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ABSTRACT
Dimension reduction techniques can be time-consuming when
the data set is large. This paper presents a multilevel frame-
work to reduce the size of the data set, prior to perform-
ing dimension reduction. The algorithm exploits nearest-
neighbor graphs. It recursively coarsens the data by finding
a maximal matching level by level. Once the coarse graph is
available, the coarsened data is projected at the lowest level
using a known linear dimensionality reduction method. To
obtain the projected data at the highest level, the same lin-
ear mapping as that of the lowest level is performed on the
original data set, and on any new test data. The methods
are illustrated on three applications: manifold mapping, face
recognition, and text mining. Experimental results indicate
that the multilevel techniques presented in this paper offer
a very appealing cost to quality ratio.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; G.2.2 [Graph Theory]: Graph algo-
rithms; H.3.3 [Information Search and Retrieval]: Re-
trieval models, Relevance feedback

General Terms
algorithms, performance

Keywords
multilevel coarsening, dimensionality reduction, nearest-neighbor
graph

1. INTRODUCTION
The goal of dimensionality reduction is to map high dimen-
sional data samples to a lower dimensional space such that

∗This work was supported by NSF grants DMS 0510131 and
DMS 0528492 and by the Minnesota Supercomputing Insti-
tute.

certain properties of the data are preserved. When the num-
ber of data samples is large, existing methods can be time-
consuming.

Several dimensionality reduction methods involve the SVD
computation. These include among many others the prin-
cipal component analysis (PCA), see, e.g., [?], the method
Locally Linear Embedding, [?], the locality preserving pro-
jections [?], and the Orthogonal Neighborhood Preserving
Projections (ONPP) [14, 16]. There were efforts made to
bypass the SVD, by using the Lanczos method [3], polyno-
mial filtering [13, 15], or semi-discrete decomposition [17].
This paper considers an alternative that does not rely on
the SVD on the whole data set.

The multilevel paradigm has been in use in many applica-
tions and was successfully used for graph partitioning (e.g.,
[11, 12]). It has also been applied to solve various combi-
natorial optimization problems, such as travelling salesman
problem [21, 22]. Inspired by its success in other domains,
we propose a multilevel framework for dimensionality reduc-
tion.

The multilevel paradigm considered here is graph-based.
When it is applied to a set of sampled points, one can use a
k-nearest-neighbor (kNN) graph of the data points. (That
is, each vertex has k outgoing edges to the k nearest neigh-
bors.)

Given a graph which captures certain information of close-
ness of the data points (e.g., a kNN graph), we can com-
pute a coarse approximation (i.e., with fewer data points)
of the data set using a maximal matching, which is widely
used in multilevel graph partitioning (e.g., [11, 12]). Then,
we project the coarsened data at the lowest level using an
already known linear method for dimensionality reduction,
e.g., Principal Component Analysis (PCA).

Since in this paper we consider linear dimensionality reduc-
tion methods, in order to refine the data set we may simply
embed the original data set into a low dimensional space
using the linear transformation from the lowest level.

The rest of this paper is organized as follows. In Section 2
we propose a multilevel framework for linear dimensional-
ity reduction. Applications to manifold mapping (unsuper-
vised learning), face recognition (supervised learning), and



text mining (information retrieval) are illustrated in Sec-
tions 3, 4, and 5, respectively. All experiments were per-
formed in sequential mode on a PC equipped with two In-
tel(R) Core(TM)2 @ 2.40GHz processors. A conclusion is
given in Section 6.

2. MULTILEVEL DIMENSIONALITY RE-
DUCTION

A multilevel algorithm typically consists of three phases: the
coarsening phase, the action phase, and the refining phase.
For multilevel dimensionality reduction, the action phase
consists of mapping the coarsened data at the lowest level
to a lower dimensional space. The multilevel paradigm in
this paper relies on a graph G = (V, E) with weighted edges.
The vertex set V contains the indices of the data entries.
Each edge (i, j) ∈ E has a weight from certain measurement
of the relation between vertex i and vertex j. When it is ap-
plied to graph partitioning or travelling salesman problem,
an original graph is usually available. In our case we use a
kNN graph of the data items.

2.1 The coarsening phase
Consider a data set of n entries represented by a matrix
X = [x1, x2, . . . , xn] ∈ R

m×n. Suppose we have obtained an
affinity graph G = (V, E) of data entries of X, where the
vertex set V are indices of data entries, and the edges in E
connect neighboring data entries.

The meaning of coarsening a graph is to find a ‘coarse’ ap-
proximation Ĝ = (V̂ , Ê) of a given graph G = (V, E) so that

|V̂ | < |V |. By recursively coarsening we obtain a hierarchy
of approximations to the original graph.

We use a technique called maximal matching for graph coars-
ening. A matching of a graph G = (V, E) is a subset of edges

Ê ⊂ E such that no edge in Ê shares an endpoint. A max-
imal matching is a matching to which no more edges can
be added and remain a matching. Algorithm 1 gives a high
level description of the algorithm to compute a maximal
matching.

Consider Algorithm 1. We do not need in (*) the closest
neighbor j of vertex i for a maximal matching. However,
the closer the data points are in each pair, the more rep-
resentative the coarse graph Ĝ is to the original graph G.
This scheme is similar to heavy edge matching (HEM) in
multilevel graph partitioning (see, e.g., [11, 12]).

In Algorithm 1, even if the graph G is connected, it is pos-
sible that we may not be able to find a matching neighbor
for a given vertex. In this case this single vertex is passed to
the coarse level without pairing as in (**). The more there
are edges in E (e.g., larger k of a kNN graph), the fewer

the edges in V̂ . The number of vertices in V̂ is at least half
of that in V (i.e., |V̂ | ≥ 0.5|V |). We use a sparse matrix
to store distances between neighboring points presented by
function d. a large k may slow down the coarsening, since
more neighbors need to visit to determine the vertex set V̂
and edge set Ê.

Note that to recursively coarsen the data, we do not need to
compute a kNN graph for each level. Each edge is associated

Algorithm 1 Graph coarsening by a maximal matching.

{Given a graph G = (V, E) with V = {1, . . . , n}, and
d : E → R. Neighboring points are connected by edges
in E. Function d measures the distances of neighboring
points.}

{Output is a coarse graph Ĝ = (V̂ , Ê), where V̂ is formed
by a maximal matching.}

V̂ ← ∅ ⊲ Maximal matching set
S ← ∅ ⊲ Set of matched vertices
for all i ∈ V do ⊲ Visit vertices in any order

if ∃j /∈ S such that (i, j) ∈ E then
j = argmin{d(i, j) : j /∈ S} ⊲ (*)

V̂ ← V̂ ∪ {{i, j}}
S ← S ∪ {i, j}

else
V̂ ← V̂ ∪ {{i}} ⊲ (**)

end if
end for
Ê ← ∅ ⊲ Edge set of the coarse graph
for all s, t ∈ V̂ do

if ∃(i, j) such that i ∈ s, j ∈ t and (i, j) ∈ E then

Ê ← Ê ∪ {(s, t)}
end if

end for

with an estimated distance between the two vertices it con-
nects. In the topmost (finest) level the actual distances are

used. Following the notation in Algorithm 1, For (a, b) ∈ Ê,
we compute

d̂(a, b) := mean{d(i, j) : i ∈ a, j ∈ b}.

Here we take the mean of distances of the fine level that best
presents the distance of the coarse level. This is different
from the standard multilevel graph partitioning (e.g., [12]),
where each edge has a weight, and the weight of an edge
of the coarse level are computed as the sum (rather than
mean) of the relevant edge weights at the fine level.

By recursively coarsening the graph, we obtain a sequence
of graphs G1, G2, . . . , Gr, where Gk = (Vk, Ek) is the coarse
graph of level k for k = 1, . . . , r, and Gr is the lowest level
graph. The corresponding data sets are denoted by matrices
Xi ∈ R

m×|Vi| for i = 1, . . . , r.

2.2 The dimensionality reduction phase
The purpose of dimensionality reduction is to remove noise
and redundancies from the data. Given a data set X =
[x1, x2, . . . , xn] ∈ R

m×n, a dimensionality reduction method
produces Y = [y1, y2, . . . , yn] ∈ R

d×n (d < m), such that Y
preserves certain features of X.

In the multilevel framework, we apply a linear dimensional-
ity reduction method to the data set Xr ∈ R

m×|Vr| of the
lowest level (rth level), and obtain Yr ∈ R

d×|Vr| (d < m).
The dimensionality reduction methods used in our experi-
ments are PCA, LPP [9, 10], and ONPP [14, 16], involving
SVD computation.

2.3 The refining phase
In the refining phase we have the reduced representation
Yr ∈ R

d×|Vr| of data Xr ∈ R
m×|Vr| of the lowest level (rth



level). The objective is to obtain a reduced representation
Y ∈ R

d×n of the data X ∈ R
m×n at the topmost level

(X = X1 and n = |V1|).

When a linear dimensionality reduction method is used,
there is a transformation matrix P that maps Xr into Yr

by Yr = PXr. Therefore, we apply the mapping P to the
original data X and obtain Y = PX in the low dimensional
space. The procedure is illustrated in Figure 1. The same
linear mapping can also be applied to any ‘out-of-sample’
test data. For example, in face recognition, the same pro-
jector is applied to a test image and to the training set of
images before a comparison is made.
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Figure 1: A sketch of the multilevel reduction.

3. APPLICATION TO MANIFOLD MAPPING
In this section we present an evaluation of our multilevel
techniques, using as the initial step three dimensionality re-
duction methods: PCA, LPP [9, 10], and ONPP [14, 16].
These dimensionality reduction methods, used as an unsu-
pervised learning process, can be applied to discover under-
lying manifold structure.
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Figure 2: Two examples of data points sampled on
3-D manifolds.

Note that both LPP and ONPP need an affinity graph for
dimensionality reduction computation. For unsupervised
learning, a kNN graph is usually used. In the multilevel
framework, we can construct a kNN graph of vertices of the
lowest level, or simply use the graph recursively coarsened
from the topmost level. In our experiments, the former op-
tion was chosen for ONPP (k = 20), and the latter was
adopted by LPP.

We used two synthetic data sets sampled in three-dimensional
space: the Swissroll and the S-curve, each with 2,000 sam-
ple points, as shown in Figure 2. These data sets, though
embedded in three-dimensional space, are often used in the
extent of two-dimensional submanifolds.
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Figure 3: Two-dimensional projections of Swissroll

using PCA, LPP, and ONPP, and those with multi-
level techniques (k = 8).
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Figure 4: Two-dimensional projections of S-curve,
using PCA, LPP, and ONPP, and those with multi-
level techniques (k = 8).

Figures 3 and 4, illustrate the two-dimensional projection
of Swissroll and S-curve data sets, respectively. They are
obtained by PCA, LPP and ONPP, and those with multi-
level techniques with the numbers of levels r = 2, 3. In the
kNN-graph construction, we set the number of the nearest
neighbors per sampled point k = 8. The result tends to
indicate that we gradually lost the cohesiveness but gained
the geodesic distance information while the number of levels
increased.



4. APPLICATION TO FACE RECOGNITION
Dimensionality reduction methods used in supervised learn-
ing (classification), use label information for the samples.
This means that each data entry is assigned a class label,
and the labels are needed to find the projection. Such meth-
ods include for example the Linear Discriminant Analysis
(LDA) [1, 6]. The methods LPP, and ONPP, when used in
supervised mode, also use class labels to construct a label
graph instead of using an affinity graph. However, the label
information seems to be partly lost or destroyed in the coars-
ening phase and for this reason, the multilevel framework is
not adequate for these methods.

Figure 5: Sample images from the ORL database.
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Figure 6: Average recognition error rate using the
ORL data set, # training samples/class t = 5.

Here, we evaluate PCA (EigenFaces) and multilevel-PCA
(multilevel EigenFaces) for face recognition. We used the
datasets ORL [20] and UMIST [7]. Both datasets have im-
ages of size 112×92. For computational efficiency the images
were cropped to size 38× 31. For measuring the recognition
performance we used a random subset of images from each
subject as training set, and the remaining as test set. For
the multilevel-PCA, the kNN graph for the training set was
constructed with k = 10 neighbors for all datasets, and then
it was coarsened using up to four levels. In order to ensure
that our results are not biased from a specific random re-
alization of the training/test set, we performed 30 different
random realizations of the training/test sets.

The ORL database contains images of 40 individuals, each
providing 10 images of different facial expressions (smil-
ing/non smiling, open/closed eyes) and facial details. Sam-
ple images of two individuals from the ORL database are
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Figure 7: CPU time for truncated SVD using the
ORL data set, # training samples/class t = 5.

shown in Figure 5. We formed the training set by a random
subset of t = 5, 6, . . . , 9 different images per subject and used
the remaining images as the test set, respectively. The aver-
age number of vertices of each of the coarsen levels is shown
in Table 1. The CPU time used for coarsening is displayed
in Table 2, and the best error rates achieved for each value
of t are presented in Table 3 along with the corresponding
dimension. Figure 6 gives a plot for several dimensions the
average error rate for t = 5 training samples per class, and
the computational savings of multilevel-PCA on computing
SVD of a coarsened (smaller) matrix of vectorized images
are shown in Figure 7.

ORL

# train. 5 6 7 8 9
level #1 200 240 280 320 360
level #2 105 125 147 166 187
level #3 56 66 77 87 100
level #4 30 36 41 46 53

UMIST

# train. 14 15 16 17 18
level #1 280 300 320 340 360
level #2 146 156 167 177 188
level #3 77 83 88 93 99
level #4 41 44 47 50 53

Table 1: Average number of vertices at all levels.

Figure 8: Sample images from the UMIST database.

The UMIST database contains images of 20 subjects with



ORL

# train. 5 6 7 8 9
to level #2 0.03 0.03 0.04 0.05 0.04
to level #3 0.01 0.01 0.02 0.02 0.01
to level #4 0.01 0.01 0.01 0.01 0.01

UMIST

# train. 14 15 16 17 18
to level #2 0.04 0.04 0.04 0.04 0.05
to level #3 0.02 0.02 0.02 0.02 0.02
to level #4 0.01 0.01 0.01 0.01 0.01

Table 2: CPU time (seconds) for graph coarsening

ORL

# train. 5 6 7 8 9

level #1
5.77 3.78 2.56 1.63 1.01
(40) (40) (65) (45) (45)

level #2
5.78 3.78 2.59 1.68 0.99
(60) (55) (65) (45) (45)

level #3
6.00 4.03 2.75 1.75 1.01
(55) (40) (50) (65) (45)

level #4
6.78 4.65 3.25 1.76 1.02
(30) (35) (30) (45) (45)

UMIST

# train. 14 15 16 17 18

level #1
2.05 1.81 1.51 1.43 1.16
(55) (50) (45) (20) (65)

level #2
2.10 1.82 1.52 1.47 1.21
(55) (55) (45) (60) (65)

level #3
2.15 1.83 1.61 1.48 1.29
(55) (55) (45) (55) (65)

level #4
2.44 1.92 1.62 1.72 1.32
(35) (45) (45) (25) (20)

Table 3: Best average recognition error rate (%).
The values in parentheses denote the optimal di-
mensions.

19 to 48 images per subject. Figure 8 shows sample images
of one individual from the UMIST database. We form the
training set by a random subset of t = 14, 15, . . . , 18 dif-
ferent images per subject and use the remaining images as
a test set. The average number of vertices of each of the
coarsen levels is shown in Table 1. The CPU time used for
coarsening is displayed in Table 2, and the best error rates
achieved for each value of t are presented in Table 3 along
with the corresponding dimension. Figure 9 gives a plot of
the average error rate for t = 14 training samples per class
for various dimensions. The computational savings of mul-
tilevel PCA on computing SVD of a coarsened matrix of
vectorized images for t = 14 are shown in Figure 10.

The experimental results show that in both datasets, multilevel-
PCA achieves recognition error rates very close to those of
PCA. Although the multilevel eigenfaces spends additional
time to perform the graph coarsening, the savings obtained
from computing the smaller SVD of the coarsened matrix,
outweigh this additional cost.

5. APPLICATION TO TEXT MINING
We illustrate the algorithm described in this paper on an
application in information retrieval by Latent Semantic In-
dexing (LSI) [4], a well-established framework for conceptual
information retrieval [2, 5].
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Figure 9: Average recognition rate using the UMIST

data set, # of training samples/class t = 14.

In the vector space model, a collection of n documents in-
dexed by m terms is represented by a sparse term-document
matrix X ∈ R

m×n. The rows and columns of X are called
term vectors and document vectors, respectively. The (i, j)
entry of X, denoted by xij , is the number of occurrences of
term i in document j, called term frequency.

A term-document matrix X ∈ R
m×n is usually normal-

ized/scaled before its usage. In the experiments we used
TF-IDF (term frequency-inverse document frequency) scal-
ing [19]. The nearest neighbor graphs are computed based
on normalized matrices. The inverse document frequency is
defined by

zi = log(n/|{j : xij > 0}|), (1)

where |{j : xij > 0}| is the number of documents with term
i occurring in them. A TF-IDF entry is defined by x̃ij =
xijzi. Finally the TF-IDF scaled matrix X̄ is obtained by
normalizing the columns to be unit vectors. More precisely,

the (i, j) entry of X̄ is x̄ij = x̃ij/
q

Pm

k=1
x̃2

kj for i = 1, . . . , m

and j = 1, . . . , n.

Query matching is the process of finding the documents most
relevant to a given query q ∈ R

m, an array of term frequen-
cies, which is also called a pseudo-document vector. A query
is also TF-IDF scaled before the matching process, resulting
in the scaled vector q̄. Here the inverse document frequencies
(IDF), defined in (1), are from the term-document matrix
X.

The vector space model measures the similarity of two vec-
tors (a document and a pseudo-document) by the cosine of
the acute angle between them. Instead of using the full vec-
tor space model, LSI approximates a given term-document
matrix by its truncated SVD, denoted by X̄ = [x̄1, x̄2, . . . , x̄n] ≈
UdΣdV T

d , where d is a certain desired rank. Working in a
lower dimensional approximation to X reduces the noise and
unravel the underlying semantic structure of the data. The
rows of Ud ∈ R

m×d are the reduced term vectors. Likewise,
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Figure 10: CPU time for truncated SVD using the
UMIST data set, # of training samples/class t = 14.

the columns of V T
d = [x̂1, x̂2, . . . , x̂n] ∈ R

d×n are used as re-
duced representations of document vectors x̄1, x̄2, . . . , x̄n ∈
R

m. Given a query q̄ ∈ R
m, it is transformed to a reduced

representation q̂ = Σ−1

d UT
d q̄ ∈ R

d in d-dimensional space.
Document xi is considered relevant to the query q if the co-
sine distance 〈q̂, x̂i〉/‖q̂‖‖x̂i‖ is larger than some pre-defined
threshold. When a relevance vector (a boolean string of size
n) is provided, the precision and recall are defined by

Precision:
DR

DT

, Recall:
DR

NR

, (2)

where DR, DT , and NR are the number of relevant doc-
uments retrieved by the process, the total number of docu-
ments retrieved, and the total number of relevant documents
in the collection, respectively.

When the term-document matrix X is large, the computa-
tion of the SVD factorization can be expensive. The multi-
level techniques described in Section 2 will find a smaller set
of document vectors, denoted by Xr ∈ R

m×nr , to represent
X ∈ R

m×n (nr <n). We then apply TF-IDF scaling to Xr

and obtain X̄r. Like the standard LSI, we compute the trun-
cated SVD of X̄r ≈ UdΣdV T

d , where d is the rank. Now the
reduced representation of X is Σ−1

d UT
d X̄ = [x̂1, x̂2, . . . , x̂n] ∈

R
d×n. Each query q ∈ R

m is transformed to a reduced rep-
resentation q̂ = Σ−1

d UT
d q̄ ∈ R

d. The similarity of q and xi

are measured by the cosine distance between q̂ and x̂i for
i = 1, . . . , n. Note that we have applied TF-IDF scaling
to the term-document matrix X and the query q to obtain
X̄ and q̄, but here the inverse document frequencies (IDF)
defined in (1) use the coarsened matrix Xr. We call the
resulting scheme multilevel-LSI.

Note that the precision and recall defined in (2) depend on
the tolerance of the similarity scores in cosine distance mea-
sure. To assess the retrieval performance, we also use the
average precision [8]. Sorting the similarity scores of query
q to documents x1, . . . , xn, we consider for i = 1, . . . , n the
first i documents with the highest scores and obtain the pre-

cision and recall

Pi = ri/i, Ri = ri/rn,

where ri is the number of relevant documents among the
first i documents. The average precision is defined by

P̄ =
1

n

n−1
X

i=0

P̂

„

i

n− 1

«

, P̂ (x) = max{Pi : x ≤ Ri}.

We used two public data sets in the experiments: Medline

and Cranfield1. The characteristics of these sets, such as
numbers of documents, terms, and queries are listed in Ta-
ble 4.

Table 4: Characteristics of the test sets.
Data set Medline Cranfield

# documents 1033 1398
# terms 7014 3763

sparsity (%) 0.74% 1.41%
# queries 30 225

avg. # rel./query 23.2 8.2

In both tests we coarsened the data down to four levels.
Compared with LSI, multilevel-LSI requires additional work
to process the graph coarsening. However, it saves time
when computing the truncated SVD of the coarsened (smaller)
term-document matrix. The CPU time used for coarsening
Medline and Cranfield data sets is shown in the second
columns of Tables 5 and 6, respectively.

Note that the average precision depends on the dimension
used. When the average precision is maximized, we say that
the corresponding dimension is optimal.

The result of experiment on Medline data set is now dis-
cussed. Figure 11 is the resulting plot of average precisions
using various dimensions for SVD (ranks of truncated SVD).
The number of documents, the optimal dimensions, and the
average precision at all levels are displayed in Table 5. Using
the optimal dimensions we obtain the precision-recall plot in
Figure 12. The savings in CPU time gained by multilevel-
LSI for computing truncated SVD are shown in Figure 13.

Table 5: Statistics of Medline data set.

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision
#1 N/A 1033 30 71.6%
#2 0.37 527 32 72.8%
#3 0.20 271 30 73.1%
#4 0.12 139 33 70.6%

Figure 14 is the resulting plot of average precisions using
various dimensions for SVD (ranks of truncated SVD) for
the Cranfield data set. The number of documents, optimal
dimensions and average precision at all levels are displayed
in Table 6. Using the optimal dimensions we obtain the
precision-recall plot in Figure 15. The savings in CPU time
gained by multilevel-LSI for computing the truncated SVD
are shown in Figure 16.

1ftp://ftp.cs.cornell.edu/pub/smart
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Figure 11: Average precision using the Medline data
set.

Table 6: Statistics of Cran data set.

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision
#1 N/A 1398 95 39.8%
#2 0.95 717 65 39.5%
#3 0.34 375 67 39.1%
#4 0.18 199 52 36.3%

Note that here the savings from the SVD computation are
not as pronounced as those obtained for face recognition.
This is probably partly due to the fact that the term-document
matrices are sparse, and in multilevel coarsening we gradu-
ally lose the the sparsity.

Relevance feedback is a common technique in text informa-
tion retrieval. The assumption is that we know in advance
that some document vectors are related to a query. Then the
query is added by the sum of these related documents, fol-
lowed by a standard text mining procedure. More precisely,
a query q is replaced by q+ bT X, where b is the boolean col-
umn vector indicating which documents are known a priori
related to query q.

We tested relevance feedback for the multilevel framework.
The experiments used the vector b defined above as the rel-
evance vector, assuming that the exact information is avail-
able. The resulting average precision plots on Medline and
Cranfield data sets are given in Figures 17 and 18, re-
spectively. These show that the multilevel-LSI still worked
nicely, but that the average precision was not as good as
that of LSI without relevance feed-back.

6. CONCLUSION
A multilevel approach was proposed for dimensionality re-
duction in data analysis. The main algorithm coarsens an
initial graph, and finds a linear projectr based on the data
set associated with the coase data. The algorithm worked
as expected for the tests we performed. It is generally much
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Figure 12: Precision-recall plot using the Medline

data set.

faster than the original SVD-based algorithms, and it yields
comparable results.
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Figure 15: Precision-recall plot using the Cranfield

data set.
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Figure 16: CPU time for truncated SVD using the
Cranfield data set.
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Figure 17: Precision-recall plot using the Medline

data set with relevance feedback.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cranfield

# dimensions

av
er

ag
e 

pr
ec

is
io

n

 

 

LSI
multilevel−LSI, r=2
multilevel−LSI, r=3
multilevel−LSI, r=4

Figure 18: Precision-recall plot using the Cranfield

data set with relevance feedback.


