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Abstract.

A polynomial filtered Davidson-type algorithm is proposed for solving symmetric eigenproblems.
The correction-equation of the Davidson approach is replaced by a polynomial filtering step. The
new approach has better global convergence and robustness properties when compared with standard
Davidson-type methods. A typical filter, one that is used in this paper, is based on Chebyshev
polynomials. The goal of the polynomial filter is to amplify components of the desired eigenvectors
in the subspace, which has the effect of reducing the number of steps required for convergence and the
cost resulting from orthogonalizations and restarts. Comparisons with JDQR, JDCG and LOBPCG
methods are presented, as well as comparisons with the well-known ARPACK package.
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1. Introduction. This paper considers solution methods for the standard sym-
metric eigenvalue problem

Au = λu,(1.1)

where A ∈ R
n×n

and n is large. We consider a class of methods which can be
viewed as accelerated, or preconditioned, versions of Krylov subspace techniques.
Another viewpoint is to consider these methods as Davidson-type methods in which
the correction equation is replaced by a certain filtering step. The goal is to improve
global convergence and robustness of Davidson-type methods.

The original Davidson method [8] was initially designed for handling diagonally
dominant matrices. We note that for eigenvalue problems, diagonal dominance means
that the off-diagonal elements are small compared with the changes in magnitude
between diagonal elements [15]. The Davidson approach gives up the attractive Krylov
subspace structure at the cost of having to compute eigenpairs and associated residual
vectors of a projection matrix, at each step. The trade-off is that the Davidson
approach can be more efficient by being able to augment the subspace by a new
vector that can potentially be much better than the one based on a strict Krylov
subspace structure.

The “augmentation vector” added to the subspace at each step usually results
from solving a correction-equation. The efficiency of the standard Davidson-type
methods depends on the quality of the correction-equation used. Efficient linear
equation solvers, often in the preconditioned forms, are often utilized to solve the
correction-equations. In the original Davidson approach, the correction equation uses
only the diagonal of A. Later this was generalized, and in [15] by using better ap-
proximations of A. However, it was noted in [15], that using the exact preconditioner
(A − λI)−1 is counter-productive as it leads to stagnation. This led to the devel-
opment of the more efficient Jacobi-Davidson (JD) algorithm [26, 10, 25]. Work in

∗Work supported by U.S. Department of Energy under contract DE-FG02-03ER25585, and by
the Minnesota Supercomputing Institute.

†Dept. of Computer Science & Eng., University of Minnesota, Minneapolis, MN 55455, USA
(zhou@msi.umn.edu, saad@cs.umn.edu).

1



2

the literature has shown that the Jacobi-Davidson approach can be competitive with
efficient Krylov subspace methods such as those in [27, 14, 29, 32, 34]. In [31] other
Davidson-type methods are derived, where the correction equations come from apply-
ing Newton’s method to some transformed formulations of (1.1).

In this paper, we explore a different approach for Davidson-type methods which
does not explicitly solve a correction-equation. Though we do not need to form or
solve any correction-equations, we compute a polynomial of A times an approximate
eignvector. One can also solve the correction equation in the Davidson approach by
using Chebyshev iteration, see, e.g., [22], or any Krylov subspace iterative method.
However, we note that choice of the right hand side vector in the correction-equation
is very critical to the efficiency of the procedure. The algorithm proposed here applies
Chebyshev polynomial to an approximate eigenvector instead of the residual vector.
Therefore, it can be viewed from the angle of accelerated Krylov-subspace methods.

The JD method can be related to the Newton’s method or the approximate
Rayleigh-Quotient iteration (RQI). As such, it has been observed that the method
can be rather slow if the starting vector is far away from the desired eigenvector. We
note that even though RQI is globally convergent for symmetric eigenproblems (see
[18] [19, p. 81]), it may converge to an unwanted eigenpair. The global convergence
can be slow when the approximate RQI is used in a subspace method and the method
is required to converge to wanted eigenpairs. Global acceleration schemes for JD
have been studied. For example, in [4] a non-linearized JD correction-equation is pro-
posed, which leads to some nice improvements in global convergence. The drawback
is that the preconditioning may be difficult to apply for the non-linearized correction-
equation. Moreover, the approach can become much more expensive than JD when
the number of wanted eigenpairs is large. Another approach to achieve better global
convergence is to apply an Arnoldi or Lanczos method to get a good initial vector
and then apply JD. This is suggested in [15, 10].

2. Advantages of Polynomial Filtering. The global convergence of a Davidson-
type method can be improved in a natural and systematic way via polynomial filtering.
We first make the following three observations. The first one is on the well-known poly-
nomial filtering argument: For a symmetric matrix A with the eigen-decomposition
A = QΛQT , any polynomial ψ(s) : R→ R satisfies

ψ(A)v = Qψ(Λ)QT v, ∀v ∈ R
n
.(2.1)

The second observation is on the fast local convergence of JD. It is shown in
[33] that the locally fast convergence of JD is mainly caused by the retention of the
approximate RQI direction in the basis of the projection subspace. A few additional
details are now provided. Assume throughout that (µ, x) denote the current Ritz pair
that best approximates a wanted eigenvalue, the Ritz vector x is of unit length; and
let r = Ax−µx denote the residual. It was observed in [33] that the Jacobi-Davidson
correction equation

Solve for t ⊥ x from : (I − xxT )(A− µI)(I − xxT )t = r,(2.2)

can be simplified as

Solve for t from : (I − xxT )(A− µI)t = r.(2.3)

The right projection by (I − xxT ) and the final orthogonality constraint t ⊥ x can
be omitted. It is the approximate RQI direction, which is an approximation to (A−
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µI)−1x, that leads to the success of JD. The left projector (I−xxT ) in (2.2) is crucial
in retaining the important approximate RQI direction in the JD direction (solution t
of (2.2)). This can be readily seen by writing (2.2) or (2.3) as

(A− µI)t = r + x α,(2.4)

where α is a non-zero scaler. We mention that this left projector also improves the
conditioning of (2.2) and (2.3) on the x⊥ subspace—the subspace in which a vector
to augment the current projection subspace is sought; but this property is irrelevant
for this paper.

Note that the exact RQI direction is (A−µI)−1x, which is the current Ritz vector
x filtered by the rational polynomial ϕ(s) = 1

s−µ . This polynomial significantly
magnifies the direction of a possibly wanted eigenvector corresponding to the Ritz
value µ (the current best approximation to a wanted eigenvalue of A).

Bearing in mind polynomial filtering and recalling the relation (2.1), our third
observation is that one can improve global convergence by choosing a polynomial
ψ(s) which magnifies not only the direction corresponding to one single point, but
instead directions corresponding to an interval containing wanted eigenvalues, and at
the same time dampens unwanted eigenvalues. With polynomial filtering, it is unlikely
that wanted eigenvalues will be missed, because when the whole interval containing
wanted eigenvalues is magnified, so is each wanted eigenvalue in the interval. In
contrast, standard Davidson-type methods may miss some wanted eigenvalues. This
is because the correction-equation is often solved by a shift-invert approach, and the
shift chosen at some step may approximate larger eigenvalues before all the wanted
smaller eigenvalues are computed. Chebyshev filtering offers an alternative which can
improve global convergence as well as robustness (in the sense that wanted eigenvalues
are not missed) of Davidson-type methods. We point out that this useful filtering idea
has long been exploited to accelerate the Arnoldi and Lanczos algorithms, see e.g. [27].

To further explain the third observation, we suppose that the eigenvalues in
diag(Λ) are ordered as λ1 ≤ λ2 ≤ · · · ≤ λn, and that the wanted eigenvalues are
located in [λ1, λk]. If ψ(s) is chosen to approximate the step function

φ(s) =

{

1, λ1 ≤ s ≤ λk,
0, λk < s ≤ λn,

(2.5)

then (2.1) shows that ψ(A)v ≈
∑k

i=1 αiqi, where qi is the i-th column of Q and αi =
qTi v. That is, ψ(A)v is contained in the subspace spanned by the wanted eigenvectors
Q(:, 1 : k). If this ψ(A)v is augmented into the basis, convergence to the wanted
eigenvectors is expected to be much faster than augmenting the basis by a vector closer
to unwanted eigenvectors. Even though a low degree polynomial approximating (2.5)
is hard to get, the above claim can be verified by explicitly computing Q and using
∑k

i=1 αiqi, (αi = qTi x) as the augmentation vector in a Davidson-type method, where
x denotes the current Ritz vector at each iteration. This experiment is equivalent
to using a filter that exactly approximates (2.5). It is surprising to note that even
though this filter leads to no gap among wanted eigenvalues, it can still achieve fast
convergence in a Davidson-type method. This experiment confirms that in order to
obtain fast convergence, the basis should be augmented by vectors close to the wanted
invariant subspace.

We note that the initial vector v need not be a good approximation to a wanted
eigenvector in order to achieve fast convergence. Instead, the essence is to construct
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a suitable filter ψ so that ψ(A)v is contained in the wanted eigensubspace. By this
filtering we obtain better global convergence.

According to observations just made, it is essential to filter the current Ritz
vector x, not the residual vector r. Note that at each iteration of a Davidson-type
method, r is orthogonal to the projection basis, and this basis is used to approximate
the wanted eigenvectors, hence r can become orthogonal to the wanted eigenvectors
during the iteration. The residual vector r is not suitable for the filtering because,
when Q(:, 1 : k)T r ≈ 0, ψ(A)r = Qψ(Λ)QT r is approximately inside the subspace
spanned by unwanted eigenvectors.

We also mention that our own experiments, together with the ones in [9], show
that the preconditioned Davidson method based on equation (A − µI)t = r can be
inefficient because of the higher possibility of stagnation if this equation is solved more
accurately. An efficient correction-equation essentially should retain the approximate
RQI direction in its solution. Thus, JD is equivalent to (2.4), but the x term in the
right hand side of (2.4) may be more important than the r term. However, in the
case of a fixed preconditioner and rather inaccurate solves, [1] shows that equation
(A− µI)t = r can have better performance than other correction equations.

3. Chebyshev Polynomial Filter. Throughout this paper we assume that
the wanted eigenvalues are the smallest ones. The observations in Section 2 suggest
that, polynomials which significantly magnify the lowest end of a wanted interval and
dampens unwanted intervals at the same time, can be used as a filter to improve global
convergence. The well-known Chebyshev polynomial are a natural choice for this
task. Using Chebyshev polynomial to accelerate symmetric eigenvalue computations
dates back to [20, 21]. A nice discussion on Chebyshev accelerated subspace iteration
can be found in [19, pp.329-330], where it is mentioned that the Lanczos method will
usually be better than the Chebyshev accelerated (fixed dimension) subspace iteration
algorithm. Here we integrate Chebyshev filtering into a Davidson-type algorithm.

Note that in most implementations of the Chebyshev-based subspace iteration
[20, 21] the computational problem addressed is that of computing eigenvalue with
largest modulus. In this case, a symmetric interval of the form [−e, e] is used (requiring
one parameter for the interval instead of two). The technique can easily be adapted to
the problem of computing eigenvalues with largest or smallest real part (see e.g., [22]
for the nonsymmetric case). The Chebyshev polynomials to be used in a Davidson-
type method are based on an interval [a, b] (two parameters) where the eigenvalues to
be damped are located.

With Chebyshev acceleration, the subspace used in a Davidson-type method can
be of much smaller dimension than that is required by a Lanczos-type method for
good efficiency. Hence the filtering approach is likely to lead to substantial savings in
(re-)orthogonalization costs.

Recall that the real Chebyshev polynomials of the first kind are defined by (see
e.g. [19, p.371] [23, p.142]),

Ck(t) =

{

cos(k cos−1(t)), −1 ≤ t ≤ 1,
cosh(k cosh−1(t)), |t| > 1.

Note that C0(t) = 1, C1(t) = t. Recall also the important 3-term recurrence,

Ck+1(t) = 2tCk(t)− Ck−1(t), t ∈ R.(3.1)
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Fig. 3.1. Rapid increase outside [−1, 1] of Chebyshev polynomial of degree m.

A remarkable property of the Chebyshev polynomial is its rapid growth outside
the [−1, 1] interval. This property is illustrated in Figure 3.1. We only plot the [−2, 2]
interval, but note that the farther away from -1 or 1, the larger the absolute value
of the Chebyshev polynomial. Suppose that the spectrum of A is contained in [a0, b]
and we want to dampen the interval [a, b] for a > a0, then we only need to map [a, b]
into [−1, 1] by a linear mapping. This mapping will map the wanted lower end of
the spectrum, i.e. the eigenvalues closer to a0, farther away from [−1, 1] than the
ones closer to a. Applying the three-term Chebyshev recurrence will then magnify
eigenvalues near a0 and dampen eigenvalues in [a, b], which is the desired filtering.

In practice, we need the lower bound a of the unwanted interval, which is easy to
approximate during each iteration in a Davidson-type method. We do not need the
global lower bound a0 which may be hard to estimate. Hence using Chebyshev filtering
within a Davidson-type method is practical. The upper bound b of the eigenvalues
of A can by obtained by Gershgorin’s theorem. It can also be estimated by an initial
application of the Lanczos algorithm, though care must be exercised because b must
be an upper bound of the full spectrum of A.

The Chebyshev iteration, whose goal is to dampen values in [a, b] while magnifying
values in the interval to the left of [a, b] is presented in Algorithm 3.1. Here we follow
the formula derived in [23, p. 223] for the complex Chebyshev iteration and adapt it
to the real case. The iteration of the algorithm is equivalent to computing

y = pm(A)x where pm(t) = Cm

[

t− c

e

]

.(3.2)
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As defined in the algorithm, c is the center of the interval and e its half-width.

Algorithm 3.1. [y] = Chebyshev filter(x, m, a, b).
Filter x by an m degree Chebyshev polynomial that dampens on [a, b].
Input: vector x, degree m and interval end points a, b.
Output: the filtered vector y.

1. e = (b− a)/2;
2. c = (b+ a)/2;
3. σ = e/(a− c);
4. σ1 = σ;
5. y = (Ax− cx)σ1/e;
6. For i = 2 : m
7. σnew =

1
(2/σ1−σ)

;

8. ynew = 2(Ay − cy)σnew/e− σσnewx;
9. x = y;

10. y = ynew;
11. σ = σnew;
12. End For

It is clear that polynomials other than Chebyshev which have the property to
dampen one interval and significantly magnify another interval can be used for filter-
ing. Several polynomials are discussed in [28], where the concern is on approximating
rational functions like ϕ(s) = 1/(s − µ). Chebyshev polynomials were selected be-
cause of their suitable filtering properties, and their ease of implementation. Cheby-
shev acceleration for nonsymmetric eigenproblems was discussed in [22]. Note that
the techniques in [22] may also be adapted into a Davidson-type method. Algorithm
3.1 requires no inner products and this is another appealing feature of Chebyshev
acceleration, since inner products incur a global reduction which requires additional
communication costs in a parallel computing context.

4. Chebyshev Polynomial Accelerated Davidson Method. We first present
the Chebyshev polynomial filtered Davidson method in Algorithm 4.1. We point out
that the pseudo code for Davidson-type methods is very different from those in the
literature (e.g. [2]). We use a natural but useful indexing scheme. The deflation of
converged eigenvectors is handled by indexing the columns of the projection basis V .
No extra storage for the converged eigenvectors is necessary. Moreover, restarting
is simplified (as seen in step (h).6) by the indexing. Our implementation does not
require extra basis updates or memory copies during the restart, since the updates
in step (h).7 need to be performed even when restart is not necessary. We note that
putting restart at step (h).6 is better than putting it at the end of the outer loop,
because it saves operations in step (h).7 when restarting is necessary.

We make a few comments on Algorithm 4.1. Comments V–VII are related to the
robust implementations of any Davidson-type methods.
I. It is important that the upper bound upperb bounds all eigenvalues of A. Oth-
erwise the interval containing largest eigenvalues may also be magnified through
filtering and this can drastically slow convergence. Step (e) provides one choice
that is not expensive, but we note that any upperb ≥ maxi (λi(A)) should work
well.

II. The choice of the lower bound for the unwanted interval at each iteration is by a
heuristic. This is actually one of the most critical ingredients of the procedure.
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Algorithm 4.1. Chebyshev filtering Davidson-type method for the eigenvalue
problem (1.1), computing the kwant smallest eigenpairs.
Input: x—initial vector; m—polynomial degree; kkeep—# of vectors to
keep during restart; dimmax—maximum subspace dimension; τ–convergence
tolerance.
Output: converged eigenvalues eval(1 : kc) in non-increasing order, and their
corresponding eigenvectors V (:, 1 : kc), where kc denotes # of converged eigenpairs.

(a) Start with the unit vector x, V = [x].
(b) Compute W = [Ax], H = [µ] where µ = xTw.
(c) Compute the residual vector: r =W (:, 1)− µx.
(d) If ‖r‖ <= τ , set eval(1) = µ, kc = 1, H = [ ]; Else, set kc = 0.
(e) Estimate the upper bound of eigenvalues as: upperb = ‖A‖1.
(f) Set lowerb = (upperb− µ)/2.
(g) Set ksub = 1 (ksub stores the current subspace dimension).
(h) Outer Loop: Do while ( iter ≤ itermax )

1. Call the Chebyshev polynomial filter:
[t] = Chebyshev filter(x,m, lowerb, upperb).

2. Orthonormalize t against V (:, 1 : ksub) to get a unit vector V (:, ksub +1);
set ksub ← ksub + 1; set kold = ksub.

3. Compute W (:, ksub) = AV (:, ksub).
4. Compute the last column of the symmetric Rayleigh-Quotient matrix H:

H(1 : ksub − kc, ksub − kc) = V (:, kc + 1 : ksub)
TW (:, ksub).

5. Compute the eigen-decomposition of H: HY = Y D,
where diag(D) is in non-increasing order. Set µ = D(1, 1).

6. If (ksub ≥ dimmax) then restart: set ksub = kc + kkeep.
7. Update basis: V (:, kc + 1 : ksub)← V (:, kc + 1 : kold)Y (:, 1 : ksub − kc);

update W : W (:, kc + 1 : ksub)←W (:, kc + 1 : kold)Y (:, 1 : ksub − kc).
8. Compute the residual vector: r =W (:, kc + 1)− µV (:, kc + 1).
9. Set noswap = 0, iter ← iter + 1.

10. Test for convergence: If ‖r‖ <= τ max(diag(D)), set kc = kc + 1,
set eval(kc) = µ; also swap eigenpairs if necessary (see Comment V)
so that converged eigenvalues are in non-increasing order;
set noswap = 1 if any swap happens.

11. If (kc ≥ kwant and noswap == 0), Return eval(1 : kc) and V (:, 1 : kc)
as the converged wanted eigenpairs. Exit.

12. Update the lower bound: lowerb = median(diag(D)).
13. Set the next Ritz vector for filtering: x = V (:, kc + 1).
14. Update H: H = D(kc + 1 : ksub, kc + 1 : ksub).
End Do

Numerical results show that the current heuristic at step (h).12, i.e. “lowerb =
median of the current Ritz values”, is efficient. Better choice based on more
sophisticated analysis may lead to faster convergence.

III. For the orthogonalization step (h).2, we use the iterated Gram-Schmidt method
[7] often referred to as DGKS.

IV. The refinement at step (h).7 is performed at each step. One can avoid this step
until some eigenpair converges. But according to [19, p. 325], this refinement is
necessary in order to have faster convergence for the eigenvectors.
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V. The swap at step (h).10 may be performed by the following pseudo code:
set vtmp = V (:, kc);
For (i = kc − 1 : −1 : 1) Do
If (µ ≥ eval(i)), exit the For loop; End If
set eval(i+1) = eval(i), eval(i) = µ; set V (:, i+1) = V (:, i), V (:, i) = vtmp;

End For.
(Note that more careful programming can save unnecessary memory copies in
the above.)

VI. The noswap flag at steps (h).9–11 is used to improve robustness. This flag lowers
the possibility of counting converged unwanted eigenvalues as wanted ones.

VII. At step (h).10, convergence test is performed only on the first Ritz pair among
the ksub − kc Ritz pairs available at each iteration. A simple loop can be added
to check convergence of more than one Ritz pairs. We note that for almost all
Davidson-type subspace methods, if all the ksub − kc Ritz pairs are checked for
convergence at each iteration step and no swap procedure is included, then there
is a very high possibility missing wanted eigenvalues.
Remark: The Algorithm 4.1 essentially contains the framework for Davidson-type

methods based on polynomial filtering. One only needs to replace the Chebyshev poly-
nomial filter at step (h).1 by other suitable polynomials having the desired filtering
property as described in Section 2.

5. Analysis. It is generally difficult to establish the convergence of a restarted
method, especially in a non-Krylov subspace setting. Convergence analysis for restarted
Krylov methods may be found in [27, 5, 13, 3].

Suppose the eigenvalues of A are labeled increasingly, i.e., λ1 < λ2 ≤ ... ≤ λn,
and let their associated unit eigenvectors be q1, . . . , qn. Assume that Algorithm 4.1
is carried out in a single vector version. That is, in step (h).2 we keep ksub ≡ 1 and
set V (:, 1) = t/‖t‖, and in step (h).13 we set x = V (:, 1). According to the expression
(3.2) of the polynomial used in the Chebyshev procedure, and the fact that the interval
of the eigenvalues to be dampened at each step is adaptively changing, we see that
the matrix applied at the j-th step is

p(j)m (A) = C(j)m ((A− cjI)/ej).(5.1)

For simplicity, assume that the interval of the eigenvalues to be dampened at each
step is fixed. Then, the algorithm is simply the standard power method with the
matrix pm(A) ≡ Cm((A− cI)/e). As a result the convergence will be governed by the
ratio of the two dominant eigenvalues. Note that the interval [a, b] of ther eigenvalues
to be dampened satisfies λ1 < a. The (unique) dominant eigenvalue of the matrix
pm(A) is Cm((λ1− c)/e). So, in the one-dimensional version of the algorithm, V (:, 1)
converges to q1 with the convergence factor,

ρ =
maxj>1 |Cm((λj − c)/e)|

|Cm((λ1 − c)/e)|
< 1 .

Consider now the situation when we do two steps of the algorithm, i.e., the
dimension of the subspace is two. As it turns out the resulting method has a simple
interpretation. The first vector of the basis is simply pm(A)x. The second is obtained
as pm(A)x1 where x1 is an approximate eigenvector from the 1-dimensional space
spanned by the the first vector, which is simply a multiple of pm(A)x. So the subspace
used in this case, is

K2 = span{pm(A)x, pm(A)x1} = span{pm(A)x, pm(A)
2x} ,
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which is the Krylov subspace of dimension two usually denoted by K2(pm(A), x).
Consider now the third step. The process will inject to the subspace a vector of the
form

pm(A)x2 with x2 ∈ K2 .

The vector x2 is a Ritz eigenvector computed from projecting A on the subspace K2,
and it is a linear combination of vectors from K2, so we can write x2 = α1pm(A)x+
α2pm(A)

2x. What is remarkable is that K3 the new subspace is again a Krylov
subspace. Indeed,

K3 = span{pm(A)x, pm(A)
2x, pm(A)x2, } ≡ span{pm(A)x, pm(A)

2x, pm(A)
3x} .

This can be easily seen by re-writing the vector injected to the basis as

pm(A)x2 = pm(A)[α1pm(A)x+ α2pm(A)
2x] = α1pm(A)

2x+ α2pm(A)
3x .

So the linear span of the 3 vectors pm(A)x, pm(A)
2x, and pm(A)x2, is identical with

that of the vectors pm(A)x, pm(A)
2x, and pm(A)

3x. The result can be easily extended
to an arbitrary step j and that it is true as long as the polynomial does not change
(i.e., the interval of the eigenvalues to be damped is fixed).

Proposition 5.1. Step j of Algorithm 4.1 without restart is mathematically
equivalent with a Rayleigh Ritz process applied to A using the Krylov subspace

Kj (pm(A), x) .

In particular, this means that if one generates an orthogonal basis Vj of the Krylov
subspace Kj(pm(A), x) and computes the eigenvalues of V

T
j AVj , these eigenvalues

would be identical with those of Algorithm 4.1, under the restriction that the poly-
nomial does not change. This is not quite a Krylov subspace method because the
projection uses A instead of the transformed matrix pm(A). However, this simple
result permits to analyse the (restricted) algorithm in a complete way by considering
eigenvectors. Indeed, eigenvectors of A and pm(A) are identical and there are results
which establish upper bounds for the angle between the exact eigenvector and the
Krylov subspace. This will be omitted and the reader is referred to [19] for details.

Although the restricted algorithm can be viewed from the angle of Krylov sub-
spaces, there are a number of distinguishing features, related to implementation and
other practical aspects. For example, the above proposition assumes that the poly-
nomial is fixed but being able to adapt the polynomial is a crucial ingredient of the
procedure. The unrestricted Algorithm 4.1 adapts the polynomial by dynamically
selecting the bounds of the interval of eigenvalues to be dampened at each iteration.
Taking (5.1) into account, we see that

K2 = span{p
(1)
m (A)x, p

(2)
m (A)p

(1)
m (A)x},

K3 = span{p
(1)
m (A)x, p

(2)
m (A)p

(1)
m (A)x, p

(3)
m (A)p

(1)
m (A)x, p

(3)
m (A)p

(2)
m (A)p

(1)
m (A)x} .

This list easily extends to Kj for any j. Letting

Φk(t) =
k
∏

l=1

p(l)m (t),(5.2)
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then the last term in Kj is Φj(A)x, and this term corresponds to an accelerated
power method applied to x. Because of the Rayleigh-Ritz refinement, there is a Ritz
vector from Kj which converges to q1 at least as fast as Φj(A)x does, where the

convergence rate for Φj(A)x to q1 is
maxl>1 |Φj(λl)|

|Φj(λ1)|
under standard conditions [30, 13].

This rate can be considerably faster than that obtained from using a fixed interval.
The convergence for the latter eigenvectors follows from deflation, e.g., the second
eigenvalue becomes dominant for the matrix A restricted to the subspace orthogonal
to q1.

6. Numerical Results and Discussions.

6.1. Comparisons in Matlab. In this section, we compare the Chebyshev-
Davidson method (denoted as ChebyD) with several other Davidson-type methods,
mostly in the non-preconditioned case and also in the preconditioned case when the
test matrices are positive definite. We also make some comments on preconditioned
eigensolvers based on the observed numerical results.

For the JD method we use the publicly available Matlab codes JDQR [10] ∗ and
JDCG [16]†. The JDCG code is tuned for symmetric eigenproblems, the linear solver
used for JDCG is (preconditioned) CG. The JDQR code can solve both symmetric and
nonsymmetric problems; GMRES[24] is the default linear solver that JDQR supplies
and we use it for the numerical tests. Since we solve symmetric eigenproblems, it
is less costly to use MINRES[17] in JD. Moreover, since CG is usually intended for
positive definite problems, JDCG does not work as efficiently for indefinite A as for
positive definite A. So for the purpose of further comparisons, we implemented our
own JD code using MINRES as the linear solver. This code is denoted as JDminres.
JDminres is mainly based on Algorithm 4.1 except that step (h).1 is replaced by a
linear equation solve using MINRES. The preconditioned eigensolver LOBPCG [11] ‡

is also used for comparison because it is a representative preconditioned eigensolver.

All the Matlab numerical experiments are performed on a Dell PC with dual Intel
Xeon 2.66GHz CPU and 1GB RAM. One of the CPU is dedicated to the computation.
The OS is Debian Linux with Linux kernel version 2.4.27. We use Matlab version 7.0
(R14) for the computations.

For all of the test examples listed in Table 6.1—6.8, we compute the kwant = 50
smallest eigenvalues and eigenvectors. The maximum subspace dimension is fixed at
2 ∗ kwant for all methods except that for LOBPCG it is 3 ∗ kwant.

The accuracy is reported as ‖AV − V D‖/‖A‖1, where V contains the fifty con-
verged eigenvectors, and the diagonal of D contains the fifty corresponding eigenval-
ues. The relative convergence tolerance is set to 10−10 for all methods. In order for
these results to be reproducible, we use ones(n, 1) as the initial vector throughout.
This is also to avoid biases due to more or less favorable initial directions. We note
that LOBPCK requires another kwant − 1 vectors for the initial block, and we used
random vectors for these.

For the symmetric positive definite Laplaceans in Tables 6.1–6.4, we use the in-
complete Cholesky factor R = cholinc(′A′, 0) as the preconditioner. For each method,
an added suffix (p) denotes using the incomplete Cholesky factor as the preconditioner,
while the suffix (np) means no preconditioner is used.

∗Code available at: http://www.math.uu.nl/people/sleijpen/JD_software/
†Code available at: http://mntek3.ulb.ac.be/pub/docs/jdcg/
‡Code available at: http://www-math.cudenver.edu/~aknyazev/software/CG/toward/lobpcg.m



11

Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 380 434 13424 1.17e-11
JDminres 664 482 13469 5.75e-12
JDQR 1415 2449(-) 13761 2.36e-12
JDCG (p) 1877 269 12625(+) 1.58e-11
JDCG (np) 1180 444 40349 1.40e-11
LOBPCG(p) 1995 685 – 1.25e-11
LOBPCG(np) 7904 5193 – 1.00e-10

Table 6.1

2D-Laplacean on a L shape square constructed by A = delsq(numgrid(’L’, 250)). dim=46128,
m=30 for ChebyD, #max le solve=25 for JDminres.

Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 150 324 10014 1.51e-11
JDminres 275 378 10557 1.81e-11
JDQR 652 1875(-) 10425 2.12e-12
JDCG (p) 784 241 9797(+) 1.53e-11
JDCG (np) 394 362 23170 1.48e-11
LOBPCG(p) 805 419 – 5.43e-11
LOBPCG(np) 1617 1397 – 4.01e-09

Table 6.2

2D-Laplacean on a nested dissection ordering of the square constructed by
A = delsq(numgrid(′N ′, 160)). dim=24964. #max le solve=25 for JDminres, m=30 for ChebyD.

For the symmetric indefinite problems in Tables 6.5—6.8, our experiments showed
that JDCG does not work with preconditioners from incomplete LU decomposition.
As for LOBPCG, using incomplete LU factors as preconditioners took far more CPU
time than without preconditioning, and the results are not always correct for the pre-
conditioned case (we note that LOBPCG is primarily developed for SPD problems).
Hence for indefinite problems, we do not use the preconditioned version of JDCG and
LOBPCG. Without preconditioning, both JDCG and LOBPCG converged to correct
eigenpairs. These experiments also support the point that for situations where pre-
conditioners are hard to obtain, approaches that do not rely on correction-equations
have a clear advantage.

In each table, ’#iter’ counts the total number of the outer loop, ’#mvp’ the
number of matrix-vector products, and ’#max le solve’ shows the maximum inner
iteration number for the linear equation solve by MINRES in JDminres. We were not
able to find how to output ’#mvp’ from help lobpcg, hence this value is not reported
for LOBPCG. For JDQR, help jdqr indicates where #iter and #mvp are stored, but
the observed output values from history(:,2) for #iter seems incompatible with the
expected values. It is possible that history(:,2) stores both the outer iteration count
as well as the inner iteration count, since the resulting number is often much larger
than that of JDminres and JDCG. We report #iter for JDQR only as reference, and
put a (-) sign to signal differences. For all the examples, the CPU time of JDminres
is smaller than that of JDQR.

Note that for the JDCG(p) case, #mvp does not count the number of precon-
ditioned equation solves, hence even though JDCG(p) has lower #iter and #mvp,
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Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 277 234 7224 1.38e-11
JDminres 590 332 7614 1.15e-11
JDQR 1096 1270(-) 7002 1.37e-12
JDCG (p) 2018 207 6802(+) 1.02e-11
JDCG (np) 798 292 18025 9.94e-12
LOBPCG(p) 1354 168 – 8.18e-12
LOBPCG(np) 2329 580 – 9.90e-11

Table 6.3

3D-Laplacean on a unit cube with grid (45 × 30 × 50), dim=67500. m=30 for
ChebyD, #max le solve=25 for JDminres.

Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 503 1967 60947 2.53e-12
JDminres 477 1395 39033 2.12e-12
JDQR 2120 12499(-) 69386 4.27e-12
JDCG (p) 40.9 113 1018(+) 8.40e-11
JDCG (np) 4788 1435 242308 2.70e-11
LOBPCG(p) 28.9 27 – 1.59e-11
LOBPCG(np) 3282 1977 – 1.21e-07

Table 6.4

1D-Laplacean, dim=12500, m=30 for ChebyD, #max le solve=25 for JDminres. Note that
each (p) is more than 100 times faster than its (np) counterpart. This is an excellent example to
demonstrate how important the efficiency of a preconditioner can be for a preconditioned eigensolver.
We also note that because of the very unfavorable spectrum of this sample for CG, the JDCG(np)
is more than twice slower than JDQR even though the former is tuned for SPD problems.

Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 115 243 5083 2.45e-11
JDminres 199 357 6409 5.21e-11
JDQR 293 987(-) 5294 3.70e-13
JDCG (np) 253 355 11882 3.12e-12
LOBPCG(np) 571 390 – 1.08e-10

Table 6.5

Silicon quantum dot model Si10H16, indefinite. dim=17077. m=20 for ChebyD,
#max le solve=20 for JDminres.

Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 995 336 7036 2.82e-11
JDminres 1273 326 7476 2.61e-11
JDQR 1924 1227(-) 6714 3.67e-13
JDCG (np) 2230 424 18488 2.78e-12
LOBPCG(np) 8485 1926 – 1.04e-10

Table 6.6

Silicon quantum dot model Si34H36, indefinite. dim=97569. Structure plot shown in Figure
6.1. m=20 for ChebyD, #max le solve=20 for JDminres.
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Fig. 6.1. Structure plots of two test matrices Si34H36 and bcsstk32.

Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 270 325 6805 1.97e-11
JDminres 339 323 5797 1.87e-11
JDQR 457 852(-) 4505 8.11e-14
JDCG (np) 703 318 11642 7.03e-13
LOBPCG(np) 2202 1824 – 9.51e-11

Table 6.7

bcsstk31 from the NIST Matrix Market, dim=35588, indefinite. m=20 for ChebyD,
#max le solve=15 for JDminres.

it does not usually win in CPU time because of the additional cost of the precon-
ditioned equation solves. We use (+) to denote that extra #mvp’s are required for
preconditioned equation solves. In all the results reported here, the preconditioned
version only wins for the 1D-Laplacean case (Table 6.4), which in this case shows a
drastic superiority. This is because constructing the R = cholinc(′A′, 0) is easy in this
case, and the preconditioned equations are trivial to solve because R is of bandwidth
one. For other cases, constructing the preconditioner and solving the preconditioned
equations can be expensive. We did not experiment with other preconditioners, but
the results in Table 6.1–6.4 clearly show that preconditioned eigensolvers need very
good preconditioners to be effective. When efficient preconditioners are available,
preconditioned eigensolvers can significantly accelerate convergence.

The reported results of ChebyD are typical for the method proposed in this pa-
per. For all the test problems, we did not fine tune m, we just selected a value that is
reasonable. The results already show that the Chebyshev polynomial filtered method
outperformed other Davidson-type methods, especially in the non-preconditioned set-
ting. As to robustness, our experience is that JDCG is more likely to miss eigenvalues
than other methods compared in this paper. It is also worth mentioning that for
a Davidson-type method based on solving correction-equations, the preconditioned
version can often be more robust than its non-preconditioned counterpart.

Regarding global convergence, Figure 6.2 shows one example where convergence
of Chebyshev-Davidson is much faster than that of the standard JD. However, we
would like to mention that for symmetric eigenproblems, JD often has good global
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Method CPU (sec.) #iter. #mvp ‖AV − V D‖/‖A‖1
ChebyD 387 320 6700 2.21e-11
JDminres 508 341 6112 2.45e-11
JDQR 624 840(-) 4467 7.59e-14
JDCG (np) 609 308 10925 6.24e-13
LOBPCG(np) 1285 480 – 9.63e-11

Table 6.8

bcsstk32 from the NIST Matrix Market, dim=44609, indefinite. Structure plot shown in
Figure 6.1. m=20 for ChebyD, #max le solve=15 for JDminres.
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Fig. 6.2. The matrix bcsstk33 is from the NIST Matrix Market. Structure plot is on
the left. On the right is the residual norm plot for the first 10 smallest eigenvalues. This shows
ChebyD can have much better global convergence than JDminres. Here m = 25 for ChebyD and
#max le solve=25 for JDminres. The initial vector used is ones(n, 1) for both methods.

convergence. For the same example as in Figure 6.2, a different value of #max le solve
for JDminres can make the global convergence of ChebyD and JDminres become
similar.

We made two other observations based on the numerical results. The first one is
that a smaller #iter or #mvp count does not necessarily lead to a smaller CPU time.
Some methods may require substantial additional work not related to matrix-vector
products. The second one is that the CG based (preconditioned) eigensolvers are
often not very efficient for indefinite eigenproblems.

6.2. Comparisons in FORTRAN. The Chebyshev-Davidson method was also
implemented in FORTRAN95 and we denote by ChebyD95 the corresonding code. In
the following we present some comparisons with ARPACK [14] which is one of the
best eigenvalue packages available. Note that we only compare with the subroutines
(dsaupd and dseupd) for symmetric eigenproblems in ARPACK. The test examples
are 3D Laplaceans and one Hamiltonian from a problem in electronic structures. The
FORTRAN numerical tests are performed on the IBM power4 supercomputer running
AIX 5.2 of the Minnesota Supercomputing Institute. We use one processor of the 8-
processor 1.7 GHz p655 node sharing 16 GB of memory. All the FORTRAN codes
are compiled by the IBM FORTRAN compiler xlf95 r using optimization flags: -O4
-qstrict -qmaxmem=-1 -qtune=pwr4 -qarch=pwr4. The BLAS/LAPACK used is
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the vendor provided ESSL library.
In order to develop an efficient and competitive FORTRAN code, we implemented

a block version of Algorithm 4.1. Moreover, a technique called Inner-Outer-Restart
is exploited. In this technique, we set the maximum dimension (denoted as actmax)
of the active subspace to a much smaller value than the allowed maximum subspace
dimension (dimmax). The inner restart is performed when the active subspace dimen-
sion exceeds the actmax. The outer-restart, which is the restart in the standard sense,
is performed when the total subspace dimension exceeds dimmax. This Inner-Outer-
Restart does not require the array W in Algorithm 4.1 to be of the same dimension
as V , we only need W to be of dimension actmax. The price paid for this technique
is more memory copies (or additional deflation) for the vectors in W , while the gain
is a much smaller memory requirement for our method than the standard restarted
Lanczos method. We note that essentially it is the polynomial filtering technique pre-
sented in this paper that makes this Inner-Outer-Restart competitive. This technique
is generally not efficient within a standard Lanczos-type method. More details, along
with other techniques including ways to exploit a large number of good initial vectors,
may be found in [35].

Table 6.9 presents a test run for a relatively small 3D Laplacean on a 40x40x40
mesh. We compute kwant = 400 smallest eigenpairs. Note that some eigenvalues
with multiplicity six or three (especially those at the higher end of the first kwant
eigenvalues) may be missed if the tolerance for ARPACK is set too low; so we set
the tolerance of ARPACK to 10−15. While for ChebyD95, a tolerance around 10−9 is
enough to capture all the eigenvalues with multiplicity six and three, even when the
block size is set to one. This is yet another confirmation of the superior robustness of
the Chebyshev-Davidson method. For the numerical run, we set 10−10 as the tolerance
for ChebyD95, but we note that 10−9 is already much smaller than the discretization
error.

It is common knowledge that ARPACK performs most efficiently when dimmax

is around 2 ∗ kwant, (except when kwant is quite large, say, over 600), so we report
performance with this selection of dimmax. The other cases when dimmax is set to a
smaller value are reported for references.

Method dimmax #mvp mvp CPU non-mvp CPU total CPU
ChebyD95 424 107379 220.61 1958.78 2179.39
ARPACK 800 5561 12.14 4033.17 4045.31
ARPACK 500 5789 12.67 4383.40 4396.07
ARPACK 450 6321 13.89 6511.67 6525.56

Table 6.9

Laplacean 3D: dim = 64, 000, kwant = 400. For ChebD95, actmax = 42, block size = 3,
m= 15. The maximum difference between the 400 smallest eigenvalues computed by ChebyD95 and
ARPACK is 1.89e-11. The unit for CPU time is second.

A more realistic problem comes from an application in materials-science. It con-
sists of solving the following time independent Schrödinger equation using the form
resulting from the well-known Kohn-Sham approximation [12],

HΨ =

[

−~
2

2M
∇2 + V (x, y, z)

]

Ψ = EΨ.(6.1)

Here H is the so called Hamiltonian operator, E is the energy eigenvalue for the sys-
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Method dimmax #mvp mvp CPU non-mvp CPU total CPU
ChebyD95 424 163779 1060.68 9492.55 10553.23
ARPACK 800 7360 50.01 14326.81 14376.82

Table 6.10

Laplacean 3D: dim = 200, 000, kwant = 400. For ChebD95, actmax = 42, block size = 3,
m = 15. The maximum difference between the 400 smallest eigenvalues computed by ChebyD95 and
ARPACK is 5.546e-11. The unit for CPU time is second.

tem, Ψ(x, y, z) is the wave function, and V (x, y, z) is the system potential. M denotes
the characteristic mass of particles, and ~ is the Planck’s constant. The problem is
set up on a sphere and the eigenfunctions satisfy Dirichlet boundary conditions on
the surface, i.e., Ψ(x, y, z) = 0, (

√

x2 + y2 + z2 = ϑ). A 12-th order centered finite
difference scheme [6] is used for (6.1). The material we test is Si34H36. The matrix
is obtained when the self-consistency is reached. Its structure may be seen in the
left plot of Figure 6.1. It is saved to the Compressed Sparse Row (CSR) format and
a SPARSKIT subroutine is called for the matrix vector products. In contrast with
the 3D Laplaceans, where the matrix vector products can be coded directly without
any manipulation of sparse matrices, this matrix does not exploit stencils and the
situation is therefore much less favorable to the Chebyshev filtering method since
matrix-vector products are more expensive. However, even in this unfavorable situa-
tion, the total CPU time of ChebyD95 is still comparable with the best performance
cases of ARPACK. We note that for this model the eigenvalue multiplicity is not a
problem, so the tolerance for both ARPACK and ChebyD95 is set to 10−10.

Method dimmax #mvp mvp CPU non-mvp CPU total CPU
ChebyD95 230 54447 1290.38 724.88 2015.26
ARPACK 400 3825 134.92 2103.06 2237.98
ARPACK 230 4672 164.39 3115.40 3279.80

Table 6.11

Si34H36: dim = 97569, kwant = 200. For ChebyD95, actmax = 42, block size = 3, m= 25.
The maximum difference between the 200 smallest eigenvalues computed by ARPACK and ChebyD95
is 2.07e-14. All the CPU time unit is second.

Method dimmax #mvp mvp CPU non-mvp CPU total CPU
ChebyD95 530 182289 4190.86 3907.55 8098.41
ARPACK 1000 7841 272.70 9044.63 9317.33
ARPACK 600 8033 279.22 11478.50 11757.72

Table 6.12

Si34H36: dim = 97569, kwant = 500. For ChebyD95, actmax = 42, block size = 3, m= 25.
The maximum difference between the 500 smallest eigenvalues computed by ARPACK and ChebyD95
is 2.84e-14. All the CPU time unit is second.

As seen from Tables 6.9, 6.10, 6.11 and 6.12, ChebyD95 often requires many
more matrix-vector products than ARPACK. This is because each call to the filter
subroutine requires m∗block size matrix-vector products. However, this extra cost in
matrix-vector products, generally leads to very fast convergence for the Chebyshev-
Davidson method, in terms of (outer) iterations. Moreover, ChebyD95 saves CPU time
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on reorthogonalization because it requires a smaller dimension projection subspace.
These are shown by the CPU time spent on non-matrix-vector products. (denoted
as “non-mvp CPU” in the Tables 6.9 to 6.12) Hence, the proposed filtering method
is advantageous when matrix-vector products are inexpensive. Moreover, with Inner-
Outer-Restart, the filtering method may require only slightly more than half of the
memory requirement of ARPACK to achieve similar best efficiency. But when the
matrix-vector products are expensive, then the implicit filtering as done in ARPACK
should be considerably more efficient than filtering via matrix-vector products.

We note that our FORTRAN code is still a working prototype (It has been devel-
oped in about 3 months) and that some parts of the code may not have been tuned to
yield the best efficiency. As for the numerical tests, we again selected some reasonable
values for the polynomial degree m, block size and actmax, and then ran the tests. It
is likely that other choices for these parameters may lead to better performance. This
additional freedom in the selection of parameters is sometimes considered a disadvan-
tage. However, our experience shows that it is quite easy to choose parameters to
achieve performance comparable with existing best codes for eigenvalue computations.

7. Conclusion. A Chebyshev filter Davidson-type algorithm has been presented
for solving large symmetric eigenvalue problems. It consists of essentially filtering
out unwanted parts of the spectrum by using an adaptive Chebyshev polynomial
of the matrix. Comparisons with existing Davidson-type methods based on solving
correction-equation, as well as with ARAPCK, show that the Chebyshev-Davidson
method is efficient and robust. It gains over standard restarted versions of the Lanczos
algorithm (e.g., ARPACK), by reducing the required number of outer iterations and
the orthogonalization costs.

An advantage of the Chebyshev filtering approach is that it does not require
an explicit preconditioning solve (e.g., ILU or multigrid). In this regard, it can be
compared with a JD-approach in the situation where the solve is performed with a
(non-preconditioned) Krylov method. However, the Chebyshev filter is more easily
controlable and can be designed and tuned to better filter wanted and unwanted
components.

A second advantage of the approach is that the filtering is remarkably simple to
implement, both in a single vector version and in a block version. By integrating
Davidson method with polynomial filtering, using a large number of available good
initial vectors becomes not only possible but also practical. More details may be
found in [35].
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