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Abstract

Nearest neighbor graphs are widely used in data mining and machine learn-
ing. The brute-force method to compute the exact kNN graph takes Θ(dn2)
time for n data points in the d dimensional Euclidean space. We propose
two divide and conquer methods for computing an approximate kNN graph in
Θ(dnt) time for high dimensional data (large d). The exponent t depends on
an internal parameter and is larger than one. Experiments show that a high
quality graph usually requires a small t which is close to one. A few of the
practical details of the algorithms are as follows. First, the divide step uses an
inexpensive Lanczos procedure to perform recursive spectral bisection. After
each conquer step, an additional refinement step is performed to improve the
accuracy of the graph. Finally, a hash table is used to avoid repeating distance
calculations during the divide and conquer process. The combination of these
techniques is shown to yield quite effective algorithms for building kNN graphs.

1 Introduction

Building nearest neighbor graphs is often a necessary step when dealing with prob-
lems arising from applications in such areas as data mining [Brito et al., 1997,
Dasarathy, 2002], manifold learning [Belkin and Niyogi, 2003, Rowies and Saul, 2000,
Saul and Roweis, 2003, Tenenbaum et al., 2000], robot motion planning [Choset
et al., 2005], and computer graphics [Sankaranarayanan et al., 2007]. Given a set of
n data points X = {x1, . . . , xn}, a nearest neighbor graph consists of the vertex set
X and an edge set which is a subset of X ×X. The edges are defined based on a
proximity measure between two data points xi and xj . Here, we assume that this
proximity is measured by a quantity ρ(xi, xj) which gives the distance/dissimilarity
between xi and xj , i.e., ρ(xi, xj) is small when the two points are close and ρ(xi, xj)
is large when they are farther apart. Two types of nearest neighbor graphs [Belkin
and Niyogi, 2003, He and Niyogi, 2004] are often used:

1. ǫ-graph: This is an undirected graph whose edge set consists of pairs (xi, xj)
such that ρ(xi, xj) is less than some pre-defined threshold ǫ ∈ R

+.
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2. kNN graph: This is a directed graph (in general). There is an edge from
xi to xj if and only if ρ(xi, xj) is among the k smallest elements of the set
{ρ(xi, xℓ) | ℓ = 1, . . . , i− 1, i + 1, . . . , n}.

The ǫ-graph is geometrically motivated, and many efficient algorithms have been
proposed for computing this graph [see, e.g., Bentley et al., 1977, Chazelle, 1983].
However, the ǫ-graph can result in disconnected components [Belkin and Niyogi,
2003] and it is difficult to find a good value of ǫ which yields graphs with appropriate
number of edges. Hence, they are not suitable in many situations. On the other
hand, kNN graphs have been shown to be especially useful in practice. Therefore,
this paper will focus on the construction of kNN graphs.

The data points xi’s are in general defined on a metric space [Clarkson, 2006,
Paredes et al., 2006], with a distance metric ρ(·, ·) satisfying the properties of non-
negativity, symmetry, and triangular inequality. Non-metric measures are sometimes
of interest [Zhang and Srihari, 2002] as well, though not as common in practice. The
Euclidean space with the Euclidean metric is a special yet extensively studied case
of metric spaces. This space representation is a coordinate system, with each data
point represented as a vector with numerical values. The proximity of two points xi

and xj is simply defined as their Euclidean distance ‖xi − xj‖. This paper focuses
on the d dimensional Euclidean space for defining the k nearest neighbors. Indeed,
the Euclidean metric is favored by the spectral methods for data analysis because
of some nice properties (see Section 2.1).

When k = 1, only the nearest neighbor for each data point is considered. This
particular case is called the all nearest neighbors problem, which has been extensively
studied in the literature. To compute the 1NN graph, Bentley [1980] proposed a mul-
tidimensional divide-and-conquer method that takes O(n logd−1 n) time, Clarkson
[1983] presented a randomized algorithm with expected O(cdn log n) time (for some
constant c), and Vaidya [1989] introduced a deterministic worst-case O((c′d)dn log n)
time algorithm (for some constant c′). These algorithms are generally adaptable to
k > 1. Thus, Paredes et al. [2006] presented a method to build a kNN graph, which
was empirically studied and reported to require O(n1.27) distance calculations for low
dimensional data and O(n1.90) calculations for high dimensional data. Meanwhile,
several parallel algorithms have also been developed [Callahan, 1993, Callahan and
Kosaraju, 1995, Plaku and Kavraki, 2007]. Despite the rich literature, efficient algo-
rithms for high dimensional data are still under-explored. In this paper we propose
two methods that are especially effective in dealing with high dimensional data.

Note that the problem of constructing a kNN graph is different from the problem
of nearest neighbor(s) search [see, e.g., Indyk, 2004, Liu et al., 2004, Shakhnarovich
et al., 2006, and references therein], where given a set of data points, the task is to
find the k nearest points for any query point. Usually, the nearest neighbors search
problem is handled by first building a data structure (such as a search tree) for the
given points in a preprocessing phase. Then, queries can be answered efficiently by
exploiting the search structure. Of course, the construction of a kNN graph can be
viewed as a nearest neighbors search problem where each data point itself is a query.
Considerations related to an effective exploitation of this viewpoint in practice will
not be explored in the present paper and will be left for future investigation.
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The rest of the paper is organized as follows. Section 2 introduces the two
proposed methods for computing the kNN graphs, and Section 3 analyzes their time
complexities. Then, we show a few experiments to demonstrate the effectiveness
of the methods in Section 4, and discuss two applications in Section 5. Finally,
conclusions are given in Section 6.

2 Divide and Conquer kNN

Our general framework for computing an approximate kNN graph is as follows:
We divide the set of data points into subsets (possibly with overlaps), recursively
compute the (approximate) kNN graphs for the subsets, then conquer the results
into a final graph. This divide and conquer framework can clearly be separated in
two distinct sub-problems: how to divide and how to conquer. The conquer step
is simple: If a data point belongs to more than one subsets, then its k nearest
neighbors are selected from its neighbors in each subset. However, the divide step
can be implemented in many different ways, resulting in different qualities of graphs.
We propose two methods in the following. These methods are based on a spectral
bisection technique [Boley, 1998, Juhász and Mályusz, 1980, Tritchler et al., 2005]
which employs an inexpensive Lanczos procedure [Lanczos, 1950].

2.1 Spectral Bisection

Let the data matrix
X = [x1, . . . , xn] ∈ R

d×n

have each column as a data point. (By abuse of notation we also use X to denote the
set of data points when the context is clear.) A typical spectral bisection technique
is to split the centered data

X̂ = [x̂1, . . . , x̂n] = X − ceT ,

where c is the centroid and e is a column of all ones, into halves using a hyperplane.
Let (σ, u, v) denote the largest singular triplet of X̂ with

uT X̂ = σvT . (1)

Then, the hyperplane is defined as 〈u, x〉 = 0, i.e., it splits the set of data points
into two subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}. (2a)

This hyperplane is known to maximize the sum of squared distances between the
centered points x̂i to the hyperplane that passes through the origin. This is because
for any hyperplane 〈w, x〉 = 0 the squared sum is

n
∑

i=1

(wT x̂i)
2 =

∥

∥

∥
wT X̂

∥

∥

∥

2

2
≤
∥

∥

∥
X̂
∥

∥

∥

2

2
= σ2,

while w = u achieves the equality.
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By the property of the SVD (Equation (1)), this bisection technique is equivalent
to splitting the set by the following criterion:

X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0}, (2b)

where vi is the i-th entry of v. If it is preferred that the sizes of the two subsets be
balanced, an alternative is to replace the above criterion by

X+ = {xi | vi ≥ m(v)} and X− = {xi | vi < m(v)}, (3)

where m(v) represents the median of the entries of v.
The largest singular triplet (σ, u, v) of X̂ can be computed using the Lanczos

algorithm [Lanczos, 1950, Berry, 1992]. In short, we first compute an orthonormal
basis of the Krylov subspace span{q1, (X̂

T X̂)q1, . . . , (X̂
T X̂)s−1q1} for an arbitrary

initial unit vector q1 and a small integer s. Let the basis vectors form an orthogonal
matrix

Q = [q1, . . . , qs].

An equality resulted from this computation is

QT (X̂T X̂)Q = T,

where T is a symmetric tridiagonal matrix of size s×s. Then we compute the largest
eigenvalue θ and corresponding eigenvector y of T :

Ty = θy.

Therefore, θ (resp. Qy) is an approximation to the largest singular value (resp.
right singular vector) of X̂. Only a small value for s, say 5, is needed to yield a
very accurate approximation. The computation of the orthonormal basis takes time
Θ(sdn), where (recall that) d and n are the dimensions of X̂. The time to compute
θ and y is negligible since T is symmetric tridiagonal and s is very small. Hence the
time for computing the largest singular triplet of X̂ is bounded by O(sdn).

2.2 The Divide Step: Two Methods

Using the above bisection technique, the divide step for computing an approximate
kNN graph can be performed in two ways. The first way, called the overlap method,
divides the current set into two overlapping subsets. The second way, called the
glue method, divides the current set into two disjoint subsets with a third gluing
set. Details are as follows.

2.2.1 The Overlap Method

In this method, we divide the set X into two overlapping subsets X1 and X2:

{

X1 ∪X2 = X,

X1 ∩X2 6= ∅.
(4)
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(a) The overlap method.

hyperplane

X1 X2X3

(b) The glue method.

Figure 1: Two methods to divide a set X into subsets.

Since σvi is the signed distance from x̂i to the hyperplane, let the set V be defined
as

V = {|vi| | i = 1, 2, . . . , n}. (5)

Then we use the following criterion to form X1 and X2:

X1 = {xi | vi ≥ −hα(V )} and X2 = {xi | vi < hα(V )}, (6)

where hα(·) is a function that returns the element which is only larger than (100α)%
of the elements in the input set. The purpose of criterion (6) is to ensure that the
two subsets overlap (100α)% of the data, i.e.,

|X1 ∩X2| = ⌈α|X|⌉ .

See Figure 1(a) for an illustration.

2.2.2 The Glue Method

In this method, we divide the set X into two disjoint subsets X1 and X2 with a
gluing subset X3:



















X1 ∪X2 = X,

X1 ∩X2 = ∅,
X1 ∩X3 6= ∅,
X2 ∩X3 6= ∅.

(7)

The criterion is:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi | −hα(V ) ≤ vi < hα(V )}. (8)

Note that the gluing subset X3 in this method is exactly the intersection of the two
subsets in the overlap method. Hence, X3 also contains (100α)% of the data. See
Figure 1(b) for an illustration.
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2.3 Refinement

In order to improve the quality of the resulted kNN graph, during each recursion
after the conquer step, the graph can be refined at a small cost. The idea is to
update the k nearest neighbors for each point by selecting from a pool consisting
of its neighbors and the neighbors of its neighbors. Formally, for each point x, we
re-select its k nearest neighbors from

(

A = {xi | xi is a neighbor of x}
)

∪ {xj | xj is a neighbor of xi ∈ A}.

2.4 The Algorithms

We are ready to present the complete algorithms for both methods. See Algo-
rithms 1 and 2. Both algorithms share many similarities: They both fall in the
framework of divide and conquer; they both call the brute-force procedure kNN-

BruteForce to compute the graph when the size of the set is smaller than a
threshold (nk); they both recursively call themselves on smaller subsets; and they
both employ a Conquer procedure to merge the graphs computed for the subsets
and a Refine procedure to refine the graph during each recursion. The difference
is that Algorithm 1 calls Divide-Overlap to divide the set into two subsets (Sec-
tion 2.2.1), while Algorithm 2 calls Divide-Glue to divide the set into three subsets
(Section 2.2.2).

Algorithm 1 Approximate kNN Graph Construction: The Overlap Method

1: function G = kNN-Overlap(X, k, α)
2: if |X| < nk then
3: G← kNN-BruteForce(X, k)
4: else
5: (X1, X2)← Divide-Overlap(X, α) ⊲ Section 2.2.1
6: G1 ← kNN-Overlap(X1, k, α)
7: G2 ← kNN-Overlap(X2, k, α)
8: G← Conquer(G1, G2) ⊲ Section 2, beginning
9: Refine(G) ⊲ Section 2.3

10: end if
11: end function

2.5 A Hash Table to Store the Computed Distances

The brute-force method computes Θ(n2) pairs of distance, each of which takes Θ(d)
time. One advantage of our methods over the brute-force method is that the distance
calculation can be significantly reduced thanks to the nature of the divide and con-
quer approach. The distances are needed/computed in: (1) the kNN-BruteForce

procedure which computes all the pairwise distances and selects the k smallest ones
for each point, (2) the Conquer procedure which selects k smallest distances from
at most 2k candidates for each point, and (3) the Refine procedure which selects
the k smallest distances from at most k + k2 candidates for each point. Many of
the distances computed from kNN-BruteForce and Refine are reused in Con-

quer and Refine, with probably more than once for some pairs. A naive way is
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Algorithm 2 Approximate kNN Graph Construction: The Glue Method

1: function G = kNN-Glue(X, k, α)
2: if |X| < nk then
3: G← kNN-BruteForce(X, k)
4: else
5: (X1, X2, X3)← Divide-Glue(X, α) ⊲ Section 2.2.2
6: G1 ← kNN-Glue(X1, k, α)
7: G2 ← kNN-Glue(X2, k, α)
8: G3 ← kNN-Glue(X3, k, α)
9: G← Conquer(G1, G2, G3) ⊲ Section 2, beginning

10: Refine(G) ⊲ Section 2.3
11: end if
12: end function

to allocate memory for an n × n matrix that stores all the computed distances to
avoid duplicate calculations. However this consumes too much memory and is not
necessary. A better approach is to use a hash table to store the computed distances.
This will save a significant amount of memory, as a later experiment shows that
only a small portion of the n2 pairs are actually computed. Furthermore the com-
putational time will not be affected since hash tables are efficient for both retrieving
wanted items from and inserting new items into the table.

3 Complexity Analysis

A thorough analysis shows that the time complexities for the overlap method and the
glue method are sub-quadratic (on n), and the glue method is always asymptotically
faster than the overlap method. To this end we assume that in each divide step the
subsets X1 and X2 (in both methods) are balanced. In practice this may not be the
case, but the complexities in general hold. Hence, the time complexity To for the
overlap method and Tg for the glue method satisfy the following recurrence relations:

To(n) = 2To((1 + α)n/2) + f(n), (9)

Tg(n) = 2Tg(n/2) + Tg(αn) + f(n), (10)

where f(n) is the combined time for the divide, conquer, and refine steps.

3.1 The Complexity of f

The function f(n) has the following three components.

(a) The time for the divide step. This includes the time to compute the largest
singular triplet (σ, u, v) of the centered matrix X̂, and the time to divide points into
subsets X1 and X2 (in the overlap method) or subsets X1, X2 and X3 (in the glue
method). The former has been shown to be O(sdn) in Section 2.1, while for the
latter we can use a linear time selection method to find the value hα(V ). Therefore
the overall time for this step is O(sdn), where s is a very small constant.
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(b) The time for the conquer step. This step only involves the points in
X1 ∩ X2 in the overlap method or X3 in the glue method. For each of the αn
points in these subsets, k nearest neighbors are chosen from at most 2k candidates.
Therefore the time is O(kαn).

(c) The time for the refine step. For each point, k nearest neighbors are
chosen from at most k + k2 candidates. If all these distances need to be computed,
the overall time is O(k2dn). To the other extreme, if none of them are computed,
the factor d can be omitted, which results in O(k2n). In practice, by using a hash
table, only a very small fraction of the k + k2 distances are actually computed in
this step. Hence, we can safely assume that the time is bounded by O(k2n).

Since d is assumed to be large compared with k, and s is a small constant, we
conclude that f(n) is bounded by O(dn).

3.2 The Complexities of To and Tg

By substituting f(n) = O(dn) into (9), we immediately have the following theorem.

Theorem 1. The time complexity for the overlap method is

To(n) = Θ(dnto), (11)

where

to = log2/(1+α) 2 =
1

1− log2(1 + α)
. (12)

Proof. This follows from the Master Theorem [Cormen et al., 2001, Chapter 4.3].

In order to establish the time complexity for the glue method, we need the
following lemma.

Lemma 2. The recurrence relation

T (n) = 2T (n/2) + T (αn) + n

with T (1) = 1 has a solution

T (n) =

(

1 +
1

α

)

nt − n

α

where t is the solution to the equation

2

2t
+ αt = 1. (13)

Proof. A direct verification proves this lemma.

Now we are ready to have the following result.

Theorem 3. The time complexity for the glue method is

Tg(n) = Θ(dntg/α), (14)

where tg is the solution to (13).
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Proof. This immediately follows from Lemma 2 by noting that the solution to (13)
is large than 1.

To have an idea of the sizes of to and tg, for example when α = 0.1, to = 1.16
while tg = 1.12. Other examples and an extensive study of these two exponents are
proposed next.

Assuming the same value α is used, which of the two methods is asymptotically
faster? This is equivalently to asking the question: Which of the two exponents, to
or tg, is smaller? For this, we need the following two lemmas.

Lemma 4. When 0 < x < 1,

log2(1− x2) >
(

log2(1− x)
)(

log2(1 + x)
)

.

Proof. By Taylor expansion,
(

ln(1− x)
)(

ln(1 + x)
)

=

(

−
∞
∑

n=1

xn

n

)(

∞
∑

n=1

(−1)n+1xn

n

)

= −
∞
∑

n=1

(

2n−1
∑

m=1

(−1)m−1

m(2n−m)

)

x2n

= −
∞
∑

n=1

(

1

2n

(

1

1
+

1

2n− 1

)

− 1

2n

(

1

2
+

1

2n− 2

)

+ · · ·+ (−1)n−1

n2

+ · · · − 1

2n

(

1

2n− 2
+

1

2

)

+
1

2n

(

1

2n− 1
+

1

1

))

x2n

= −
∞
∑

n=1

(

1

n

(

1− 1

2
+

1

3
+ · · ·+ 1

2n− 1

))

x2n

< −
∞
∑

n=1

(

ln 2

n

)

x2n

= (ln 2) · ln(1− x2).

By changing the bases of the logarithms, the inequality in the lemma holds.

Lemma 5. The following inequality

log2(ab) > (log2 a)(log2 b)

holds whenever 0 < a < 1 < b < 2 and a + b ≥ 2.

Proof. By using b ≥ 2− a, we have the following two inequalities

log2(ab) ≥ log2(a(2− a)) = log2(1− (1− a))(1 + (1− a)) = log2(1− (1− a)2)

and

(log2 a)(log2 b) ≤ (log2 a)(log2(2− a)) = log2(1− (1− a))× log2(1 + (1− a)).
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Then by applying Lemma 4 on 1− a = x, we have

log2(1− (1− a)2) > log2(1− (1− a))× log2(1 + (1− a)).

Thus, the inequality in the lemma holds.

Remark 1. Note that Lemma 4 is now a special case of Lemma 5 by letting a = 1−x
and b = 1 + x.

Now we are ready to prove that the glue method is always asymptotically faster
than the overlap method for any choice of α.

Theorem 6. When 0 < α < 1, the exponents to in Theorem 1 and tg in Theorem 3
obey the following relation:

1 < tg < to. (15)

Proof. From Theorem 3 we have

tg = 1− log2(1− αtg) > 1.

Then

to − tg =
1

1− log2(1 + α)
− 1 + log2(1− αtg)

=
log2(1 + α) + log2(1− αtg)− log2(1 + α)× log2(1− αtg)

1− log2(1 + α)
.

Since 0 < α < 1, the denominator 1 − log2(1 + α) is positive. By Lemma 5 the
numerator is also positive. Hence to > tg.

We remark that when α >
√

2− 1 ≈ 0.41, to > 2, which means that the overlap
method is asymptotically slower than the brute-force method. Hence, a large α
(> 0.41) may not be useful in practice. Figure 2 plots the two curves for to and tg,
and Table 1 lists some of their values at different α’s.

α 0.05 0.10 0.15 0.20 0.25 0.30

to 1.08 1.16 1.25 1.36 1.47 1.61
tg 1.06 1.12 1.17 1.22 1.27 1.33

Table 1: The values of to and tg at different α’s.

4 Experiments

In this section we show a few experimental results to illustrate the running times of
the two proposed methods compared with the brute-force method, and the quality
of the resulted graphs.

Figure 3 plots the running times versus the dimension d and the number of data
points n on randomly generated points. Since the distribution of the data should
have little impact on the running times of the methods, we use randomly generated
data for this experiment. From Figure 3(a), it is clear that the running time is linear
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Figure 3: The running times for randomly generated data.

with respect to the dimension d. This is expected from the complexity analysis. In
Figure 3(b), we use α = 0.2, which corresponds to the theoretical values to = 1.36
and tg = 1.22. We use curves in the form c1n

1.36 + c2n+ c3 and c4n
1.22 + c5n+ c6 to

fit the running times of the overlap method and the glue method, respectively. The
fitted curves are also shown in Figure 3(b). It can be seen that the experimental
results match the theoretical analysis quite well.

In another experiment, we use three real-life data sets to test the quality of
the resulted kNN graphs: The FREY face video frames [Rowies and Saul, 2000],
the MNIST digit images [LeCun et al., 1998], and the PIE face database [Sim
et al., 2003]. These data sets are all image sets that are widely used in the lit-
erature in the areas of face recognition, dimensionality reduction, etc. The data
are downloaded from: FREY: http://www.cs.toronto.edu/~roweis/data.html;
MNIST: http://yann.lecun.com/exdb/mnist; PIE: http://www.cs.uiuc.edu/

homes/dengcai2/Data/FaceData.html. For MNIST, we use only the test set. Ta-
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FREY MNIST PIE

# imgs 1,965 10,000 11,554
img size 20× 28 28× 28 32× 32

Table 2: Image data sets.

ble 2 gives some characteristics of the data. The number of images is equal to n
and the size of each image, i.e., the total number of pixels for each image, is the
dimension d. The dimensions vary from about 500 to 1000.

The accuracies of the resulted graphs versus the running times are plotted
in Figure 4. Each plotted point in the figure corresponds to a choice of α (=
0.05, 0.10, 0.15, 0.20, 0.25, 0.30). The running times of the brute-force method are
also indicated. For different data sets we use different k’s for the tests. The accu-
racy of an approximate kNN graph G′ (with regard to the exact graph G) is defined
as

|E(G′) ∩ E(G)|
|E(G)| ,

where E(·) means the set of directed edges in the graph. It can be seen from Figure 4
that the larger α the more accurate the resulting graph. However, larger values of
α lead to more time-consuming runs. In addition, the glue method is much faster
than the overlap method for the same α, while the latter yields more accurate graphs
than the former. The two methods are both significantly faster than the brute-force
method when an appropriate α is chosen, and they can yield high quality graphs
even when α is small.

We also report the percentage of the distance calculations in our methods. For n
data points, the brute-force method needs to compute distances between n(n−1)/2
pairs of points. As can be seen in Table 3, our methods compute only a small
percentage of this number. The savings are even more significant when n is larger
and k is smaller, e.g., k = 5 for the data set PIE. This is one of the key factors in
making the proposed methods run significantly faster than the brute-force method.

FREY (k = 12) MNIST (k = 8) PIE (k = 5)
α overlap glue overlap glue overlap glue

0.05 6.10% 5.02% 1.20% 0.94% 0.45% 0.34%
0.10 6.59% 5.80% 1.42% 1.20% 0.59% 0.47%
0.15 7.37% 6.19% 1.73% 1.37% 0.78% 0.57%
0.20 8.34% 6.50% 2.21% 1.52% 1.05% 0.66%
0.25 9.67% 6.85% 2.92% 1.71% 1.48% 0.77%
0.30 11.54% 7.25% 4.02% 1.90% 2.06% 0.90%

Table 3: Percentages of distances calculations, for different data sets, different meth-
ods, and different α’s.
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Figure 4: Graph accuracy versus running time for different data sets. Each plotted
point corresponds to a choice of α.

5 Applications

kNN graphs have been widely used in various data mining and machine learning
applications. In this section, we discuss two scenarios where the approximate kNN
graphs resulted from the proposed methods can be an effective replacement for the
exact kNN graph.

5.1 Agglomerative Clustering

Agglomerative clustering [Ward, 1963] is a hierarchical clustering method that it-
eratively merges a pair of clusters with the lowest merge cost at present to a new
cluster. Initially each data point is a cluster, and the algorithm terminates when
the desired number of clusters are found (or when all the points belong to the single
final cluster). A straightforward implementation of the method takes O(n3) time,
since there are O(n) iterations, each of which takes O(n2) time to find the pair that
has the lowest merge cost [Shanbehzadeh and Ogunbona, 1997]. Fränti et al. [2006]
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proposed to search for the pair from only the set of edges in the kNN graph of the
clusters at each iteration, instead of from all the O(n2) pairs. With a delicate im-
plementation using a double linked list, they showed that the overall running time
of the clustering process reduces to O(τn log n), where τ is the number of nearest
neighbor updates at each iteration. Their method greatly speedups the clustering
process, while the clustering quality is not much degraded.

However, the quadratic time to create the initial kNN graph eclipses the im-
provement on the clustering time. One solution is to use an approximate kNN graph
that can be efficiently created. Virmajoki and Fränti [2004] proposed a divide-and-
conquer algorithm to create an approximate kNN graph, but their time complexity
was overestimated. Our methods also follow the common framework of divide and
conquer. However, they bring three substantial improvements over the previous
work: (1) Two methods to perform the divide step are proposed; (2) an efficient
way to compute the separating hyperplane, and (3) a detailed and rigorous analysis
on the time complexity is provided. This analysis in particular makes the proposed
methods practical, especially for high dimensional data (e.g., when d is at the mag-
nitude of hundreds or thousands).
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Figure 5: Agglomerative clustering using kNN graphs on the image data set PIE
(68 human subjects).

We perform an experiment on the data set PIE with 68 classes (see Figure 5).
Since class labels are known, we use the purity and the entropy [Zhao and Karypis,
2004] as the quality criteria. They are defined as

Purity =

q
∑

i=1

ni

n
Purity(i), where Purity(i) =

1

ni
max

j

(

nj
i

)

,

and

Entropy =

q
∑

i=1

ni

n
Entropy(i), where Entropy(i) = −

q
∑

j=1

nj
i

ni
logq

nj
i

ni
.

Here, q is the number of classes/clusters, ni is the size of class i, and nj
i is the

number of class i data that are assigned to the j-th cluster. The purity and the

14



entropy both range from 0 to 1. In general, a higher purity and/or a low entropy
means a better clustering quality. It can be seen from Figure 5 that the qualities
of the clusterings using the approximate kNN graphs are very close to that resulted
from the exact graph, with some being even much better. It is interesting to note
that the clustering results seem to have little correlation with the qualities of the
graphs governed by the value α.

5.2 Dimensionality Reduction

Many dimensionality reduction methods, e.g., locally linear embedding (LLE) [Rowies
and Saul, 2000], Laplacian eigenmaps [Belkin and Niyogi, 2003], locality preserving
projections (LPP) [He and Niyogi, 2004], and orthogonal neighborhood preserv-
ing projections (ONPP) [Kokiopoulou and Saad, 2007], compute a low dimensional
embedding of the data by preserving the local neighborhoods for each point. For
example, in LLE, a weighted adjacency matrix W is first computed to minimize the
following objective:

E(W ) =
∑

i

∥

∥

∥

∥

∥

∥

xi −
∑

xj∈N(xi)

Wijxj

∥

∥

∥

∥

∥

∥

2

where N(·) means the neighborhood of a point. Then, given the computed W , a low
dimensional embedding (yi’s) is computed such that it minimizes a similar objective:

Φ(Y ) =
∑

i

∥

∥

∥

∥

∥

∥

yi −
∑

yj∈N(xi)

Wijyj

∥

∥

∥

∥

∥

∥

2

.

As another example, in Laplacian eigenmaps, the low dimensional embedding (yi’s)
is computed so as to minimize the cost function:

Ψ(Y ) =
∑

i,j

Wij ‖yi − yj‖2 .

Here the weighted adjacency matrix W is explicitly defined as the heat kernel

Wij =

{

exp(−‖xi − xj‖2 /σ2) if xi ∈ N(xj) or xj ∈ N(xi),

0 otherwise.

Despite the nicely motivated formulations for the above approaches and the
elegant numerical linear algebraic solutions to the methods, these methods all begin
with a rather expensive computation to obtain the neighborhood graph of the data.
The methods discussed in this paper are suitable alternatives to the expensive brute-
force approach to obtain the exact kNN graph, since the approximate graphs are
accurate enough for the purpose of dimensionality reduction, while the time costs
are significantly smaller. Figures 6 and 7 illustrate two examples.

In Figure 6 are the plots of the dimensionality reduction results of LLE applied to
the data set FREY, where we used k = 12 as that in Rowies and Saul [2000, Figure
3]. Figure 6(a) shows the result when using the exact kNN graph, while Figure 6(b)
shows the result when using the approximate kNN graph by the overlap method
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with α = 0.30. It is clear that the two results are almost identical. Figures 6(c)
and 6(d) give two plots when the glue method is used. Although the embeddings
are different from Figure 6(a), they also well represent the original data manifold.
This can be seen by tracking the relative locations of the sequence of images (as
shown in 6(e)) in the low dimensional space.
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gradually change.

Figure 6: Dimensionality reduction on the data set FREY by LLE.

In Figure 7 are the plots of the dimensionality reduction results of Laplacian
eigenmaps applied to the data set MNIST, where we used k = 5. Figure 7(a) shows
the original result by using the exact kNN graph, while 7(b), 7(c) and 7(d) show the
results by using the overlap method with α = 0.30, the glue method with α = 0.15,
and the glue method with α = 0.30, respectively. The four plots look similar, and
they all show a clear clustering of the ten classes (digits from 0 to 9).
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Figure 7: Dimensionality reduction on the data set MNIST by Laplacian eigenmaps.

6 Conclusions

We have proposed two sub-quadratic time methods under the framework of divide
and conquer for computing approximate kNN graphs for high dimensional data sets.
The running times of the methods, as well as the qualities of the resulted graphs,
depend on an internal parameter that controls the overlap size of the subsets in
the divide step. Experiments show that in order to obtain a high quality graph, a
small overlap size is usually required which leads to a small exponent in the time
complexity. The resulted approximate graphs have a wide range of applications as
they can be safely used as alternatives to the exact kNN graph. We have shown two
such sample examples: in agglomerative clustering and in dimensionality reduction.
Thus, replacing the exact kNN graph construction with one produced by the meth-
ods proposed here, can significantly alleviate what currently constitutes one of the
major bottlenecks in these applications.
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M. Brito, E. Chávez, A. Quiroz, and J. Yukich. Connectivity of the mutual k-nearest
neighbor graph in clustering and outlier detection. Statistics & Probability Letters,
35:33–42, 1997.

Paul B. Callahan. Optimal parallel all-nearest-neighbors using the well-separated
pair decomposition. In Proc. 34th IEEE Symp. Foundations of Computer Science,
1993.

Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM,
42(1):67–90, 1995.

Bernard Chazelle. An improved algorithm for the fixed-radius neighbor problem.
Information Processing Letters, 16:193–198, 1983.

Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard,
Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005.

Kenneth L. Clarkson. Fast algorithms for the all nearest neighbors problem. In Proc.
24th Ann. IEEE Sympos. on the Found. Comput. Sci., pages 226–232, 1983.

Kenneth L. Clarkson. Nearest-neighbor searching and metric space dimensions.
In Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk, editors, Nearest-
Neighbor Methods in Learning and Vision: Theory and Practice. The MIT Press,
2006.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

Belur V. Dasarathy. Nearest-neighbor approaches. In Willi Klosgen, Jan M. Zytkow,
and Jan Zyt, editors, Handbook of Data Mining and Knowledge Discovery, pages
88–298. Oxford University Press, 2002.
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