(X)>Φ(X) . (15)

There are two implications of this definition. The first is that the mapping W has to be
defined using this new inner product. The second is that the optimization problem too has
to take the inner product into account.

Consider first the graph definition. In the feature space we would like to minimize

m
∑

i=1

‖Φ(xi) −
∑

j

wijΦ(xj)‖
2
2.

This is the same as the cost function (7) evaluated on the set Z ≡ Φ(X) as desired, and
therefore an alternative expression for it is

E(W ) = ‖Φ(X)(I − W>)‖2
F

= tr[(I − W )Φ(X)>Φ(X)(I − W>)]

= tr[(I − W )K(I − W>)]
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Note that K is dense and n× n. The easiest way to solve the above problem is to extract a
low rank approximation to the Grammian K, e.g.,

K = US2U> = (US)(US)>

Where W ∈ Rm×k and S ∈ Rk×k. Then the above problem becomes one of minimizing

tr(I − W )USSU>(I − W )> = ‖(I − W )US‖2
F = ‖SU>(I − W>)‖2

F .

Therefore, SU> replaces X when constructing W .
Consider now the problem of obtaining the projection matrix V in a kernel framework.

Observe that if we were to work in feature space, then we would take YΦ = V >Φ(X), where
V ∈ RL×d, where L is the (typically large and unknown) dimension of the feature space.
Now the cost function (11) would become

tr
[

V >Φ(X)(I − W>)(I − W )Φ(X)>V
]

. (16)

Since Φ(X) is not explicitly known (and is of large dimension) this direct approach does not
work.

The first way out is to restrict V to be in the range of Φ(X). This is natural since each
column of V is in RL the row-space of Φ(X). Specifically, we write V = Φ(X)Z where
Z ∈ Rm×d and Z>Z = I. Then (16) becomes

tr
[

Z>Φ(X)>Φ(X)(I − W>)(I − W )Φ(X)>Φ(X)Z
]

= tr
[

Z>KMKZ
]

. (17)

In a supervised setting, we need to project a test point xt onto the space of lower di-
mension. The dot product of xt with all low dimensional basis vectors Φ(X)Z is computed
as

Z>Φ(X)>Φ(xt) = Z>K(:, xt) . (18)

Here matlab notation is used so K(:, xt) represents the vector (k(xj, xt))j=1:n.
It is somewhat unnatural to have the matrix K be involved quadratically in the expression

(17). Equations (16) suggests that we should really obtain K not K2, since Φ(X)>Φ(X) =
K. For example if W ≡ 0, then (16) would become tr(V >KV ) whereas (17) would yield
tr(Z>K2Z). The second solution is to involve an implicit polar decomposition of Φ(X):

Φ(X) = QS with S = (Φ(X)>Φ(X))1/2 Q>Q = I . (19)

Note that Q is now an orthogonal basis of the range of Φ(X), and in this case, when V = QZ
then (16) becomes

tr
[

Z>Q>QS(I − W>)(I − W )SQ>QZ
]

= tr
[

Z>S(I − W>)(I − W )SZ
]

. (20)

It is not necessary to compute S = K1/2 because the above problem can be solved as a
generalized eigenvalue problem instead. Let us set V∗ = SZ. Then

min
Z ∈Rm×d,Z>Z=I

tr
[

Z>S(I − W>)(I − W )SZ
]

= min
V∗ ∈Rm×d,V >

∗ KV∗=I
tr

[

V >

∗ (I − W>)(I − W )V∗

]

.
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This minimization can be achieved by solving the eigenvalue problem

(I − W>)(I − W )v = λKv.

Now the inner product of xt with all low dimensional basis vectors QZ becomes (recall
that V∗ = SZ, Q = Φ(X)S−1, and that S is symmetric)

Z>Q>Φ(xt) = Z>S−1Φ(X)>Φ(xt)

= Z>S−1S−1Φ(X)>Φ(xt)

= V >

∗ K−1 K(:, xt) . (21)

Matlab notation is used again so K(:, xt) represents the vector (k(xj, xt))j=1:n.
Now consider for simplicity the case d = 1. Concerning the training points, observe that

the projections along the eigenvector v are given by y = Ka. Then, notice that minimiz-
ing the trace (17) amounts to minimizing y>My which leads to the exact same eigenvalue
problem solved by LLE. Therefore, LLE (nonlinear) could be viewed as performing ONPP
(linear) implicitly in the feature space H.

6 Experimental Results

In this section we evaluate all four linear dimensionality reduction methods LPP, NPP,
OLPP and ONPP. We use an implementation of LPP which is publicly available1. The
implementation of OLPP is based on a slight modification of the publically available LPP
code.

6.1 Synthetic data
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Figure 1: Two examples of data points randomly taken on 3-D manifolds.

Let us first consider two well known synthetic datasets from [11]: the s-curve, and
the swissroll. Figure 1 illustrates the 3-D randomly sampled points on the s-curve and
swissroll manifolds. Figures 2 and 3 illustrate the two dimensional projections obtained by
the ONPP and LPP methods in the scurve and swissroll datasets. The affinity graphs

1http://people.cs.uchicago.edu/∼xiaofei/LPP.m
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Figure 2: Results of four related methods applied to the S-curve example.

were all constructed using k = 10 nearest neighbor points. Observe that the performance of
LPP parallels that of NPP and, similarly, the performance of OLPP parallels that of ONPP.
Note that all methods preserve locality which is indicated by the color shading. However,
the orthogonal methods i.e., OLPP and ONPP preserve global geometric characteristics as
well, since they give a faithful projections which convey information about how the manifold
is folded in the high dimensional space.

6.2 Digit visualization

The next experiment involves digit visualization. We use 20×16 images of handwritten digits
which are publically available from S. Roweis’ web page2. The dataset contains 39 samples
from each class (digits from ’0’-’9’). Each digit image sample is represented lexicographically
as a high dimensional vector of length 320. For the purpose of comparison with PCA, we
first project the dataset in the two dimensional space using PCA and the results are depicted
in Figure 4. In the sequel we project the dataset in two dimensions using all four methods.
The results are illustrated in Figures 5 (digits ’0’-’4’) and 6 (digits ’5’-’9’). We use k = 6 for
constructing the affinity graphs of all methods.

Observe that the projections of PCA are spread out since PCA aims at maximizing the
variance. However, the classes of different digits seem to heavily overlap. This means that
PCA is not well suited for discriminating between data. On the other hand, observe that
all the four graph-based methods yield more meaningful projections since samples of the
same class are mapped close to each other. This is because these methods aim at preserving
locality. Finally, ONPP seems to provide slightly better projections than the other methods
since its clusters appear more cohesive.

2http://www.cs.toronto.edu/∼roweis/data.html
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Figure 3: Results of four related methods applied to the Swissroll example.

6.3 Face recognition

In this section we evaluate all methods for the problem of face recognition. We used three
datasets which are publically available: UMIST [3], ORL [10] and AR [6]. The size of the
images is 112×92 in all datasets. For computational efficiency the images in both databases
were downsampled to size 38×31. Thus, each facial image was represented lexicographically
as a high dimensional vector of length 1,178. In order to measure the recognition perfor-
mance, we use a random subset of facial expressions/poses from each subject as training set
and the remaining as test set. In order to ensure that our results are not biased from a spe-
cific random realization of the training/test set, we perform 20 different random realizations
of the training/test sets and we report the average error rate.

We also compare all four methods with Fisherfaces [1], a well known method for face

−15 −10 −5 0
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−4

−2

0

2

4
PCA, digits: 0−4

−5 0 5 10
−4

−2

0

2

4

6

8
PCA, digits: 5−9

Figure 4: Two dimensional projections of digits using PCA. Left panel: ‘+’ denotes 0, ‘x’
denotes 1, ‘o’ denotes 2, ‘4’ denotes 3 and ‘¤’ denotes 4. Right panel: ‘+’ denotes 5, ‘x’
denotes 6, ‘o’ denotes 7, ‘4’ denotes 8 and ‘¤’ denotes 9.
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Figure 5: Two dimensional projections of digits using four related methods, where ‘+’ denotes
0, ‘x’ denotes 1, ‘o’ denotes 2, ‘4’ denotes 3 and ‘¤’ denotes 4.

recognition. Fisherfaces is a supervised method which determines V by using Linear Dis-
criminant Analysis (LDA). LDA works by extracting a set of “optimal” discriminating axes.
Assume that we have c classes and that class i has ni data points. Define the between-class
scatter matrix

SB =
c

∑

i=1

ni(µ
(i) − µ)(µ(i) − µ)>

and the within-class scatter matrix

SW =
c

∑

i=1

(

ni
∑

j=1

(x
(i)
j − µ(i))(x

(i)
j − µ(i))>

)

where µ(i) is the centroid of the i-th class. In LDA the columns of V are the eigenvectors
associated with largest eigenvalues of the generalized eigenvalue problem SBw = λSW w.
Intuitively, the matrix V of LDA maximizes the ratio of inter-class variance over the intra-
class variance.

The tests which follow employ the supervised versions of the four methods. This is
accomplished by constructing the k-NN graph in a special way which exploits the class
labels (see Section 4 for more details on the supervised version of ONPP). In the LPP and
OLPP methods, we employ Gaussian weights. We determine the value of the width σ of the
Gaussian envelope as follows. First, we sample 1000 points randomly and then compute the
pairwise distances among them. Then σ is set equal to half the median of those pairwise
distances. This gives a good and reasonable estimate for the value of σ.
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Figure 6: Two dimensional projections of digits using four related methods, ‘+’ denotes 5,
‘x’ denotes 6, ‘o’ denotes 7, ‘4’ denotes 8 and ‘¤’ denotes 9.

6.4 UMIST

Figure 7: Sample face images from the UMIST database. The number of different poses
poses for each subject is varying.

The UMIST database [3] contains 20 people under different poses. The number of differ-
ent views per subject varies from 19 to 48. We used a cropped version of the UMIST database
that is publically available from S. Roweis’ web page3. Figure 7 illustrates a sample subject
from the UMIST database along with its first 20 views. We form the training set by a
random subset of 15 different poses per subject (300 images in total) and use the remaining
poses as a test set. We experiment with the dimension of the reduced space d = [10 : 5 : 70]
(in MATLAB notation) and for each value of d we plot the average error rate across 20 random
realizations of the training/set set. The results are illustrated in Figure 10.

Concerning the method of Fisherfaces note that there are only c−1 generalized eigenval-
ues, where c is the number of subjects in the dataset. Thus, d cannot exceed c−1 and so we
plot only the best achieved error rate by Fisherfaces across the various values of d. Observe

3http://www.cs.toronto.edu/∼roweis/data.html
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Figure 8: Sample face images from the ORL database. There are 10 available facial expres-
sions and poses for each subject.

Figure 9: Sample face images from the AR database.

again that NPP and LPP have similar performance and that ONPP competes with OLPP
and they both outperform the other methods across all values of d. We also report the best
error rate achieved by each method and the corresponding dimension d of the reduced space.
The results are tabulated in the left portion of Table 2. Notice that PCA works surprisingly
well in this database.
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Figure 10: Error rate with respect to the reduced dimension d. Top panel: UMIST database
and bottom panel: AR database.

6.5 ORL

The ORL (formerly Olivetti) database [10] contains 40 individuals and 10 different images
for each individual including variation in facial expression (smiling/non smiling) and pose.
Figure 8 illustrates two sample subjects of the ORL database along with variations in facial
expression and pose. We form the training set by a random subset of 5 different facial
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Figure 11: Error rate with respect to the reduced dimension d. Top panel: UMIST database
and bottom panel: AR database.

UMIST ORL AR
d error (%) d error (%) d error (%)

PCA 65 1.96 60 6.8 90 17.72
LDA 30 5.63 70 9.75 100 7.89
LPP 30 3.18 40 12.1 60 8.86
NPP 45 2.6 50 12.22 100 9.33
OLPP 65 1.14 40 5.9 100 4.51
ONPP 70 0.96 80 5.32 100 4.99

Table 2: The best error rate achieved by all methods on the UMIST, ORL and AR databases
respectively .

expressions/poses per subject and use the remaining 5 as a test set. We experiment with
the dimension of the reduced space d = [10 : 10 : 150] and for each value of d we compute
the average error rate across 20 random realizations of the training set.

Figure 11 illustrates the results. Here, LPP and NPP exhibit an unusual behavior: Their
error rates initially decrease with the dimension d and then start growing fast after some
point. Notice also that the orthogonal methods ONPP and OLPP outperform again the
remaining methods and that the former seems to be slightly better than the latter, overall.
The best error rates achieved by each method are tabulated in Table 2 along with the
corresponding value of d.

6.6 AR

We use a subset of the AR face database [6] which contains 126 subjects under 8 different
facial expressions and variable lighting conditions for each individual. Figure 9 depicts two
subjects randomly selected from the AR database under various facial expressions and illu-
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Figure 12: Error rate with respect to the reduced dimension d. Top panel: UMIST database
and bottom panel: AR database.

mination. We form the training set by a random subset of 4 different facial expressions/poses
per subject and use the remaining 4 as a test set. We plot the error rate across 20 random
realizations of the training/test set, for d = [30 : 10 : 100].

The results are illustrated in Figure 12. Once again we observe that ONPP and OLPP
outperform the remaining methods across all values of d. In addition, notice that NPP has
parallel performance with LPP and they are both inferior to Fisherfaces. Furthermore, Table
2 reports the best achieved error rate and the corresponding value of d. Finally, observe that
for this database, PCA does not perform too well. In addition, OLPP and ONPP yield very
similar performances for this case.

The above experimental results suggest that the orthogonality of the columns of the
dimensionality reduction matrix V is very important for data visualization purposes. This
is more evident in the case of face recognition, where this particular feature turned out to
be crucial for the performance of the method at hand.

7 Conclusion

The Orthogonal Neighborhood Preserving Projections (ONPP) introduced in this paper is a
linear dimensionality reduction technique, which will tend to preserve not only the locality
but also the local and global geometry of the high dimensional data samples. It can be
extended to a supervised method and it can also be combined with kernel techniques. We
introduced three methods with parallel characteristics and compared their performance in
both synthetic and real life datasets. We showed that ONPP and OLPP can be very effective
for data visualization, and that they can be implemented in a supervised setting to yield a
robust recognition technique.
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