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Abstract

By considering the eigenvalue problem as a system of nonlinear equatiisnzossible to develop a
number of solution schemes which are related to the Newton iteration. &omge, to compute eigenval-
ues and eigenvectors of anx n matrix A, the Davidson and the Jacobi-Davidson techniques, construct
‘good’ basis vectors by approximately solving a “correction equationittv provides a correction to be
added to the current approximation of the sought eigenvector. Thatieq is a linear system with the
residual- of the approximated eigenvector as right-hand side.

One of the goals of this paper is to extend this general technique to the "lditaktion, i.e., the
case where a set pfapproximate eigenpairs is available, in which case the residoetomes an x p
matrix. As will be seen, solving the correction equation in block form regsolving a Sylvester system
of equations. The paper will deEne two algorithms based on this apprBackymmetric real matrices,
the £rst algorithm converges quadratically and the second cubically. @ndegoal of the paper is to
consider the class of substructuring methods such as the Componedet 84mthesis (CMS) and the
Automatic Multi-Level Substructuring (AMLS) methods, and to view themmfrilne angle of the block
correction equation. In particular this viewpoint allows us to defne an iteragivsion of well-known
one-level substructuring algorithms (CMS or one-level AMLS). Eipents are reported to illustrate the
convergence behavior of these methods.

1 Introduction

A number of schemes have been developed in recent yeardfaneing the convergence of subspace-based
methods for computing eigenvalues and eigenvectors of lavgtrices. These approaches essentially take
the viewpoint that the eigenvalue problem is a nonlineatesyof equations and attempt to £nd a good way
to correct a given approximate eigenpajii, by introducing to the most recent subspace of approximants
an information that is not redundant with this subspace.ratfice, this means that we need to solve the
correction equation, i.e., the equation which updatesuhent approximate eigenvector, in a subspace that
is orthogonal to the most current approximate eigenvectors
Several methods can be mentioned including the Trace Maaiticin method [14, 13], the Davidson
method [6, 11] and the Jacobi-Davidson approach [16, 15, M8kt of these methods update an existing
approximation by a step of Newton’s method and this wastified in a number of papers, see, e.g., [10],
and in [19].
One can think of the problem as that of solvifg — A7)u = 0, but since there are 4- 1 unknowns,
a constraint must be added, for examgle|. = 1. If the current approximate eigenpair (i§, @), it is
assumed thatii||; = 1, and that\ is the Rayleigh quotient af. We de£ne the residual= At — \u. If a
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correctiond, z to A, @ is sought, then we write the equations to be satisfed as

[(A=X) — 6Ii+z) = 0
(U+2)T@+2) = 1.
Ignoring second order terms, this yields the system of égpust
(A-=X)z — 0§ = —r (1)
—a'z = 0. 2

The above equations can be solved in a number of ways, for@ram ann + 1) x (n+ 1) linear system.
A simpler solution is to invoke the orthogonal projecfor= I — uu”. Multiplying the £rst equation by,
and observing thaPu = 0, Pr = r, yields,

P(A—X)z = —r. ©)

Note that this system is degenerate - i.e., it has an inEnitgbeu of solutions. Among all the solutions
of this system, we require one that is orthogonal t@e., one such thaPz = z. This can be enforced by
solving P(A — XI)PzO = —r, for z9, and de£ning the solution to he= Pz, (instead ofzy). This z will
satisfy the equation (1). Indeed,

(A=X)z=PA—-M)z+(I—-P)A-X)z=—r+ut (A= X)z=—r+ur’z

and therefore, (1)~is satisEed with= 7 z. In addition (2) is trivially satisEed because= Pz,. Note that
the correctiorny to A can be ignored since the new approximate eigenvalue willjesleEned as the new
Rayleigh quotient. So we are left with the equation,

P(A—X)Pz= —r. (4)

The Jacobi-Davidson scheme [16], the Trace Minimizatiorthoe [13] and a number of related
algorithms are based on the above development. In otheroagtithe projection is not considered since
the matrix A is not used exactly. Instead) is replaced by a “preconditioner” when solving the system
(M — XI)z = —r in place of the system (3). This viewpoint is most useful inavidson approach to build
a subspace for a projection technique [19].

The Newton-type framework just described determines owctovet a time and it is interesting to
explore situations where a block of vectors must be cordecihis is important in many practical applica-
tions. We will explore a few block correction schemes whighderived in a manner that is similar to what
was done above for the one-dimensional case.

One of the possible applications of these schemes lies iraolodecomposition methods. In these
methods, one can consider the invariant subspaces obtaomadsubdomains as approximately invariant
for the global operator. Such approximations can be verghand one may be tempted to correct them
in some way. This technigue is taken to the limit and exptbitea quite effective way in the Automated
Multi-Level Substructuring (AMLS) algorithm [2, 8]. In AMS, the subspaces are corrected by adding
correction terms from the interface variables.

The main goal of this paper is to explore block versions ofdbigection equation. By considering
the correction equation as a nonlinear system of equatiercaw derive Newton-type iterations whose con-
vergence is quadratic or cubic. We will also consider theofnatic Multi-Level Substructuring algorithm,
and domain-decomposition methods, from the point of view bfock correction.

2 Block correction

This section examines a few schemes for “correcting” a gaproximate invariant subspace. We are given
a subspace in the form of a certain bdsis= [u1, us, - - - .u,,] @and would like to £nd a correctidi’ of the
same dimensions d$, such thaty + W is a better invariant subspace thidn Schemes of this type are
well-known for the case whem = 1, and they lead to the standard Olsen’s method or JacobidBani
scheme.



2.1 Correction of an orthonormal basis

Let us assume thaf € R™*™ is an orthonormal basis of an approximate invariant sulespad € R™*".
In particular,UTU = I. Let D = UT AU be the interaction matrix whose eigenvalues are approiomst
of eigenvalues ofi. The residual of the corresponding subspace is :

R = AU-UD (5)
= (I-UUT)AU. (6)

The last expression shows thaties in a space that is orthogonalig i.e.,
U'R=0. (7)

The goal is to obtair{iv, A) € R™*™ R™*™ respectively, which will correctU, D) so that the
perturbed pair of matrice€/ + W, D + A) satisfy the (nonlinear) equation :

AU+W) = (U+W)(D+A). (8)

This equation involves»n equations anghn + m? unknowns. In order to close the system? equations
must be added. We consider the additional constraint :

uvtw = o. (9)

The above constraint may seem arbitrary but it can be irggdras follows. It can be viewed as a means of
restricting the information that is being added to the aursystem (V) to being non redundant. Another
condition we could have imposed is that the new system W should be orthonormal. This would have
m? constraints as desired, but these constraints are nonliHewever, up to second order approximation
these constraints will imply the requirement (9). Indeed,

U+WMTU+w)=1 —-U"W+wWIu+wTw =0.

Neglecting second order terms from the system of equat®)rand (9), yields the equations:

{ AW - WD —-UA=—-R (10)

UTw =o.

This system is actually a general expression of equationand (2) when vectors are replaced by blocks
of vectors. By multiplying the £rst equation on the left sidelb”, and using relation (7) we obtain the
following expression for\,

A = UTAW. (12)
Therefore, system (10) is equivalent to solving
(I-UUDAW -WD = -R (12)

and then computings = U7 AW . It can be easily shown that the obtained solufirsatisEes/ "W = 0
as required. Formula (12) generalizes formula (4). To pi@e we preferred to use a more classical
derivation.

2.2 Non orthonormal systemsand the projection viewpoint

We now adapt what was developed above to the correction ohartbonormal basiX € R"*™ of an
approximation of an invariant subspace. Along wihis a certain representation df in the subspace in
the form of a matrixD € R™*™ such thatd, X, and D satisfy the relation

AX = XD+R,



whereR is a certain residual matrix. The only requirementonD, andR is thatX” R = 0. This implies
in particular thatD = (X7 X)~}(XTAX).
We seek W, A) € R**™ x R™*™ such thatX7W = 0 and

AX+W) = (X+W)D+A). (13)

When the above equations are satis£ed, {&n-17) spans an invariant subspacehand the eigenvalues
of (D + A) are eigenvalues ol. By neglecting the second order terms, the equation becomes

AW —WD — XA = —R, (14)

which implies thath = (X7 X))~} XTAW). LetQ = X(XTX)~1XT be the orthogonal projection onto
X andP = I — @ the dual projector. The £nal equation which generalizesteajuél2) is :

PAW —-WD = -R (15)

with (I — P)W =W.

Itis clear that ifX and an orthonormal systebhspan the same subspace, then the resulting subspace
obtained by the above process should be identical with tea@sulting from the treatment of Section 2.1.
In other words the matriceld, W obtained in both cases are related by a nonsingulap transformation
S,ie,W=WS§.

2.3 Nonlinear correction

Clearly the original correction equation is nonlinear arsdeixact solution will yield an exactly invariant
subspace. Itis possible to solve the non-linear equatieratively and this section explores this possibility.
In this section we go back to the case whiéis orthonormal. Equation (8) is expanded as

AW —WD =-R+UA+WA (16)

We still need to imposen? constraints in the form of (9). Multiplying both sides of iy U yields the
same expression fak, i.e., A is again given by (11). This means that we have again remdwedrtknown
A from the system (8) and we can write:

AW —WD = —R+ (U+W)UT AW (17)
Grouping like terms leads to the nonlinear system,
(I -UUDAW —W (D +UTAW)+ R=0. (18)

This system can be solved with some form of iteration and thean be obtained from = U7 AW. The
solutionV obtained also satisEés” W = 0 as required.

It is interesting to examine a Newton approach for solving) (INewton’s method is equivalent to
starting from a certaimV, (for examplelW, = 0) and then iterating ab/;, 1 = Wy, + Z; whereWy, + Zj
is made to satisfy (18) for up to £rst order term<Zip, This yields after a little calculation,

(I —(U+W)UNAZ, — Zp(D+UTAW,) = =R — (I = UUT) AW, + Wi (D + UT AW,)  (19)

The above system is a Sylvester equatio&jnand with the notatiod/;, = U + Wy, = Ux_1 + Z;_1 and
Dy, =D+ UTAW,, = UT AU, it becomes

(I -UUNAZ, — Zy Dy, = — Ry, (20)

whereRy is the right-hand side seen above

A few observations will provide some insight. The matfly = D + UT AW}, is the right-corrected
projection matrix sinceD, = D + UT AW, = UT A(U + W},). There is some loss of symmetry in this
process. In the end the Newton scheme would be as follows:



SelectiVy (e.g.,Wy = 0)
Fork =0, - - -, until convergence Do:
SetD, =D + UTAWk VR = (I — UUT)AWk —WrDrp+ R
Solve (fOka): (I — (U + Wk)UT)AZk — Zi Dy, = — Ry,
SetWy1 = Wi + Zg
EndDo
Observe that whel, = 0, then the £rst step corresponds simply to the previous ledscheme
and this is expected. From the de£nitionl§f and Dy, the iteration can be rewritten in termsf. Note
£rst that the expression fa@t;, can be simplifed :

arwWNEO

R, = (I-UUD)AW, —W.D,+ R
= (I-UUNAWU, -U)—(Uy—-U)Dyp +R
= (I-UUNAU, - (I -UUT)AU —UpDp +UDy + R
= AU, -UWUTAU,) —R—-UpDy +UDy+ R
= AU, —UDy — UpDy + UD;,
= AU, — UpDy

This gives the following alternative expression of the jpvag algorithm

ALGORITHM 2.1 Newton-Sylvester iteration

SelecU, s.t. UTU = I (e.g.,Uy = U)

Fork =0, - - -, until convergence Do:
ComputeD;, = UT AUy, andRy, = AUy, — Up Dy,
Solve (fOf'Zk).' (] — U}CUT)AZ]C — ZDy, = — Ry,
SetUy41 = U + Zi

EndDo

Ok wWNRO

An important note here concerns the solution of the Sylvesjeation in Line 3. Since we would like to
solve the correction equation with the constraint tigt U = 0, we would like the relationZ/ U = 0
should be satis£ed in general. The relation is triviallys&sd fork = 0 a consequence of the choice made
in Line 0. For a generat, the relationZ] U = 0 is equivalent td// U = I. We can use a little induction
argument. Assume that the relation is satisEed:faFhen multiplying the Sylvester equation by yields

UT Z, Dy, = 0. This will imply thatU” Z;, = 0 when Dy, is nonsingular, which may be true under certain
assumptions. However, in order to avoid difEculties, will always assume that the system (20) is solved
for a Z that is orthogonal td/. WhenD,, is nonsingular, then as was seé&f, Z,, = 0 is automatically
satisEed. Whel, is singular, we can for example shift bathand D, by the same shift so thatD, — oI

is nonsingular. Then we solve, instead of (20), its shiftadant:

(I —UUTYA—0oD)Z), — Zy(Dy — ol) = =Ry, (21)

Now sinceDy, — o1 is nonsingularZF'U = 0 and thisZ; is also solution of (20). In practice this issue
does not arise.

When convergence takes place it is quadratic at the limit,asadheristic of Newton’s method. A
relation which will establish this fact independently cdsoabe proved.

Lemma 2.1 At each step of the Newton-Sylvester iteration the follgwatations hold:

Ul = 1 (22)
R, = (I-UUT)AU, (23)
UTR, = 0 (24)
Ruyn = —-Z,UTAZ, (25)



Proof. The £rst relation was discussed in detail above. It comes frenfiact that at each stép” Z;, = 0.
The second relation follows immediately from the de£nitiorg, and the 3rd is obtained by multiplying
the second by/” to the left and making use of (22). For the 4th relation weayrit

Rin = AUk + Zy) — (U + Zi) (D + UT AZy,)
AUy + AZy, — UpDy, — Z,Dy, — Uy UT AZy, — 2, UT AZy)
= R+ -UUNAZU, — ZyDy —Z UT AZY) = -2, ,UT AZ,,

=0

[ |

Equations (22) and (23) show that the method is equivalefinding a blockU.. such that I-U,.UT) AU, =

0 subject to the condition that the systém, U be bi-orthogonal. Note that from (23), we can easily infer

that||Ry.|| = O(||Ux — U.||) whereU, is the limit. Indeed, using the fa¢f — U, UT)AU, = 0

R, = (I-UUNAU, - (I-UU)AU,
= (I-UUNAU, — (I - UUDAU, + (I — U UT)AU, — (I - U.UT)AU,
(I - U UNAWU, — U,) — (U — U)UT AU,
The following relationship will conE£rm this and provide soadditional insight:

Ry = —ZyUTAZy,

In the case whem = 1 we get the following iteration fok = 0,1, - - -, starting withug = u:
dk = UTA’U,k
Tk = A’U,k — dkuk
(I — ukuT)Azk — dkzk = —TL
Uk+1 = U+ 2k

Note that the scalad), is an approximate eigenvalue. Indeed,u = (u + wy)Tu = v = 1 and
therefored;, = (u” Auy,)/(uTuy). When (and ifju;, converges to an eigenvector, thénwill converge to
the corresponding eigenvalue.
The residual system in the 3rd line of the above algorithmhmatransformed. The system is
T
)

(I — Uru Azk — 2:].3d;g = — Tk — (A — de)Zk — ukuTAzk = Tk

and it can be solved in block form by settiig = —u” Az, and putting the unknowns;, &, in one vector:

() (2)-(7)

The advantage of writing the system in this form is that we loatter exploit any sparsity id. In contrast
the matrix(I — upu®)A — di I is generally not sparse, though the Shermann-Morrissanufiar can also
be invoked with a similar result.

A more traditional way of invoking the Newton approach is floe casen = 1, by solving directly
the equatiomrdu — u(u” Au) = 0, with the constrainu||, = 1. Extending this to then dimensional case
is doable but the constraint thitbe unitary yields a more complicated iteration. The schemeva above
avoids the problem of orthogonalization - but it yields amration that is somewhat nonsymmetric.

So far symmetry has not been exploited. Whéis symmetric, the matrix/” AZ,, in the above
expression is the transpose&f AU = Z}' (AU — UD) = Z]'R, so that

A=A" — Ry =-ZI'RYZ.

with Ryp = R. As a result one step of the process yields a residual whit$EsaR | = —ZOROTZO. Since

| Zo||2 is of the order ag Ry ||, an error of ordee should be cubed in the next iteration. Thus, one should
expect to obtain cubic convergence by a process of this t@pecifcally, if one step is performed, and
the process restarted (i.€/; is orthogonalized and is set tolU;, etc.) then one should expect a cubic
convergence according to this formula. This is explored.nex



2.4 lterative correction

In this section, we consider the following modi£cation of tewton-Sylvester scheme discussed in the
previous section.

ALGORITHM 2.2 lterative correction

0 Selecl, (e.g.,Uy =U)

1 Fork = 0, - - -, until convergence Do:

2. ComputeDk = UEAU]C, ande = AU, — U, Dy,
3. Solve (fOka) (I — UkUE)AWk — WiDy = —Ry,
4 Orthogonalize {Uyy1, S| = qr(Uy + Wy).

5 EndDo

In line 4, Matlab notation is used so thét, ; is the result or orthonormalizing, + Wi.

Theorem 2.1 When the process converges, it exhibits a cubic convergrtbe limit, as expressed by the
following relation :

Riy1 = —WiR, " WiSe™' + O(||Ri||*). (26)

Proof. We £rst remark thatU, + W)™ (Ux + W) = Si” Sk = I + Wi,” Wi
Let us denoteDy, = (U + W)L A(Uy, + W3) and Ry, = Ry41Sk ; hence

Ry = AU + W) — (U + Wi)(Sk ' Sx) 1Dy, .

Therefore, withA;, = U, T AW}, the correction implies that

AU + W) — (Ug + Wi)(Dy, + Ag) = —WiAg, (27)
and remembering thaf, " W, = 0,

Dy — (I+Wi"Wi)(Di + Ap) = —Wi WAy,
which can be rewritten as
Dy, = Dy, + Ay, + Wi Wy Dy (28)

For the residual, we estimaf®&, = Ry 1.5 as follows,

Ri = AU+ Wi) — (Us + Wi)(I — Wi" W) Dy, + O(|[Wi||h),

AUy, + Wi) — Uy + Wi) Dy + (Uy, + Wi) Wi, Wi, Dy + O(|Wi|[*),

~Wi A — (Ui + Wi)Wi," Wi, Dy + (Ug + Wi ) Wi, Wi (D, + Ag) + O(||[Wi|[*),
= —WiAy, — Uk + Wi) Wi WAy + O(|[Wi 1),

(=W — UWi" W) Ag + O(| W),

(—=Wi — UpWi " W)U " AWy + O([Wi[|*),

(=W = UsWi" W) (R," Wi + DU W) + O([[Wie||*),

—WiR" Wi 4+ O(|| Wi ||Y).

Since W}, is the solution of a non singular Sylvester equation of whigt-hand side isRy, clearly
Wkl = O(]|Rk||) and (26) is established. Near convergefiget+ W is close to an orthonormal basis
and therefore matri$, is close to identity. Hence (26) proves thait., = O(|| Ry ||?). n



2.5 Inverseiteration and Rayleigh Quotient Iteration

The above developments lead to Olsen’s scheme and the Jaawitison approach, see, e.g., [19]. A
simpler scheme is often used in practice which consistsrdrigg the projection step. In the situation
of a single vector iteration, this scheme is simply the iseeteration algorithm, which computes a new
direction by solving

(A — pDUpew = u (29)

in which p is typically a £xed shift close to an eigenvalue. Note thatritjet-hand side is an approximate
eigenvector instead of a residual. A block generalizat@am loe written from the scheme (12) by using a
different right-hand side, namely, we solve

AUnew - UnewD =U.

If R= AU -UD, andU,,.,, = U+ W then the above condition, can be rewritterdd$ — WD = U — R.
Note that nowD is no longer defned a® = UT AU but can be a diagonal matrix of shifts. Also a
normalization must be added to the basic step mentionedeabothe form of a QR factorization @f,,., .

In Rayleigh Quotient Iteration, the shiftin (29) is changed to the Rayleigh quotient at each step.
This, however is not practical as it requires an expensivagtrization of the matrix at each step. Of
course the same is true of Algorithm 2.1, where a change imtiteix D;, would require expensive refac-
toring in the method used to solve the Sylvester equation.

3 Domain decomposition: CMSand AMLS

This section explores applications of what was just leanrellock corrections to Domain Decomposition
(DD) methods. Letd € R™*™ be a symmetric real matrix, partitioned as

a=( g o). (30)

whereB € R("—P)x(n—p) ' ¢ RP*P andE € R("~P)*?_ Assume that the above matrix arises from the
discretization of a certain self-adjoint operator (e.d.aplacean) on a domafn which is then partitioned
into several subdomains with an interfaicesee Figure 1 for the simplest case of two subdomains. The
subdomains, which may overlap, are separated by an ingeffad’he unknowns in the interior of each
subdomain); are completely decoupled from the unknowns of all other suiains. Coupling among
subdomains is through the unknowns of the interfA@nd the unknowns in eadh; that are adjacent to
I'. With the situation just described, the matiixis block diagonal, consisting of two diagonal blocks
corresponding to the unknowns that are interior to each guléhs. TheC' block corresponds to the
variables on the interface.

The eigenvalue problemu = Au, can be written as,

(& e)(0)=(0)

whereu € C"P andy € CP. A method for computing eigenvalues of matrices partitebimethis manner
was introduced in structural dynamics by [5, 8]. Referredsdhe method of Component Mode Synthesis
(C\vB), this method begins by solving the probld®w = pv. This amounts to solving each of the decoupled
smaller eigenvalue problems corresponding to each subdofaseparately. The method then injects
additional vectors to account for the coupling among sutalnos This is done by invoking a carefully
selected operator for the interface nodes. AMLS is a mutll@pproach which exploits recursivity by
continuing this approach into lower levels recursivelg eqy., [2, 1] for details.

In the following, the main steps of CMS - i.e., one level of ABLwill be reviewed. Consider the

matrix .
I —-B'F
U= ( 0 7 ) . (32)



Figure 1: The simple case of two subdomdihs 25 and an interfacé'.

This is a block Gaussian eliminator for matrix (30), whiclséected so that
T (B 0
U" AU = ( 0 S )
whereS is the Schur complement
S=C—-ETB'E. (33)
The original problem (31) is equivalent to the generaliziggvalue problent/” AUw = \UT Uu, which

becomes 5 0 , B-1g
U —b U
(0 8)(0) = (oo 37)00): @

whereMg = I + ET B~2E. The next step of CMS is to neglect the coupling matricescigon positions
(1,2) and (2,1)) in the right-hand side matrix of (34). Thislgs the uncoupled problem

Bv = pw (35)
Ss = n Mgs. (36)

Once the desirable eigenpairs have been obtained from 35ty are utilized in a projection method
(Rayleigh-Ritz) applied to the original problem (34). Theests used for this projection is of the form

L (i . ) - _ (0 .
{vi(o) i=1,...,mp; sj(sj) jl,...,ms}, (37)

wheremp < (n —p) andmg < p and where the;’s anss;'s are eigenvectors of the problems (35) and
(36) respectively.

It is important to note that the projection is applied to (B&her than to the original problem (31).
There is an inherent change of basis between the two andedsons that will become clear shortly, the
basis{?;}:,{5,},, is well suited for the transformed problem rather than trigimal one. In fact let us
consider this point in detail. We could also think of using transformed basis

. Vs . R —B_lESj R
{Ui—(o) i=1,...,mp; uj—( S, > j—l,...,ms}, (38)



for solving the original problem (31), instead of the ba8ig)( As can be easily seen, these two options are
mathematically equivalent.

Lemma 3.1 The Rayleigh-Ritz process using the basis (37) for probBthié mathematically equivalent
to the Rayleigh-Ritz process using the basis (38) for prok&l).

Proof. For a given matrix4, and a given basis (not necessarily orthogonal) consisfiige columns of a
certain matrixZ, the Rayleigh Ritz process can be written as

ZTAZv =) 2" Zv

If Z is the basis (37) then the basis (38) is nothingldut. Comparing the two projection processes gives

the result. ]
In the rest of the paper we will use the basis (38) on the asgimoblem (31) for describing the CMS
projection.

It should be mentioned that the original CMS method as desdrin [5, 8] does not use selected
eigenvectors; from the Schur complement as was done here, but instead tselsraque which amounts
to taking all of them (i.e.;mmg = p). Since this can be a problem when the interfaces are largeqBm
[4] in particular suggested a technique based on Schur engaits which is similar to the more general
approach described above.

3.1 Linkswith the correction equation

One of the purposes of this paper is to present CMS/AMLS frbenangle of the correction equation.
Notice at £rst that CMS does implement a correction: it casrde eigenvectors @b to try to obtain better
approximations to the eigenvectors of the whole mattixThis is done by using the Schur complement
matrix and constructing a good (improved) basis to perfdrenRayleigh Ritz projection. This viewpoint
(correction) is important because there are many variamtsdrrecting eigenvectors and some are better
than others. It should be noted that, in contrast with thevalatescription, the common CMS viewpoint
begins from the eigenmodes of the Schur complement thaltsdsam the so-called Guyan reduction, or
static condensation, see [9]. These modes are then enfighadding selected modes from the interior
variables of each subdomain. Since we are in effect setpatsget of coupling modes and a set of internal
modes, to form a basis of for the Rayleigh Ritz projectiors thistinction is no longer important.

Consider eigenvectors @ associated with smallest eigenvalues.

Bv; = piv;

4= ()

as approximate eigenvectors df The eigenvectors obtained in this manner amount to negieet!
the couplings and are likely to yield very crude approximias. We can now think of correcting these
eigenvectors via aorrection equatioras is usually done, see the previous sections.
An interesting observation is that the residuals- (A—ul)v; have components only on the interface
variables, i.e., they have the shape:
0
=) (39)

where the partitioning corresponds to the one above andentyer: E7v;.
Consider a single vector inverse iteration correction.hia tase, for each approximate eigenvector
v; we would seek a new approximatienby solving an equation of the type (294 — I )u; = v; . where
1 is a certain shift. In a typical inverse iteration correntig is constant to reduce cost of factorization.
The matrixA — uI can be factored as

(A_MI):(ET(BfluI)—l ?) (BBMI Sa)) (40)
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whereS(u) is the Schur complement
S(u)=C—pul — ET(B - pul)7'E.
Taking the particular structure of into account we £nd that

B (v [([I+(B-p)LES(u) tET(B — pul) "ty
w=tamnn () = (750 TR )

In other words,

(B —ul)"lEs;
u; = <Zl (B SMI) E51> with z; = (B —pl) 'v; and s; = —S(u) 'ET%

There is a strong similarity between the result of this adfom and that obtained from CMS. This
can be seen from the nature of the basis (38) which consiste efectors

(5) ()

where thes;’s are eigenvectors of a Schur complement, andvilseare eigenvectors of th8 block.

3.2 Correction equations and Domain Decomposition

Consider now the application of the correction equatior) b2the Domain Decomposition framework
discussed above. Specifcally, we consider the Newton agipbscussed in Section 2.3 and we will apply
one step of the Newton-Sylvester algorithm, i.e., Algarit{2.1). Note that since we are only considering
one step of the process, there is no difference betweenlgositam and Algorithm 2.2. The indek is
removed for simplicity and/; 1 in Line 4 is denoted by/"*. We denote by, € RP*™ (1 < m < p <
n) an orthogonal basis of an invariant subspac&p$o thatBV; = V1 D, whereD = diag(u1, -+, fim)
and we letU = <‘61
P =1-WVV]T, sothat

) e R™™_ To simplify notation we will denote byP; the orthogonal projector

0 1 0 I
In addition, the matrixD,, in Line 2 of Algorithm 2.1 is simply the diagonal matrix:

I_UUT:<I—V1V1T O);(Pl o) (42)

Wi

UTAU = [vi¥' 0]A ( 0

) =V{BVi=D.

Similarly, the residual matrix;. has a simple structure due to (39):

0
neavvo- (0,

Now the Sylvester system in Line 3 of Algorithm 2.1 can beterit/ — UUT)AZ — ZD = —R.
SinceD is diagonal this system decouples into thaistinct linear systems,

T — . Py S — 0
(I-UU")Az — pizi = —r; = <ETW>' (43)

Writing z; = (1’) the system (43) translates to:

PiBy;+ PiEs; — iy; = 0
ET y, + (C—pul)s; = —ETw;

11



Note that the £rst equation is equivalent?o(B — u;I)y; + P E's; = 0 the solution of which is
y; = —[P1(B — u;1)]" P Es;.
Substituting this solution in the second equation resatts i
—ETP/(B — ;)P Es; 4+ (C — p;I)s; = —ETv;
which gives the following equation to solve fey.
[C — pil — ETPy(B — ;1) P E]s; = —ET; (44)
This leads to a natural de£nition opaojected Schur complement
S.(u;) = C — il — ETP/(B — p;I)'PLE (45)

from which the solution is readily expressible. In whatdelk it is assumed théf, (1, ) is not singular (A
less restrictive assumption is thit(;) is not singular in the range d”'.)
In the end the column-vectors of the new matiX* are given by

A —_ Dt .
up® =u; + 2z = (Uz P(B .’ull) PlESl) with  s; = =S, (1) "L ET (46)

S;
An interesting property which can be shown is that

. new __ _‘/lvvlTESi
R

It is, of course possible to apply additional steps of thigection process. However, these additional steps
will require expensive Sylvester-like equations to be edlat each step with different shifts. Instead of
considering these we can instead gain insight from the AMidggdure and try to defne good subspaces
for a projection process. Specifcally, the questionnkich subspace should be addedspmnV; if the
goal is to obtain a good approximation to the original eigpase?

A comparison between (46) and the basis (41) used by CMS stggdat we replacg; by zero in
(46) and that we enrich the basis by the vectors

Si

b op-1 .
( PhB PlESZ) with s; = —S,(0) "' E"v; .

Note thatP, B~'P, = P,B~! = B~'P;. In other words we can consider performing a Rayleigh-Ritz
process on the original problem (31) with the basis

. _ -1 .
{v:(%)u:( hB ESZ) i:l,...,m}, with s; =—S5,(00'ETv; . (47)

8

The differences with the basis used by CMS are (1) the way iolwthe s;’s are de£ned and (2) the
presence of the projectdt; in the de£nition ofi;. We can also defne a simplifed basis, which we will
refer to as the Newton-CMS basis, in which the projectorsemoved:

4 _B'Es; .
{v:(%) ;ai=< 3) izl,...,m}, with s; = —S~LETw; . (48)

S4

Note thatS, (0) has been replaced by the standard Schur complefeatC — ET B~ E. Experiments
indicated that at least for a one level AMLS (i.e., for a CM§aaithm), there is no difference between the
two bases (47) and (48).
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One of the main weaknesses of AMLS is that it is a one-shotrigiigo, in the sense that it just
provides one set of approximations that cannot (at leabttivé classical algorithm de£nition) be improved.
Because of the close relationship between the AMLS algordhd the correction equation, we can think of
using more steps of the correction algorithms describddeetw £1 the gap. The biggest appeal of AMLS
is that it is essentially a method which performs one faztdion (direct) only to extract a large number
of eigenvectors. In the numerical experiments we will test following adaptation of Algorithm 2.2 in
which Uy corresponds to the initial set of CMS which is the £rst parhefltasis (38). For this reason it is
important to setD;, to zero throughout. In addition, following the spirit of CMtBe correction in Line 4
of Algorithm 2.2 is replaced by a projection step using this given byU;, and Z,.. This gives following
iterative, or corrected, variant of CMS.

ALGORITHM 3.1 [terative CMS

0. Select), s.t. Ul Uy = I from eigenvectors in each subdomain.

1. Fork = 0, - - -, until convergence Do:

2. ComputeRk = AU, — Uk(UgAUk)

3. Solve (forZy): (I — UyUL)AZ, = —Ry,

4. SetV = [Uk, Zk]

5. ComputdJi, 1 from a Rayleigh-Ritz projection oA using the basi¥’ .
6. EndDo

The systen{I — U, U')AZy, = — Ry, can be solved, for example, by settifg= U;" AZ,. and then solving

A —Uk Zk _ _Rk
UFA -1 T ) 0 '
SinceUy, is typically of low rank, the above system can be easily sblvéh one factorization ofd.
This algorithm will be tested for a 2-domain case in the nextisn.

4 Numerical Examples

All the tests are run in the MATLAB environment.

4.1 Quadratic and Cubic convergence

The £rst test considers a matrix of small order 238). This matrix is the classical matrix obtained by the
discretization of the 2D Laplacean by £nite differences @4 a 17 rectangular mesh. The twenty smallest
eigenvalues are sought. The two principal diagonal blotksder112, the leading one and the tailing one,
are separated by a block of dimensieh When adequately permuted, the matrix pro£le is shown in Eigur
2 (a). The evolution of the residual norms are displayed gufg 2 (b) for the Newton-Sylvester iteration
(Algorithm 2.1), and in Figure 2(c) for the Iterative Corttien (Algorithm 2.2). The quadratic and cubic
convergences are well illustrated by the curves. Duringteiterations, the two methods stagnate as long
as they have not yet determined a good approximation of amiant subspace. The computed eigenvalues
are not the 20 smallest ones : there are some missing eigesvaFor Algorithm 2.1, the 12 smallest
eigenvalues are computed and the last 8 computed eigeavauaespond to eigenvalues ranking between
the 14th and the 25th eigenvalue of the matrix. For Algorith@ the result is almost equivalent although
a bit worse: the £rst 10 eigenvalues are computed and thelastriputed eigenvalues range between the
12th and the 26th eigenvalue.

4.2 Computinginner eigenvalues

In this section, we consider as test matd®, the matrix PLAT1919 from the test suite Matrix Market
[3]. The matrix is of order 1919 and its sparsity pattern isveh in Figure 3 (a). By applying a symmetric
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(a) Pattern of the matrix

Permuted Laplacian n=238

0
50
100 \
150
200
0 50 100 150 200
nz = 1128
(b) Convergence with Algorithm 2.1 (c) Convergence with Algorithm 2.2
Algorithm 2.1 Algorithm 2.2
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Figure 2: Test with the Laplacean
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reorderingP obtained from the Symmetric Reverse Cuthill-McKee aldon the matrixAp = PT AP has

a smaller bandwidth. Considering the permuted matrix two diagonal blocks are de£ned by the intervals
of indicesI; = [1 : 1040] and, = [1081 : 1919]. The intervalJ = [1041 : 1080] is the separator. By
renumbering symmetrically rows and columnsAy#, with the numbering defned Wiy = [I;, I», J], one
gets the test matrid whose pattern is displayed in Figure 3 (b).

Pattern of PLAT1919 Permuted PLAT1919

200 200

400 400

600 600

800 800

1000 1000

1200 1200

1400 1400

1600 1600

1800 1800

0 500 1000 1500 500 1000 1500
nz = 32399 nz = 32399

(a) Original pattern (b) After symmetric renumbering

Figure 3: Sparsity patterns of PLAT1919

The full spectrum of PLAT1919, computed by the QR methodjspldyed in Figure 4. The goal of

Spectrum of PLAT1919
10 T

= /___’/ 4

107

1070

1078L

20

. . .
0 500 1000 1500 2000
Indices of the eigenvalues of PLAT1919

10

Figure 4: Spectrum of Matrix PLAT1919

the tests is to analyze the behavior of the two algorithms8d.2.2 for computing a basis of an invariant
subspace corresponding to six eigenvalues in a neighbdrbfoo = 0.995.

The same initial guess, € R%19%6 of a basis of the sought invariant subspace is consideretidor
two methods. It is built, consistently with Section 3.2, bg following : for each of the two blocks, the
three eigenvectors corresponding to the eigenvalues vanikthe closest te are computed ; in that way,
two orthonormal block&7 (1) e R1040x3 gndU(?) e R849%3 are obtained andl is then defned by

v o
Up = 0o U® |. (49)
0 0

Table 1 shows, for each of the two methods, the computed wagers, corresponding to the invariant
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subspace de£ned by the last computed Wagidn each case, the eigenvaluesiaf are given, along with
their respective index in the spectrum of the matrix, andr thiesolute error. The eigenvalues are labeled
in ascending order. In Figure 5, the computed eigenvaluedoaated in the whole spectrum of matrix

Algorithm 2.1 Algorithm 2.2
After k£ = 10 iterations After k = 6 iterations
Residual :5 x 1072 Residual :3 x 10~ !

eigenvalue| index error eigenvalue| index error
0.91576 | 1771 | 4x 1073 || 0.96497 | 1782 | 1 x 10~
0.97367 | 1785 | 2 x 1073 0.99000 | 1786 | 1 x 10~ 1°
0.98842 | 1786 | 2 x 1073 0.99359 | 1788 | 2 x 10~
0.99213 | 1788 | 1 x 103 0.99515 | 1791 | 2 x 10715
0.99964 | 1791 | 4 x 1073 1.0053 | 1793 | 4 x 10715
1.0866 | 1812 | 2x 1073 1.0113 | 1794 | 2 x 10715

Table 1: Computed eigenvalues of PLAT1919 neat 0.995

PLAT1919. On this example, the superiority of Algorithm 2x2r Algorithm 2.1 is clear : the eigenvalues

1.15¢
1.025
.. Eigenvalues of PLAT1919
11p +  Eigenvalues of PLAT1919 " 4 O Computed eigenvalues
O Computed eigenvalues 3‘ ®-
3ol
1.05¢
1.000
ey @
1 o Q
©
0.95- o 1 0.975
L9 ©
0.9r
. 0.950
0.85[ L L L L L L L ]
1760 1770 1780 1790 1800 1810 1820 1770 1775 1780 1785 1790 1795 1800
Indices of the eigenvalues of PLAT1919 Indices of the eigenvalues of PLAT1919
(a) Algorithm 2.1 (b) Algorithm 2.2

Figure 5: Location of the computed eigenvalues in the spectr

computed by the former are closer to the reference numibed they are much more precise. Actually, the
run of Algorithm 2.1 showed a lack of convergence. We rerugofithm 2.1 withU equal to the Q-factor

in the QR factorization of the last estimdi& of the £rst run. After 10 additional iterations, the residual
reached 0—% and the computed eigenvalues were corresponding to eilgesvaf PLAT1919 with indices
from 1771 to 1815, with a precision higher thiir 2. It appears that, this algorithm needs a better initial
estimate than its counterpart. A drawback of Algorithm 2e% In its Step 3 which corresponds to a non
symmetric Sylvester equation. However, complex compaiatan be avoided since it can be proved that,
although non symmetric, matrii,, is similar to a symmetric matrix.

4.3 Testswith domain decomposition
We consider a Scidinger operator of the form
H=-A+V
on a rectangular domain in 2 dimensions. The poteffied a Gaussian

27

V(z,y) = —Be(@z)* ~(w=ve)?
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in which (z., y.) is the center of the domain. The operaldracts on a given function by simply adding
the functionl/u to the negative Laplacean of We selected = 100, and discretized the domain uniformly
using centered £nite differences and applied Dirichlet bdamy conditions. The domain is a rectangle of
dimension(n, + 1) x h = 1 and(n, + 1) x h, wheren,,n, are the number of discrete points on the
x andy directions, respectively, excluding boundary points. @benain is then split in two horizontally,
in the middle of the domain. The matrix is reordered by pgttine interface variables at the end as is
usually done to illustrate DD orderings. The resulting mas shown on the left side of Figure 6. * The
£rst experiments is only for demonstrating the power of theSGNgorithm and its variants. We found in
general very little difference between the different vatsaof the same idea. We compared the following 4
methods for computing the smallest, eigenvalues. In the test., = 8.

No correction This performs a Rayleigh Ritz procedure with eigenvectoosnfthe two domains. The
process takes.,/2 eigenvectors from each domain which will form the columnteex of two
matricesU, Us then gathers them in a badi® = [Uy, Us] and then proceeds to a Rayleigh Ritz
projection onA with then.,, vectors inlV/.

CMS This approach consists of a CMS projection, which takes #éinee3?” from above and augments it
with the setZ obtained as

Z:<fB_G1EG)

whereG is a matrix whose columns are eigenvectorsSadssociated with the smallest,, eigen-
values. This corresponds to using the basis (41) for a RfyRitz projection. This corresponds to
using the basis (41) for a Rayleigh-Ritz projection.

Newton-CM S This is similar to the previous method, but thematrix of eigenvectors of the Schur com-
plement is replaced by the matr ' ETW where S is the Schur complement. Note that since
W = [Uy, Us] has2 n., columns, we end-up adding a basis of Bas.,, columns instead of..,, for
CMS. This scheme corresponds to using the basis (48) for eighyRitz projection.

Newton-CM Swith projection The only difference between this and the previous procettmtghe pro-
jectorP, = I — WW7 is used, along with the projected Schur complement giveby. (Thus, the
inverse ofB is replaced byP, B—! when de£ningS and theZ matrix above. This corresponds to
using the basis (47) for a Rayleigh-Ritz projection.

In all cases we tested for this example, Methods 3 and 4 setortsel exactly identical. This means that
the G matrices generate the same subspace in both cases. Betthiseve only show the results with the
£rst 3 methods.

Figure 6 shows an illustration for a case whep = 35,n, = 33 which yields a matrix of size
n = 1,155. The number of eigenvalues computed is 12. As it turns oatvery difEcult for this example
to £nd cases where CMS and Newton-CMS vyield (signiEcantly@dint results. Because, is relatively
small, the subspace spanned by the matrigésvolved above is the same or very close and this leads to
the same approximations. What is remarkable is the qualitiyeop&pproximation obtained from CMS-type
approaches. The accuracy obtained by using eigenvectonssinbdomains alone (no correction) is already
quite good, considering the simplicity of this approach.

In the next test we consider the iterative CMS, Algorithm, 8liscussed earlier. Only two correction
steps (corresponding to thdoop in the algorithm) are taken. In this test we take= 45, n,, = 43 which
leads to a bigger matrix of size= 1, 935. Figure 7 shows the result of computing the 20 lowest eigeega
with the three methods: Newton-CMS, 1st step of IterativeSC&hd 2nd step of Iterative CMS. The results
are much improved, especially for the lowest 10 eigenvaldéste also, that the biggest improvement is
achieved by the £rst corrective step. What is important to exsigk here is that the improvements achieved
by the two corrections are obtained without any additioaatdrizations of the matrix.
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Hamiltonian after DD reordering — size 1155 Artificial Hamiltonian of size n = 1155

S
= -101
w
o
o -2t
o
.}
_1al
6l
«+No correction
1000 ~18 ===CMS
=——Newton-CMS
‘ ‘

20 L L L I I
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Exact eigenvalues

Figure 6: Left: Pattern of the Hamiltonian matrix after i@@ring. Right: Performance of 3 techniques for
computing its 12 smallest eigenvalues

Artificial Hamiltonian of size n = 1935
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Figure 7: Performance of Newton-CMS and the results of twoentive steps of Algorithm 3.1. The 20
lowest eigenvalues are computed.
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5 Summary and Conclusion

We have discussed a few variants of certain algorithms baséle correction equation for solving eigen-
value problems and we showed how they can be adapted in a ”loie@mposition framework. In partic-
ular, block variants of the correction equation were detivg viewing the eigenvalue problem as a system
of nonlinear equations. The resulting algorithms convexglgically or quadratically but they require the
solution of a different Sylvester equation at each step.héndase of CMS, experiments show that it is
possible to obtain good improvements by versions of thegarithms which do not require to refactor the
matrix at each step.

References

[1] K. BEKAS AND Y. SAAD, Computation of smallest eigenvalues using spectral Schonmptements
Tech. Rep. umsi-2004-6, Minnesota Supercomputer Instituhiversity of Minnesota, Minneapoalis,
MN, 2004. Appeared in sisc, volume 27, number 2, (2005) pd§8s481.

[2] J. K. BENNIGHOF AND R. B. LEHOUCQ An automated multilevel substructuring method for
eigenspace computation in linear elastodynam8i&\M. J. Sci. Comput., 25 (2004), pp. 2084-2106.

[3] R. F. BoISVERT, R. Pozo, K. REMINGTON, R. BARRETT, AND J. DONGARRA, The Matrix Mar-
ket: A Web repository for test matrix daten The Quality of Numerical Software, Assessment and
Enhancement, R. Boisvert, ed., Chapman&Hall, London, 1pp7125-137.

[4] F. BourQuiN, Component mode synthesis and eigenvalues of second orlatans: discretization
and algorithm Mathemetical modeling and numerical analysis, 26 (1992)385—-423.

[5] R. R. CrRAIG, JR. AND M. C. C. BAMPTON, Coupling of substructures for dynamic analy#$AA
Journal, 6 (1968), pp. 1313-1319.

[6] M. CROUZEIX, B. PHILIPPE, AND M. SADKANE, The Davidson metho&IAM, Journal on Scientifc
and Statistical Computing, 15:1 (1994), pp. 62—76.

[7] G.H. GoLuB AND C. F. V. LOAN, Matrix ComputationsJohns Hopkins University Press, Baltimore,
MD, 3rd ed., 1996.

[8] W. C. HurTy, Dynamic analysis of structural systems using componenem@dAA Journal, 3
(1965), pp. 678-685.

[9] ——, Reduction of stifness and mass matrjig®®\A Journal, 3 (1965), p. 380.

[10] E. LUNDSTRM AND L. ELDEN, Adaptive eigenvalue computations using Newton’s methoth@n
Grassmann manifoldSIAM J. Matrix Anal. Appl., 23 (2002), pp. 819-839.

[11] R. MORGAN AND D. ScoTT, Generalizations of Davidson's method for computing eigares of
sparse symmetric matriceSIAM J. Sci. Statist. Comput., 7 (1986), pp. 817—-825.

[12] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd edi8®AM, Philadelpha, PA, 2003.

[13] A. SAMEH AND Z. TONG, The trace minimization method for the symmetric generdlédgenvalue
problem J. of Computational and Applied Math., 123 (2000), pp. 15%-

[14] A. SAMEH AND J. WISNIEWSKI, A trace minimization algorithm for the generalized eigdoea
problem SIAM J. Numer. Anal., 19 (1982), pp. 1243-1259.

[15] G. L. G. S EJPEN, A. G. L. BOOTEN, D. R. FOKKEMA, AND H. A. VAN DER VORST, Jacobi-
Davidson type methods for generalized eigenproblems alyd@mial eigenproblem$IT, 36 (1996),
pp. 595-633.

19



[16] G. L. G. S EIUPEN AND H. A. VAN DER VORST, A Jacobi-Davidson iteration method for linear
eigenvalue problems$IAM J. Matrix Anal. Appl., 17 (1996), pp. 401-425.

[17] B. SMITH, P. BIGRSTAD, AND W. GROPR, Domain decomposition: Parallel multilevel methods for
elliptic partial differential equationsCambridge University Press, New-York, NY, 1996.

[18] A. STATHOPOULOS ANDY. SAAD, Restarting techniques for the (jacobi-)Davidson symroeiigen-
value methodsElectron. Trans. Numer. Anal., 7 (1998), pp. 163-181.

[19] G. W. STEWART, Matrix Algorithms Il: Eigensystem$&IAM, Philadelphia, 2001.

20



