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Abstract

By considering the eigenvalue problem as a system of nonlinear equations, it is possible to develop a
number of solution schemes which are related to the Newton iteration. For example, to compute eigenval-
ues and eigenvectors of ann × n matrixA, the Davidson and the Jacobi-Davidson techniques, construct
‘good’ basis vectors by approximately solving a “correction equation” which provides a correction to be
added to the current approximation of the sought eigenvector. That equation is a linear system with the
residualr of the approximated eigenvector as right-hand side.

One of the goals of this paper is to extend this general technique to the “block” situation, i.e., the
case where a set ofp approximate eigenpairs is available, in which case the residualr becomes ann × p

matrix. As will be seen, solving the correction equation in block form requires solving a Sylvester system
of equations. The paper will de£ne two algorithms based on this approach.For symmetric real matrices,
the £rst algorithm converges quadratically and the second cubically. A second goal of the paper is to
consider the class of substructuring methods such as the Component Mode Synthesis (CMS) and the
Automatic Multi-Level Substructuring (AMLS) methods, and to view them from the angle of the block
correction equation. In particular this viewpoint allows us to de£ne an iterative version of well-known
one-level substructuring algorithms (CMS or one-level AMLS). Experiments are reported to illustrate the
convergence behavior of these methods.

1 Introduction

A number of schemes have been developed in recent years for enhancing the convergence of subspace-based
methods for computing eigenvalues and eigenvectors of large matrices. These approaches essentially take
the viewpoint that the eigenvalue problem is a nonlinear system of equations and attempt to £nd a good way
to correct a given approximate eigenpairλ̃, ũ, by introducing to the most recent subspace of approximants,
an information that is not redundant with this subspace. In practice, this means that we need to solve the
correction equation, i.e., the equation which updates the current approximate eigenvector, in a subspace that
is orthogonal to the most current approximate eigenvectors.

Several methods can be mentioned including the Trace Minimization method [14, 13], the Davidson
method [6, 11] and the Jacobi-Davidson approach [16, 15, 18]. Most of these methods update an existing
approximation by a step of Newton’s method and this was illustrated in a number of papers, see, e.g., [10],
and in [19].

One can think of the problem as that of solving(A− λI)u = 0, but since there aren + 1 unknowns,
a constraint must be added, for example,‖u‖2 = 1. If the current approximate eigenpair is(λ̃, ũ), it is
assumed that‖ũ‖2 = 1, and that̃λ is the Rayleigh quotient of̃u. We de£ne the residualr = Aũ − λ̃ũ. If a
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correctionδ, z to λ̃, ũ is sought, then we write the equations to be satis£ed as

[(A − λ̃I) − δI](ũ + z) = 0

(ũ + z)T (ũ + z) = 1 .

Ignoring second order terms, this yields the system of equations,

(A − λ̃I)z − ũ δ = −r (1)

− ũT z = 0 . (2)

The above equations can be solved in a number of ways, for example as an(n+1)× (n+1) linear system.
A simpler solution is to invoke the orthogonal projectorP = I − ũũT . Multiplying the £rst equation byP ,
and observing thatP ũ = 0, P r = r, yields,

P (A − λ̃I)z = −r. (3)

Note that this system is degenerate - i.e., it has an in£nite number of solutionsz. Among all the solutions
of this system, we require one that is orthogonal toũ, i.e., one such thatPz = z. This can be enforced by
solvingP (A − λ̃I)Pz0 = −r, for z0, and de£ning the solution to bez = Pz0 (instead ofz0). Thisz will
satisfy the equation (1). Indeed,

(A − λ̃I)z = P (A − λ̃I)z + (I − P )(A − λ̃I)z = −r + ũũT (A − λ̃I)z = −r + ũrT z

and therefore, (1) is satis£ed withδ = rT z. In addition (2) is trivially satis£ed becausez = Pz0. Note that
the correctionδ to λ̃ can be ignored since the new approximate eigenvalue will just be de£ned as the new
Rayleigh quotient. So we are left with the equation,

P (A − λ̃I)Pz = −r. (4)

The Jacobi-Davidson scheme [16], the Trace Minimization method [13] and a number of related
algorithms are based on the above development. In other methods, the projection is not considered since
the matrixA is not used exactly. Instead,A is replaced by a “preconditioner” when solving the system
(M − λ̃I)z = −r in place of the system (3). This viewpoint is most useful in a Davidson approach to build
a subspace for a projection technique [19].

The Newton-type framework just described determines one vector at a time and it is interesting to
explore situations where a block of vectors must be corrected. This is important in many practical applica-
tions. We will explore a few block correction schemes which are derived in a manner that is similar to what
was done above for the one-dimensional case.

One of the possible applications of these schemes lies in domain decomposition methods. In these
methods, one can consider the invariant subspaces obtainedfrom subdomains as approximately invariant
for the global operator. Such approximations can be very rough and one may be tempted to correct them
in some way. This technique is taken to the limit and exploited in a quite effective way in the Automated
Multi-Level Substructuring (AMLS) algorithm [2, 8]. In AMLS, the subspaces are corrected by adding
correction terms from the interface variables.

The main goal of this paper is to explore block versions of thecorrection equation. By considering
the correction equation as a nonlinear system of equations we can derive Newton-type iterations whose con-
vergence is quadratic or cubic. We will also consider the Automatic Multi-Level Substructuring algorithm,
and domain-decomposition methods, from the point of view ofa block correction.

2 Block correction

This section examines a few schemes for “correcting” a givenapproximate invariant subspace. We are given
a subspace in the form of a certain basisU = [u1, u2, · · · .um] and would like to £nd a correctionW of the
same dimensions asU , such thatU + W is a better invariant subspace thanU . Schemes of this type are
well-known for the case whenm = 1, and they lead to the standard Olsen’s method or Jacobi-Davidson
scheme.
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2.1 Correction of an orthonormal basis

Let us assume thatU ∈ R
n×m is an orthonormal basis of an approximate invariant subspace ofA ∈ R

n×n.
In particular,UT U = I. Let D = UT AU be the interaction matrix whose eigenvalues are approximations
of eigenvalues ofA. The residual of the corresponding subspace is :

R = AU − UD (5)

= (I − UUT )AU. (6)

The last expression shows thatR lies in a space that is orthogonal toU , i.e.,

UT R = 0. (7)

The goal is to obtain(W,∆) ∈ R
n×m, Rm×m respectively, which will correct(U,D) so that the

perturbed pair of matrices(U + W,D + ∆) satisfy the (nonlinear) equation :

A(U + W ) = (U + W )(D + ∆). (8)

This equation involvesmn equations andmn + m2 unknowns. In order to close the system,m2 equations
must be added. We consider the additional constraint :

UT W = 0. (9)

The above constraint may seem arbitrary but it can be interpreted as follows. It can be viewed as a means of
restricting the information that is being added to the current system (W ) to being non redundant. Another
condition we could have imposed is that the new systemU + W should be orthonormal. This would have
m2 constraints as desired, but these constraints are nonlinear. However, up to second order approximation
these constraints will imply the requirement (9). Indeed,

(U + W )T (U + W ) = I → UT W + WT U + WT W = 0 .

Neglecting second order terms from the system of equations (8) and (9), yields the equations:
{

AW − WD − U∆ = −R
UT W = 0.

(10)

This system is actually a general expression of equations (1) and (2) when vectors are replaced by blocks
of vectors. By multiplying the £rst equation on the left side by U T , and using relation (7) we obtain the
following expression for∆,

∆ = UT AW. (11)

Therefore, system (10) is equivalent to solving

(I − UUT )AW − WD = −R (12)

and then computing∆ = UT AW . It can be easily shown that the obtained solutionW satis£esU T W = 0
as required. Formula (12) generalizes formula (4). To prove(4), we preferred to use a more classical
derivation.

2.2 Non orthonormal systems and the projection viewpoint

We now adapt what was developed above to the correction of a non orthonormal basisX ∈ R
n×m of an

approximation of an invariant subspace. Along withX is a certain representation ofA in the subspace in
the form of a matrixD ∈ R

m×m such thatA,X, andD satisfy the relation

AX = XD + R,
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whereR is a certain residual matrix. The only requirement onX, D, andR is thatXT R = 0. This implies
in particular thatD = (XT X)−1(XT AX).

We seek(W,∆) ∈ R
n×m × R

m×m such thatXT W = 0 and

A(X + W ) = (X + W )(D + ∆). (13)

When the above equations are satis£ed, then(X +W ) spans an invariant subspace ofA and the eigenvalues
of (D + ∆) are eigenvalues ofA. By neglecting the second order terms, the equation becomes:

AW − WD − X∆ = −R, (14)

which implies that∆ = (XT X)−1(XT AW ). LetQ = X(XT X)−1XT be the orthogonal projection onto
X andP = I − Q the dual projector. The £nal equation which generalizes equation (12) is :

PAW − WD = −R (15)

with (I − P )W = W .
It is clear that ifX and an orthonormal systemU span the same subspace, then the resulting subspace

obtained by the above process should be identical with the one resulting from the treatment of Section 2.1.
In other words the matricesW, W̃ obtained in both cases are related by a nonsingularp × p transformation
S, i.e.,W = W̃S.

2.3 Nonlinear correction

Clearly the original correction equation is nonlinear and its exact solution will yield an exactly invariant
subspace. It is possible to solve the non-linear equations iteratively and this section explores this possibility.
In this section we go back to the case whenU is orthonormal. Equation (8) is expanded as

AW − WD = −R + U∆ + W∆ (16)

We still need to imposem2 constraints in the form of (9). Multiplying both sides of (16) by UT yields the
same expression for∆, i.e.,∆ is again given by (11). This means that we have again removed the unknown
∆ from the system (8) and we can write:

AW − WD = −R + (U + W )UT AW (17)

Grouping like terms leads to the nonlinear system,

(I − UUT )AW − W (D + UT AW ) + R = 0 . (18)

This system can be solved with some form of iteration and then∆ can be obtained from∆ = UT AW . The
solutionW obtained also satis£esU T W = 0 as required.

It is interesting to examine a Newton approach for solving (18). Newton’s method is equivalent to
starting from a certainW0 (for exampleW0 = 0) and then iterating asWk+1 = Wk + Zk whereWk + Zk

is made to satisfy (18) for up to £rst order terms inZk, This yields after a little calculation,

(I − (U + Wk)UT )AZk − Zk(D + UT AWk) = −R − (I − UUT )AWk + Wk(D + UT AWk) (19)

The above system is a Sylvester equation inZk and with the notationUk = U + Wk = Uk−1 + Zk−1 and
Dk = D + UT AWk = UT AUk it becomes

(I − UkUT )AZk − ZkDk = −Rk (20)

whereRk is the right-hand side seen above
A few observations will provide some insight. The matrixDk = D + UT AWk is the right-corrected

projection matrix sinceDk = D + UT AWk = UT A(U + Wk). There is some loss of symmetry in this
process. In the end the Newton scheme would be as follows:
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0. SelectW0 (e.g.,W0 = 0)
1. Fork = 0, · · · , until convergence Do:
2. SetDk = D + UT AWk ; Rk = (I − UUT )AWk − WkDk + R
3. Solve (forZk): (I − (U + Wk)UT )AZk − ZkDk = −Rk

4. SetWk+1 = Wk + Zk

5. EndDo
Observe that whenW0 = 0, then the £rst step corresponds simply to the previous linearized scheme

and this is expected. From the de£nition ofUk andDk, the iteration can be rewritten in terms ofUk. Note
£rst that the expression forRk can be simpli£ed :

Rk = (I − UUT )AWk − WkDk + R

= (I − UUT )A(Uk − U) − (Uk − U)Dk + R

= (I − UUT )AUk − (I − UUT )AU − UkDk + UDk + R

= AUk − U(UT AUk) − R − UkDk + UDk + R

= AUk − UDk − UkDk + UDk

= AUk − UkDk

This gives the following alternative expression of the previous algorithm

ALGORITHM 2.1 Newton-Sylvester iteration

0. SelectU0 s.t.UT
0 U = I (e.g.,U0 = U )

1. Fork = 0, · · · , until convergence Do:
2. ComputeDk = UT AUk, andRk = AUk − UkDk

3. Solve (forZk): (I − UkUT )AZk − ZkDk = −Rk

4. SetUk+1 = Uk + Zk

5. EndDo

An important note here concerns the solution of the Sylvester equation in Line 3. Since we would like to
solve the correction equation with the constraint thatWT

k U = 0, we would like the relationZT
k U = 0

should be satis£ed in general. The relation is trivially satis£ed fork = 0 a consequence of the choice made
in Line 0. For a generalk, the relationZT

k U = 0 is equivalent toUT
k U = I. We can use a little induction

argument. Assume that the relation is satis£ed fork. Then multiplying the Sylvester equation byU T yields
UT ZkDk = 0. This will imply thatUT Zk = 0 whenDk is nonsingular, which may be true under certain
assumptions. However, in order to avoid dif£culties,we will always assume that the system (20) is solved
for a Z that is orthogonal toU . WhenDk is nonsingular, then as was seen,UT Zk = 0 is automatically
satis£ed. WhenDk is singular, we can for example shift bothA andDk by the same shiftσ so thatDk−σI
is nonsingular. Then we solve, instead of (20), its shifted variant:

(I − UkUT )(A − σI)Zk − Zk(Dk − σI) = −Rk (21)

Now sinceDk − σI is nonsingular,ZT
k U = 0 and thisZk is also solution of (20). In practice this issue

does not arise.
When convergence takes place it is quadratic at the limit, a characteristic of Newton’s method. A

relation which will establish this fact independently can also be proved.

Lemma 2.1 At each step of the Newton-Sylvester iteration the following relations hold:

UT
k U = I (22)

Rk = (I − UkUT )AUk (23)

UT Rk = 0 (24)

Rk+1 = −ZkUT AZk (25)
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Proof. The £rst relation was discussed in detail above. It comes fromthe fact that at each stepU T Zk = 0.
The second relation follows immediately from the de£nition of Dk and the 3rd is obtained by multiplying
the second byUT to the left and making use of (22). For the 4th relation we write,

Rk+1 = A(Uk + Zk) − (Uk + Zk)(Dk + UT AZk)

= AUk + AZk − UkDk − ZkDk − UkUT AZk − ZkUT AZk)

= Rk + (I − UkUT )AZUk − ZkDk︸ ︷︷ ︸
=0

−ZkUT AZk) = −ZkUT AZk

Equations (22) and (23) show that the method is equivalent to£nding a blockU∗ such that(I−U∗U
T )AU∗ =

0 subject to the condition that the systemU∗, U be bi-orthogonal. Note that from (23), we can easily infer
that‖Rk‖ = O(‖Uk − U∗‖) whereU∗ is the limit. Indeed, using the fact(I − U∗U

T )AU∗ = 0

Rk = (I − UkUT )AUk − (I − U∗U
T )AU∗

= (I − UkUT )AUk − (I − UkUT )AU∗ + (I − UkUT )AU∗ − (I − U∗U
T )AU∗

= (I − UkUT )A(Uk − U∗) − (Uk − U∗)U
T AU∗

The following relationship will con£rm this and provide someadditional insight:

Rk+1 = −ZkUT AZk

In the case whenm = 1 we get the following iteration fork = 0, 1, · · · , starting withu0 = u:




dk = uT Auk

rk = Auk − dkuk

(I − ukuT )Azk − dkzk = −rk

uk+1 = uk + zk

Note that the scalardk is an approximate eigenvalue. Indeed,uT
k u = (u + wk)T u = uT u = 1 and

thereforedk = (uT Auk)/(uT uk). When (and if)uk converges to an eigenvector, thendk will converge to
the corresponding eigenvalue.

The residual system in the 3rd line of the above algorithm canbe transformed. The system is

(I − ukuT )Azk − zkdk = −rk → (A − dkI)zk − ukuT Azk = −rk

and it can be solved in block form by settingξk = −uT Azk and putting the unknownszk, ξk in one vector:
(

A − dkI uk

uT A 1

) (
zk

ξk

)
=

(
−rk

0

)

The advantage of writing the system in this form is that we canbetter exploit any sparsity inA. In contrast
the matrix(I − ukuT )A − dkI is generally not sparse, though the Shermann-Morrisson formula can also
be invoked with a similar result.

A more traditional way of invoking the Newton approach is forthe casem = 1, by solving directly
the equationAu − u(uT Au) = 0, with the constraint‖u‖2 = 1. Extending this to them dimensional case
is doable but the constraint thatU be unitary yields a more complicated iteration. The scheme shown above
avoids the problem of orthogonalization - but it yields an iteration that is somewhat nonsymmetric.

So far symmetry has not been exploited. WhenA is symmetric, the matrixUT AZk in the above
expression is the transpose ofZT

k AU = ZT
k (AU − UD) = ZT

k R0 so that

A = AT → Rk+1 = −ZT
k RT

0 Zk .

with R0 = R. As a result one step of the process yields a residual which satis£esR1 = −Z0R
T
0 Z0. Since

‖Z0‖2 is of the order as‖R0‖, an error of orderε should be cubed in the next iteration. Thus, one should
expect to obtain cubic convergence by a process of this type.Speci£cally, if one step is performed, and
the process restarted (i.e.,U1 is orthogonalized andU is set toU1, etc.) then one should expect a cubic
convergence according to this formula. This is explored next.
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2.4 Iterative correction

In this section, we consider the following modi£cation of theNewton-Sylvester scheme discussed in the
previous section.

ALGORITHM 2.2 Iterative correction

0. SelectU0 (e.g.,U0 = U )
1. Fork = 0, · · · , until convergence Do:
2. ComputeDk = UT

k AUk, andRk = AUk − UkDk

3. Solve (forWk): (I − UkUT
k )AWk − WkDk = −Rk

4. Orthogonalize :[Uk+1, Sk] = qr(Uk + Wk).
5. EndDo

In line 4, Matlab notation is used so thatUk+1 is the result or orthonormalizingUk + Wk.

Theorem 2.1 When the process converges, it exhibits a cubic convergenceat the limit, as expressed by the
following relation :

Rk+1 = −WkRk
T WkSk

−1 + O(‖Rk‖
4). (26)

Proof. We £rst remark that(Uk + Wk)T (Uk + Wk) = Sk
T Sk = I + Wk

T Wk.
Let us denoteDk = (Uk + Wk)T A(Uk + Wk) andRk = Rk+1Sk ; hence

Rk = A(Uk + Wk) − (Uk + Wk)(Sk
T Sk)−1Dk .

Therefore, with∆k = Uk
T AWk, the correction implies that

A(Uk + Wk) − (Uk + Wk)(Dk + ∆k) = −Wk∆k, (27)

and remembering thatUk
T Wk = 0,

Dk − (I + Wk
T Wk)(Dk + ∆k) = −Wk

T Wk∆k,

which can be rewritten as

Dk = Dk + ∆k + Wk
T WkDk. (28)

For the residual, we estimateRk = Rk+1Sk as follows,

Rk = A(Uk + Wk) − (Uk + Wk)(I − Wk
T Wk)Dk + O(‖Wk‖

4),

= A(Uk + Wk) − (Uk + Wk)Dk + (Uk + Wk)Wk
T WkDk + O(‖Wk‖

4),

= −Wk∆k − (Uk + Wk)Wk
T WkDk + (Uk + Wk)Wk

T Wk(Dk + ∆k) + O(‖Wk‖
4),

= −Wk∆k − (Uk + Wk)Wk
T Wk∆k + O(‖Wk‖

4),

= (−Wk − UkWk
T Wk)∆k + O(‖Wk‖

4),

= (−Wk − UkWk
T Wk)Uk

T AWk + O(‖Wk‖
4),

= (−Wk − UkWk
T Wk)(Rk

T Wk + DkUk
T Wk) + O(‖Wk‖

4),

= −WkRk
T Wk + O(‖Wk‖

4).

SinceWk is the solution of a non singular Sylvester equation of whichright-hand side isRk, clearly
‖Wk‖ = O(‖Rk‖) and (26) is established. Near convergenceUk + Wk is close to an orthonormal basis
and therefore matrixSk is close to identity. Hence (26) proves thatRk+1 = O(‖Rk‖

3).
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2.5 Inverse iteration and Rayleigh Quotient Iteration

The above developments lead to Olsen’s scheme and the Jacobi-Davidson approach, see, e.g., [19]. A
simpler scheme is often used in practice which consists of ignoring the projection step. In the situation
of a single vector iteration, this scheme is simply the inverse iteration algorithm, which computes a new
direction by solving

(A − µI)unew = u (29)

in which µ is typically a £xed shift close to an eigenvalue. Note that theright-hand side is an approximate
eigenvector instead of a residual. A block generalization can be written from the scheme (12) by using a
different right-hand side, namely, we solve

AUnew − UnewD = U .

If R ≡ AU −UD, andUnew = U +W then the above condition, can be rewritten asAW −WD = U −R.
Note that nowD is no longer de£ned asD = U T AU but can be a diagonal matrix of shifts. Also a
normalization must be added to the basic step mentioned above, in the form of a QR factorization ofUnew.

In Rayleigh Quotient Iteration, the shiftµ in (29) is changed to the Rayleigh quotient at each step.
This, however is not practical as it requires an expensive re-factorization of the matrix at each step. Of
course the same is true of Algorithm 2.1, where a change in thematrix Dk would require expensive refac-
toring in the method used to solve the Sylvester equation.

3 Domain decomposition: CMS and AMLS

This section explores applications of what was just learnedon block corrections to Domain Decomposition
(DD) methods. LetA ∈ R

n×n be a symmetric real matrix, partitioned as

A =

(
B E
ET C

)
, (30)

whereB ∈ R
(n−p)×(n−p), C ∈ R

p×p andE ∈ R
(n−p)×p. Assume that the above matrix arises from the

discretization of a certain self-adjoint operator (e.g., aLaplacean) on a domainΩ which is then partitioned
into several subdomains with an interfaceΓ, see Figure 1 for the simplest case of two subdomains. The
subdomains, which may overlap, are separated by an interface Γ. The unknowns in the interior of each
subdomainΩi are completely decoupled from the unknowns of all other subdomains. Coupling among
subdomains is through the unknowns of the interfaceΓ and the unknowns in eachΩi that are adjacent to
Γ. With the situation just described, the matrixB is block diagonal, consisting of two diagonal blocks
corresponding to the unknowns that are interior to each subdomains. TheC block corresponds to the
variables on the interface.

The eigenvalue problemAu = λu, can be written as,
(

B E
ET C

)(
u
y

)
= λ

(
u
y

)
, (31)

whereu ∈ C
n−p andy ∈ C

p. A method for computing eigenvalues of matrices partitioned in this manner
was introduced in structural dynamics by [5, 8]. Referred toas the method of Component Mode Synthesis
(CMS), this method begins by solving the problemBv = µv. This amounts to solving each of the decoupled
smaller eigenvalue problems corresponding to each subdomain Ωi separately. The method then injects
additional vectors to account for the coupling among subdomains. This is done by invoking a carefully
selected operator for the interface nodes. AMLS is a multilevel approach which exploits recursivity by
continuing this approach into lower levels recursively, see e.g., [2, 1] for details.

In the following, the main steps of CMS - i.e., one level of AMLS, will be reviewed. Consider the
matrix

U =

(
I −B−1E
0 I

)
. (32)
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Figure 1: The simple case of two subdomainsΩ1, Ω2 and an interfaceΓ.

This is a block Gaussian eliminator for matrix (30), which isselected so that

UT AU =

(
B 0
0 S

)
,

whereS is the Schur complement

S = C − ET B−1E. (33)

The original problem (31) is equivalent to the generalized eigenvalue problemUT AUu = λUT Uu, which
becomes (

B 0
0 S

) (
u
y

)
= λ

(
I −B−1E

−ET B−1 MS

)(
u
y

)
, (34)

whereMS = I + ET B−2E. The next step of CMS is to neglect the coupling matrices (blocks in positions
(1,2) and (2,1)) in the right-hand side matrix of (34). This yields the uncoupled problem

Bv = µ v (35)

Ss = η MSs. (36)

Once the desirable eigenpairs have been obtained from (35–36), they are utilized in a projection method
(Rayleigh-Ritz) applied to the original problem (34). The basis used for this projection is of the form

{
v̂i =

(vi

0

)
i = 1, . . . ,mB ; ŝj =

(
0

sj

)
j = 1, . . . ,mS

}
, (37)

wheremB < (n − p) andmS < p and where thevi’s anssj ’s are eigenvectors of the problems (35) and
(36) respectively.

It is important to note that the projection is applied to (34)rather than to the original problem (31).
There is an inherent change of basis between the two and, for reasons that will become clear shortly, the
basis{v̂i}i, {ŝj}j , is well suited for the transformed problem rather than the original one. In fact let us
consider this point in detail. We could also think of using the transformed basis

{
v̂i =

(vi

0

)
i = 1, . . . ,mB ; ûj =

(
−B−1Esj

sj

)
j = 1, . . . ,mS

}
, (38)
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for solving the original problem (31), instead of the basis (37). As can be easily seen, these two options are
mathematically equivalent.

Lemma 3.1 The Rayleigh-Ritz process using the basis (37) for problem (34) is mathematically equivalent
to the Rayleigh-Ritz process using the basis (38) for problem (31).

Proof. For a given matrixA, and a given basis (not necessarily orthogonal) consistingof the columns of a
certain matrixZ, the Rayleigh Ritz process can be written as

ZT AZv = λZT Zv

If Z is the basis (37) then the basis (38) is nothing butUZ. Comparing the two projection processes gives
the result.
In the rest of the paper we will use the basis (38) on the original problem (31) for describing the CMS
projection.

It should be mentioned that the original CMS method as described in [5, 8] does not use selected
eigenvectorssj from the Schur complement as was done here, but instead uses atechnique which amounts
to taking all of them (i.e.,mS = p). Since this can be a problem when the interfaces are large Bourquin
[4] in particular suggested a technique based on Schur complements which is similar to the more general
approach described above.

3.1 Links with the correction equation

One of the purposes of this paper is to present CMS/AMLS from the angle of the correction equation.
Notice at £rst that CMS does implement a correction: it corrects the eigenvectors ofB to try to obtain better
approximations to the eigenvectors of the whole matrixA. This is done by using the Schur complement
matrix and constructing a good (improved) basis to perform the Rayleigh Ritz projection. This viewpoint
(correction) is important because there are many variants for correcting eigenvectors and some are better
than others. It should be noted that, in contrast with the above description, the common CMS viewpoint
begins from the eigenmodes of the Schur complement that results from the so-called Guyan reduction, or
static condensation, see [9]. These modes are then enrichedby adding selected modes from the interior
variables of each subdomain. Since we are in effect selecting a set of coupling modes and a set of internal
modes, to form a basis of for the Rayleigh Ritz projection, this distinction is no longer important.

Consider eigenvectors ofB associated with smallest eigenvalues.

Bvi = µivi .

One can consider the vectors
v̂i =

(vi

0

)

as approximate eigenvectors ofA. The eigenvectors obtained in this manner amount to neglecting all
the couplings and are likely to yield very crude approximations. We can now think of correcting these
eigenvectors via acorrection equationas is usually done, see the previous sections.

An interesting observation is that the residualsri = (A−µI)v̂i have components only on the interface
variables, i.e., they have the shape:

ri =

(
0
wi

)
(39)

where the partitioning corresponds to the one above and wherewi = ET vi.
Consider a single vector inverse iteration correction. In this case, for each approximate eigenvector

vi we would seek a new approximationui by solving an equation of the type (29),(A−µI)ui = vi . where
µ is a certain shift. In a typical inverse iteration correction, µ is constant to reduce cost of factorization.

The matrixA − µI can be factored as

(A − µI) =

(
I 0

ET (B − µI)−1 I

)(
B − µI E

0 S(µ)

)
(40)
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whereS(µ) is the Schur complement

S(µ) = C − µI − ET (B − µI)−1E.

Taking the particular structure ofvi into account we £nd that

ui = (A − µI)−1

(
vi

0

)
=

(
[I + (B − µI)−1ES(µ)−1ET ](B − µI)−1vi

−S(µ)−1ET (B − µI)−1vi

)

In other words,

ui =

(
zi − (B − µI)−1Esi

si

)
with zi = (B − µI)−1vi and si = −S(µ)−1ET zi

There is a strong similarity between the result of this correction and that obtained from CMS. This
can be seen from the nature of the basis (38) which consists ofthe vectors

(
vi

0

) (
−B−1Esj

sj

)
(41)

where thesi’s are eigenvectors of a Schur complement, and thevi’s are eigenvectors of theB block.

3.2 Correction equations and Domain Decomposition

Consider now the application of the correction equation (12) to the Domain Decomposition framework
discussed above. Speci£cally, we consider the Newton approach discussed in Section 2.3 and we will apply
one step of the Newton-Sylvester algorithm, i.e., Algorithm (2.1). Note that since we are only considering
one step of the process, there is no difference between this algorithm and Algorithm 2.2. The indexk is
removed for simplicity andUk+1 in Line 4 is denoted byUnew. We denote byV1 ∈ R

p×m (1 ≤ m ≤ p <
n) an orthogonal basis of an invariant subspace ofB, so thatBV1 = V1D, whereD = diag(µ1, · · · , µm)

and we letU =

(
V1

0

)
∈ R

n×m. To simplify notation we will denote byP1 the orthogonal projector

P1 ≡ I − V1V
T
1 , so that

I − UUT =

(
I − V1V

T
1 0

0 I

)
≡

(
P1 0
0 I

)
(42)

In addition, the matrixDk in Line 2 of Algorithm 2.1 is simply the diagonal matrixD:

UT AU = [V T
1 0]A

(
V1

0

)
= V T

1 BV1 = D .

Similarly, the residual matrixRk has a simple structure due to (39):

R = AU − UD =

(
0

ET V1

)

Now the Sylvester system in Line 3 of Algorithm 2.1 can be written(I − UUT )AZ − ZD = −R.
SinceD is diagonal this system decouples into thep distinct linear systems,

(I − UUT )Azi − µizi = −ri = −

(
0

ET vi

)
. (43)

Writing zi =
(

yi

si

)
the system (43) translates to:

P1Byi + P1Esi − µiyi = 0

ET yi + (C − µI)si = −ET vi

11



Note that the £rst equation is equivalent toP1(B − µiI)yi + P1Esi = 0 the solution of which is

yi = −[P1(B − µiI)]†P1Esi.

Substituting this solution in the second equation results in:

−ET P1(B − µiI)†P1 Esi + (C − µiI)si = −ET vi

which gives the following equation to solve forsi:

[C − µiI − ET P1(B − µiI)†P1E]si = −ET vi (44)

This leads to a natural de£nition of aprojected Schur complement,

S∗(µi) = C − µiI − ET P1(B − µiI)†P1E (45)

from which the solution is readily expressible. In what follows it is assumed thatS∗(µi) is not singular (A
less restrictive assumption is thatS∗(µi) is not singular in the range ofET .)

In the end the column-vectors of the new matrixUnew are given by

unew
i = ui + zi =

(
vi − P1(B − µiI)†P1Esi

si

)
with si = −S∗(µi)

−1ET vi (46)

An interesting property which can be shown is that

(A − µiI)unew
i =

(
−V1V

T
1 Esi

0

)
.

It is, of course possible to apply additional steps of this correction process. However, these additional steps
will require expensive Sylvester-like equations to be solved at each step with different shifts. Instead of
considering these we can instead gain insight from the AMLS procedure and try to de£ne good subspaces
for a projection process. Speci£cally, the question is:which subspace should be added tospanV1 if the
goal is to obtain a good approximation to the original eigenspace?

A comparison between (46) and the basis (41) used by CMS suggests that we replaceµi by zero in
(46) and that we enrich the basisV1 by the vectors

(
−P1B

−1P1Esi

si

)
with si = −S∗(0)−1ET vi .

Note thatP1B
−1P1 = P1B

−1 = B−1P1. In other words we can consider performing a Rayleigh-Ritz
process on the original problem (31) with the basis

{
v̂i =

(vi

0

)
; ûi =

(
−P1B

−1Esi

si

)
i = 1, . . . ,m

}
, with si = −S∗(0)−1ET vi . (47)

The differences with the basis used by CMS are (1) the way in which thesi’s are de£ned and (2) the
presence of the projectorP1 in the de£nition of̂ui. We can also de£ne a simpli£ed basis, which we will
refer to as the Newton-CMS basis, in which the projectors areremoved:

{
v̂i =

(vi

0

)
; ûi =

(
−B−1Esi

si

)
i = 1, . . . ,m

}
, with si = −S−1ET vi . (48)

Note thatS∗(0) has been replaced by the standard Schur complementS = C − ET B−1E. Experiments
indicated that at least for a one level AMLS (i.e., for a CMS algorithm), there is no difference between the
two bases (47) and (48).
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One of the main weaknesses of AMLS is that it is a one-shot algorithm, in the sense that it just
provides one set of approximations that cannot (at least with the classical algorithm de£nition) be improved.
Because of the close relationship between the AMLS algorithm and the correction equation, we can think of
using more steps of the correction algorithms described earlier to £ll the gap. The biggest appeal of AMLS
is that it is essentially a method which performs one factorization (direct) only to extract a large number
of eigenvectors. In the numerical experiments we will test the following adaptation of Algorithm 2.2 in
whichU0 corresponds to the initial set of CMS which is the £rst part of the basis (38). For this reason it is
important to setDk to zero throughout. In addition, following the spirit of CMS, the correction in Line 4
of Algorithm 2.2 is replaced by a projection step using the sets given byUk andZk. This gives following
iterative, or corrected, variant of CMS.

ALGORITHM 3.1 Iterative CMS

0. SelectU0 s.t.UT
0 U0 = I from eigenvectors in each subdomain.

1. Fork = 0, · · · , until convergence Do:
2. ComputeRk = AUk − Uk(UT

k AUk)
3. Solve (forZk): (I − UkUT

k )AZk = −Rk

4. SetV = [Uk, Zk]
5. ComputeUk+1 from a Rayleigh-Ritz projection onA using the basisV .
6. EndDo

The system(I −UkUT
k )AZk = −Rk can be solved, for example, by settingT = UT

k AZk and then solving

(
A −Uk

UT
k A −I

)(
Zk

T

)
=

(
−Rk

0

)
.

SinceUk is typically of low rank, the above system can be easily solved with one factorization ofA.
This algorithm will be tested for a 2-domain case in the next section.

4 Numerical Examples

All the tests are run in the MATLAB environment.

4.1 Quadratic and Cubic convergence

The £rst test considers a matrix of small order (n = 238). This matrix is the classical matrix obtained by the
discretization of the 2D Laplacean by £nite differences on a14×17 rectangular mesh. The twenty smallest
eigenvalues are sought. The two principal diagonal blocks of order112, the leading one and the tailing one,
are separated by a block of dimension14. When adequately permuted, the matrix pro£le is shown in Figure
2 (a). The evolution of the residual norms are displayed in Figure 2 (b) for the Newton-Sylvester iteration
(Algorithm 2.1), and in Figure 2(c) for the Iterative Corr ection (Algorithm 2.2). The quadratic and cubic
convergences are well illustrated by the curves. During the£rst iterations, the two methods stagnate as long
as they have not yet determined a good approximation of an invariant subspace. The computed eigenvalues
are not the 20 smallest ones : there are some missing eigenvalues. For Algorithm 2.1, the 12 smallest
eigenvalues are computed and the last 8 computed eigenvalues correspond to eigenvalues ranking between
the 14th and the 25th eigenvalue of the matrix. For Algorithm2.2, the result is almost equivalent although
a bit worse: the £rst 10 eigenvalues are computed and the last 10 computed eigenvalues range between the
12th and the 26th eigenvalue.

4.2 Computing inner eigenvalues

In this section, we consider as test matrixA0, the matrix PLAT1919 from the test suite Matrix Market
[3]. The matrix is of order 1919 and its sparsity pattern is shown in Figure 3 (a). By applying a symmetric
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Figure 2: Test with the Laplacean
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reorderingP obtained from the Symmetric Reverse Cuthill-McKee algorithm, the matrixAP = PT AP has
a smaller bandwidth. Considering the permuted matrixAP , two diagonal blocks are de£ned by the intervals
of indicesI1 = [1 : 1040] andI2 = [1081 : 1919]. The intervalJ = [1041 : 1080] is the separator. By
renumbering symmetrically rows and columns ofAP , with the numbering de£ned byQ = [I1, I2, J ], one
gets the test matrixA whose pattern is displayed in Figure 3 (b).
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Figure 3: Sparsity patterns of PLAT1919

The full spectrum of PLAT1919, computed by the QR method, is displayed in Figure 4. The goal of
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Figure 4: Spectrum of Matrix PLAT1919

the tests is to analyze the behavior of the two algorithms 2.1and 2.2 for computing a basis of an invariant
subspace corresponding to six eigenvalues in a neighborhood of σ = 0.995.

The same initial guessU0 ∈ R
1919×6 of a basis of the sought invariant subspace is considered forthe

two methods. It is built, consistently with Section 3.2, by the following : for each of the two blocks, the
three eigenvectors corresponding to the eigenvalues whichare the closest toσ are computed ; in that way,
two orthonormal blocksU (1) ∈ R

1040×3 andU (2) ∈ R
849×3 are obtained andU0 is then de£ned by

U0 =




U (1) 0
0 U (2)

0 0


 . (49)

Table 1 shows, for each of the two methods, the computed eigenvalues, corresponding to the invariant
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subspace de£ned by the last computed basisUk. In each case, the eigenvalues ofDk are given, along with
their respective index in the spectrum of the matrix, and their absolute error. The eigenvalues are labeled
in ascending order. In Figure 5, the computed eigenvalues are located in the whole spectrum of matrix

Algorithm 2.1 Algorithm 2.2
After k = 10 iterations After k = 6 iterations
Residual :5 × 10−2 Residual :3 × 10−11

eigenvalue index error eigenvalue index error
0.91576 1771 4 × 10−3 0.96497 1782 1 × 10−15

0.97367 1785 2 × 10−3 0.99000 1786 1 × 10−15

0.98842 1786 2 × 10−3 0.99359 1788 2 × 10−15

0.99213 1788 1 × 10−3 0.99515 1791 2 × 10−15

0.99964 1791 4 × 10−3 1.0053 1793 4 × 10−15

1.0866 1812 2 × 10−3 1.0113 1794 2 × 10−15

Table 1: Computed eigenvalues of PLAT1919 nearσ = 0.995

PLAT1919. On this example, the superiority of Algorithm 2.2over Algorithm 2.1 is clear : the eigenvalues
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Figure 5: Location of the computed eigenvalues in the spectrum

computed by the former are closer to the reference numberσ and they are much more precise. Actually, the
run of Algorithm 2.1 showed a lack of convergence. We rerun Algorithm 2.1 withU equal to the Q-factor
in the QR factorization of the last estimateUk of the £rst run. After 10 additional iterations, the residual
reached10−6 and the computed eigenvalues were corresponding to eigenvalues of PLAT1919 with indices
from 1771 to 1815, with a precision higher than10−12. It appears that, this algorithm needs a better initial
estimate than its counterpart. A drawback of Algorithm 2.1 lies in its Step 3 which corresponds to a non
symmetric Sylvester equation. However, complex computation can be avoided since it can be proved that,
although non symmetric, matrixDk is similar to a symmetric matrix.

4.3 Tests with domain decomposition

We consider a Schrödinger operator of the form

H = −∆ + V

on a rectangular domain in 2 dimensions. The potentialV is a Gaussian

V (x, y) = −βe−(x−xc)
2−(y−yc)

2
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in which (xc, yc) is the center of the domain. The operatorH acts on a given functionu by simply adding
the functionV u to the negative Laplacean ofu. We selectedβ = 100, and discretized the domain uniformly
using centered £nite differences and applied Dirichlet boundary conditions. The domain is a rectangle of
dimension(nx + 1) × h = 1 and(ny + 1) × h, wherenx, ny are the number of discrete points on the
x andy directions, respectively, excluding boundary points. Thedomain is then split in two horizontally,
in the middle of the domain. The matrix is reordered by putting the interface variables at the end as is
usually done to illustrate DD orderings. The resulting matrix is shown on the left side of Figure 6. ‘ The
£rst experiments is only for demonstrating the power of the CMS algorithm and its variants. We found in
general very little difference between the different variants of the same idea. We compared the following 4
methods for computing the smallestnev eigenvalues. In the testnev = 8.

No correction This performs a Rayleigh Ritz procedure with eigenvectors from the two domains. The
process takesnev/2 eigenvectors from each domain which will form the column vectors of two
matricesU1, U2 then gathers them in a basisW = [U1, U2] and then proceeds to a Rayleigh Ritz
projection onA with thenev vectors inW .

CMS This approach consists of a CMS projection, which takes the sameW from above and augments it
with the setZ obtained as

Z =
(

−B−1EG
G

)

whereG is a matrix whose columns are eigenvectors ofS associated with the smallestnev eigen-
values. This corresponds to using the basis (41) for a Rayleigh-Ritz projection. This corresponds to
using the basis (41) for a Rayleigh-Ritz projection.

Newton-CMS This is similar to the previous method, but theG matrix of eigenvectors of the Schur com-
plement is replaced by the matrixS−1ET W whereS is the Schur complement. Note that since
W = [U1, U2] has2 nev columns, we end-up adding a basis of has2 nev columns instead ofnev for
CMS. This scheme corresponds to using the basis (48) for a Rayleigh-Ritz projection.

Newton-CMS with projection The only difference between this and the previous process isthat the pro-
jectorP1 = I −WWT is used, along with the projected Schur complement given by (45). Thus, the
inverse ofB is replaced byP1B

−1 when de£ningS and theZ matrix above. This corresponds to
using the basis (47) for a Rayleigh-Ritz projection.

In all cases we tested for this example, Methods 3 and 4 seemedto be exactly identical. This means that
theG matrices generate the same subspace in both cases. Because of this we only show the results with the
£rst 3 methods.

Figure 6 shows an illustration for a case whennx = 35, ny = 33 which yields a matrix of size
n = 1, 155. The number of eigenvalues computed is 12. As it turns out it is very dif£cult for this example
to £nd cases where CMS and Newton-CMS yield (signi£cantly) different results. Becausenx is relatively
small, the subspace spanned by the matricesG involved above is the same or very close and this leads to
the same approximations. What is remarkable is the quality ofthe approximation obtained from CMS-type
approaches. The accuracy obtained by using eigenvectors from subdomains alone (no correction) is already
quite good, considering the simplicity of this approach.

In the next test we consider the iterative CMS, Algorithm 3.1, discussed earlier. Only two correction
steps (corresponding to thek loop in the algorithm) are taken. In this test we takenx = 45, ny = 43 which
leads to a bigger matrix of sizen = 1, 935. Figure 7 shows the result of computing the 20 lowest eigenvalues
with the three methods: Newton-CMS, 1st step of Iterative CMS, and 2nd step of Iterative CMS. The results
are much improved, especially for the lowest 10 eigenvalues. Note also, that the biggest improvement is
achieved by the £rst corrective step. What is important to emphasize here is that the improvements achieved
by the two corrections are obtained without any additional factorizations of the matrixA.

17



0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 5639

Hamiltonian after DD  reordering − size 1155

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

 Exact eigenvalues

Lo
g 10

 (
E

rr
or

)

Artificial Hamiltonian of size n = 1155

No correction
CMS
Newton−CMS

Figure 6: Left: Pattern of the Hamiltonian matrix after reordering. Right: Performance of 3 techniques for
computing its 12 smallest eigenvalues

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
−35

−30

−25

−20

−15

−10

−5

 Exact eigenvalues

Lo
g 10

 (
E

rr
or

)

Artificial Hamiltonian of size n = 1935

Newt−CMS
1st corr.
2nd corr.

Figure 7: Performance of Newton-CMS and the results of two corrective steps of Algorithm 3.1. The 20
lowest eigenvalues are computed.

18



5 Summary and Conclusion

We have discussed a few variants of certain algorithms basedon the correction equation for solving eigen-
value problems and we showed how they can be adapted in a domain decomposition framework. In partic-
ular, block variants of the correction equation were derived by viewing the eigenvalue problem as a system
of nonlinear equations. The resulting algorithms convergecubically or quadratically but they require the
solution of a different Sylvester equation at each step. In the case of CMS, experiments show that it is
possible to obtain good improvements by versions of these algorithms which do not require to refactor the
matrix at each step.
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