
HYPERGRAPH PARTITIONING FOR SPARSE LINEAR SYSTEMS:

A CASE STUDY WITH A SIMPLE DISCONTINUOUS PDE

MASHA SOSONKINA ∗ AND YOUSEF SAAD †

Abstract. A number of challenges need to be addressed when solving sparse linear systems in
parallel. In addition to the usual difficulties in reducing communication and load imbalance, one must
partition the problem carefully at the outset to achieve good convergence of the iterative process.
Standard graph partitioners aim at balancing the number of unknowns and reducing communication
volume, based on the nonzero pattern of the matrix. As is well-known this objective is not sufficient
for realistic practical problems. This is the case for example, when solving discretized Partial Differ-
ential Equation (PDE) with discontinuous coefficients or when dealing with complex multi-physics
phenomena. It is therefore desirable that the partitioner take into account information beyond the
matrix adjacency graph. The present work shows how the flexibility of hypergraph partitioning
can be exploited to develop heuristics for incorporating numerical information in partitioning tasks.
We propose a modification of a standard hypergraph model and several weighting schemes to build
partitionings which will more likely lead to good convergence of the process. In a set of numerical
experiments we show comparisons with standard approaches, on simple two- and three-dimensional
elliptic problems with discontinuous coefficients on rectangular meshes.

Keywords:. hypergraph ; partitioning ; iterative linear system solution ; pre-
conditioning ; PDE ; discontinuity

1. Introduction. Although iterative linear system solution techniques require
relatively little effort to parallelize, achieving good performance is not an easy task.
A few of the performance issues are the way in which the matrix-vector product is
performed and the quality of the preconditioner. The structure of the sparse matrix
governs the performance of the former while the quality of the preconditioner is heavily
based on the numerical properties of the matrix, which affect the convergence behavior
of the iterative method. Both factors depend on how the sparse matrix is partitioned.

The first step in representing the pattern of a matrix with a nonsymmetric pat-
tern is often to symmetrize it, so that to obtain an undirected graph as follows. Each
equation and corresponding unknown is represented by a vertex and each nonzero
entry is represented by an edge between vertices coupled by an equation. This “sym-
metric” graph representation is widely used by a variety of graph partitioners, such
as Chaco [15] and MeTiS [16]. By attempting to minimize edge cuts, these algo-
rithms may reduce the length of the boundary part but not necessarily the number
of communications, as shown, e.g., in [13]. This could be detrimental to the parallel
overhead since establishing an extra communication is typically more expensive than
exchanging more data in the same data exchange.

Bipartite graph [13] and hypergraph [6] models have become common tools to
partition general sparse matrices. These models can represent non-symmetric matrices
and can produce non-symmetric partitions, e.g., a different partition for the rows
(equations) and columns (unknowns). Traditionally, the corresponding partitioning
techniques target minimizing communication overhead while maintaining load balance
during parallel execution of communication-intensive tasks, such as matrix-vector
multiplies, which has been studied in [6, 32]. The effect of the hypergraph partitioning

∗masha@scl.ameslab.gov. Ames Laboratory/DOE, Iowa State University, Ames, IA 50011. This
work was supported in part by Iowa State University under the contract DE-AC02-07CH11358 with
the U.S. Department of Energy and by NERSC.

†saad@cs.umn.edu. Department of Computer Science and Engineering, University of Minnesota,
200 Union Street S.E., Minneapolis, MN 55455. Work supported by DOE under grant DOE –
DE-FG-08ER25841 and by the Minnesota Supercomputer Institute.

1

on the convergence of iterative methods, however, is more difficult to understand since
this convergence is determined by the numerical properties of the preconditioned
matrix, which in turn depends in a very complex way on the partitioning. Even a
simple parallel preconditioning, Additive Schwarz without overlap, which incurs no
extra communications, may require well-conditioned local linear systems in order for
the preconditioned matrix to be well-behaved.

Although communication costs and load balancing are still important when solv-
ing linear systems, the overall performance, as measured by the actual time spent
to solve the system in parallel, may be more severely hampered by a poor quality
preconditioner than by ineffective communication in the matrix-vector product or in
the preconditioner. It is possible, for example, to lose convergence completely. Hence,
it is desirable to partition a problem so as to obtain a good quality preconditioning
This, however, is not an easy task in general.

To the best of our knowledge, only Duff et al. [11] use hypergraph partitioning
for the purpose of building effective parallel preconditioners. They first reorder the
matrix to increase the weight of the diagonal and scale the matrix. Then the fol-
lowing three steps are applied: (1) sparsify the input matrix by dropping nonzeros
of magnitude smaller than a tolerance value; (2) apply hypergraph partitioning to
the sparsified matrix; (3) construct a preconditioner corresponding to the diagonal
blocks resulting from the hypergraph partitioning. These steps are repeated for a
range of tolerance values, and at the end, the partition which maximizes the rela-
tive Frobenius norm of the preconditioner is used to partition the matrix and hence
to build the parallel preconditioner. In a parallel computing environment, the total
communication volume during the matrix-vector multiplications may be large, since
the hypergraph partitioning does not have any control on the possible communication
due to the dropped nonzeros.

Another way to target effective parallel preconditioning might be to add an ad-
ditional constraint to a hypergraph partitioning algorithm. However, as Pinar and
Hendrickson point out in [22], partitioning with the goal of optimizing some complex
objective functions cannot, in general, be done by a single partitioning. Most of the
time, the complex objective cannot be evaluated before partitioning is performed.
They suggest partitioning first for a simple objective function and then trying to
optimize the other(s) in a distinct phase. In the case of partitioning with the goal
of optimizing the preconditioner quality, combining two constraints, structural and
numerical, may render the partitions sub-optimal, such that neither constraint is
properly satisfied.

Linear systems arising from many engineering and scientific applications are be-
coming ever harder to solve by iterative methods, and the difficulty is exacerbated in
a parallel computing environment. This strongly suggests that one should attempt
to exploit whatever information is available to aid in the constructing the precondi-
tioner. So far, iterative methods have been classified into special purpose techniques
(e.g., multigrid) and general-purpose techniques (e.g. preconditioned Krylov meth-
ods). Special purpose methods utilize information from the physical problem. For
example, one can view multigrid as a method for solving a PDE defined on a mesh
instead of a method for solving a sparse linear system. In contrast, general purpose
methods rely only on the data consisting of the matrix and the right-hand side. In
essence, these techniques attempt, without always succeeding, to mimic the black-box
nature of direct solvers. As has been generally observed, general purpose solvers en-
counter more difficulties in a parallel environment than in a sequential environment.

2

In this paper, we take the viewpoint that a possible remedy to overcome the difficulty

is to exploit information on the problem in the process of partitioning.
Note that partitionings which exploit information on the physical geometry or

equations, have already been used. For example, the authors of [21], observe that a
partitioning which exploits knowledge of the problem can be vastly superior to one
obtained by the general MeTiS. While it is common to partition the domain “by-
hand” or use some knowledge of the geometry, it is harder to exploit knowledge about
the coefficients of the PDE for partitioning. In [26] one such technique was discussed.

One remaining major difficulty is that it is hard to analyze the effect a given
partitioning strategy has on the number of iterations. It is for this reason that we
consider a simple case based on a Poisson equation with discontinuities on a regular
grid. A question arises what information might help obtain a more effective parti-
tioning. In the case under consideration, we assume that the problem arises from the
discretization of an elliptic PDE, where the coefficients of the PDE are discontinuous.
Specifically, this means that the domain Ω in which the problem is set contains sub-
regions where the coefficients are smooth – but the coefficients have jumps between
these subregions. While it might be possible to automatically detect these boundaries
(e.g., by monitoring changes in matrix entries) in simple cases, this is not always easy
and the information obtained in this way may be unreliable. On the other hand this
information is available at the time of the discretization and it is easy to provide it.
For example, these interface points may be tagged at the time the geometry is set-up
and the tags can be propagated down during the discretization so that, at the end,
each coordinate which corresponds to an interface point is tagged.

2. Problems with discontinuities and solution methods. Elliptic equa-
tions with discontinuous coefficients have received a great deal of attention in the
past. A prototypical equation of this type, formulated in 2-dimensional space, is of
the form:

{

−∇ . (α(x, y)∇u) + σ(x, y)u = f(x, y) in Ω
u = 0 on ∂Ω,

(2.1)

where Ω is a rectangle and the coefficient α(x, y) is discontinuous. This is just a
diffusion equation which can, for example, model heat transfer in an inhomogeneous
medium. The important case when the coefficients α(x, y) and σ(x, y) are piecewise
constant is known as the Neutron-diffusion equation, a more complex version of which
is the well-known group diffusion equation [3]. One way to handle the group-diffusion
equation, which is really an eigenvalue problem, is to solve a succession of equations
like (2.1). For the ease of exposition, assume that α(x, y) is piecewise constant, i.e.,

α(x, y) = αk (x, y) ∈ Ωk,(2.2)

where Ωk ⊂ Ω, Ωk ∩ Ωℓ = ∅, and Ω̄ = ∪N
k=1Ω̄k. An example borrowed from the

paper [33] is shown in Fig. 2.1, where the domain is Ω = (0, 1)2, σ = 0 and α(x, y)
is a discontinuous function having the value 1,000 inside the star-shaped domain and
1 on the rest. Such problems have been studied extensively in the multigrid (MG)
literature because they cause difficulties to MG and Algebraic MG (AMG) techniques
and require a special treatment (see, for example [23, 33, 1]). An AMG coesening
is typically derived based on the notion of strong/weak coupling, which essentially
measures the relative size of the off-diagonal entries while, in [33], the location of the
internal boundary is considered explicitly.

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a(x,y)=1.0

a(x,y)=1000.0

Fig. 2.1. An elliptic problem with a star-shaped inner boundary (Example used in [33])

Once discretized, the PDE (2.1) gives rise to a linear system of equations

Ax = b,(2.3)

where A is a general sparse n × n matrix, b is the right-hand side vector, and x
is the solution vector. One can solve the linear system by a preconditioned Krylov
subspace method, see, e.g., [24] for details. The additive Schwarz method shown in
Algorithm 2.1 provides a simple and attractive parallel preconditioningoption. As
is well known, however, its convergence does not scale well, but the situation can be
remedied to some extent by allowing overlap [28] whereby each subdomain k includes a
layer of variables also owned by neighboring subdomains. The bigger the overlap, the
better the convergence in general, though this leads to a more costly preconditioning
operation. This preconditioner requires a solve for the local system which couples the
local unknowns only. The Restrictive Additive Schwarz (RAS) [5] is a better approach
in which, after the local solve, any overlapped variable is simply ignored, so the local
subdomain keeps only its own part and discards the rest.

Algorithm 2.1. Additive Schwarz in subdomain k
Update local residual rk = (b − Ax)k

Solve Akδk = rk

Update local solution xk = xk + δk

More sophisticated preconditionings may be considered. In particular, distributed
Schur Complement (dSC) techniques [25] often lead to superior convergence properties
while retaining good parallelism. In brief, the dSC techniques are more effective than
their standard Additive Schwarz counterparts because they deal with a smaller global
system which only couples local and remote unknowns from neighboring subdomains.
This solve is preceded by a communication phase, which is the same as the one used
in the matrix-vector multiply to exchange values for the boundary unknowns. For
details, see [25, 27].

3. Use of standard hypergraph partitioning model. The column-net (or
row-net) hypergraph model proposed in [6] is often used to represent sparse matrices.
In the column-net model of an n×n matrix A, the hypergraph G = (V, H) consists of
a vertex set V = {v1, . . . , vn} and the set of hyperedges, H = {h1, . . . , hn} in which
each hj is a subset of vertices. The vertex vi ∈ V corresponds to the ith row of the

4

2
3

5
6

1

4

h2 h3 h4 h5 h6h1

(a)

1

3

6 5

2

4

h1
h4

h6 h3

h5

h2

(b)

Fig. 3.1. (a) Nonzero structure of a sample matrix, (b) Associated column-net hypergraph model

matrix A. The hyperedge hj ∈ H corresponds to the jth column of A and it is equal
to the set of rows i, such that aij is nonzero, i.e., hj = {vi | aij 6= 0}.

Fig. 3.1(a) shows the structure of a sample matrix, and Fig. 3.1(b) shows the
associated column-net hypergraph model. In Fig. 3.1(b), the vertices are shown with
circles, and the hyperedges are shown as lines connecting the vertices. In the column-
net hypergraph model, weights can be associated with vertices and hyperedges. We
use wi and cj to denote the weights of vertex vi and hyperedge hj, respectively.

3.1. Hypergraph partitioning. A P -way partition of a vertex set V is a set
Π = {V1, . . . , VP } of subsets Vk of V , which are all nonempty, mutually disjoint, i.e.,
Vk ∩ Vℓ = ∅, for 1 ≤ k < ℓ ≤ P ; and collectively exhaustive, i.e., V = ∪P

k=1Vk. Given
this partitioning, the connectivity set Λj of a hyperedge hj is the set of parts in which
hj has vertices. The connectivity λj of hj is the cardinality of Λj, i.e., λj = |Λj |. A
hyperedge hj is said to be cut if λj > 1. For example, if in Fig. 3.1(b) V1 = {1, 3, 4}
and V2 = {2, 5, 6}, then the hyperedges h3, h4, and h6 have connectivity two, and
hence they are cut hyperedges, while the hyperedges h1, h2, and h5 have connectivity
one.

In the hypergraph partitioning problem, the objective is to minimize the cutsize,
which is a measure of the hyperedge cuts. Two cutsize definitions are often used:

Cλ(Π) =
∑

j∈H

cj(λj − 1) ,(3.1)

Cc(Π) =
∑

j∈H,λj>1

cj ,(3.2)

where cj is the weight assigned to hyperedge hj . These two objective functions are
widely used in the VLSI community [18] and also in the scientific computing commu-
nity (see, for example, [2, 4, 6, 29, 30, 31, 32]). The partitioning constraint is to satisfy
a balancing requirement on the part weights, where the weight of a part is the sum of
the weights of vertices in that part. A variant of this problem is the multi-constraint
hypergraph partitioning [8, 17] in which each vertex has a vector of weights associated
with it. The objective is the same as in (3.1), and the partitioning constraint is to
satisfy a balancing constraint associated with each weight. It is well known that for
the column-net hypergraph models of a matrix A, the partitioning objective function
Cλ(Π) corresponds exactly to the total communication volume (see [6, 12, 13, 14]) in
the matrix-vector multiplies with A.

5

Section 4 presents a modification of the commonly-used hypergraph model for
the linear systems arising from the discretizations of PDEs with discontinuities in
specified domain regions. Hyperedge weight schemes, both for the standard and
modified hypergraph models, are presented for treating boundary interfaces. The
goal of these schemes is to favor certain types of hyperedges during partitioning. For
the sake of exposition, the proposed techniques will be described using the column-net
model only but row-net hypergraph models can be treated similarly.

3.2. Weight schemes for problems with discontinuities. Let us distin-
guish two types of columns: Interior (denoted as M I) columns which couple only the
unknowns corresponding to the mesh points inside a subdomain Ωk (discontinuity
region), and Interface or Jump columns (denoted as MJ) which couple the unknowns
corresponding to the points lying across (or on) the interface boundary.

With this distinction of the columns, we may construct hyperedge sets HI and
HJ , which pertain to Interior and Jump columns, respectively. For example, in a
standard column-net model, the columns sets M I and MJ are essentially the same
as the hyperedge sets HI and HJ (cf. the definitions in the beginning of Section 3).
However, we may use alternative hypergraph representations to define HI and HJ

differently. In particular, we consider in Section 4 a different definition of HJ .
Weights for HI and HJ sets. To mark internal interfaces in a hypergraph rep-

resentation, weighting schemes may be exploited which give different weights for hy-
peredges in HI and HJ , such that hyperedges in HJ are assigned the smallest (say,
a unit) weight to facilitate their splitting. The weights on hj ∈ HI may be defined
using the diagonal matrix values in the jth column.

Let γj be the scaled cardinality of hj , which is the number of nodes in hj divided
by the average cardinality h̄ over all hyperedges hj :

γj = |hj |/h̄ .(3.3)

Then we may define the hyperedge weight cj as

cj =

{

1 +
⌈

|ajj | × γj

⌉

if hj ∈ HI ,
1 if hj ∈ HJ .

(3.4)

The inclusion of γj introduces a “size” factor into the weight equation (3.4). By
putting more weight on hyperedges with more nodes, it reduces their likelihood of
being split.

For a finite-difference discretization applied to (2.1), the coefficients ajj on the
main diagonal of matrix A in (2.3) are equal to the sum of the stencil coefficients
(except for coordinates associated with domain boundary points). Consider a two-
subdomain example (Ω̄+ ∪ Ω− = Ω) and assume a positive jump in α from Ω− to
Ω+. Then ajj is greater than aℓℓ for the unknowns j and ℓ corresponding to Ω+ and
Ω−, respectively. Hence, the hyperedges associated with Ω− will have smaller weights
than hyperedges from Ω+. (Note that only integer hyperedge weights are allowed in
the current hypergraph partitioning software.)

Subdomain connectivity. In parallel with the definition of the connectivity set Λj

(Section 3.1), let us introduce the internal connectivity set Kj consisting of those
subdomains Ωk that contain at least one vertex of the hyperedge hj . Also, we denote
by κj the cardinality of Kj. Then, to take into account the internal boundaries, the
hypergraph partitioning objective function (3.1) may be rewritten as

Cλ(Π) =
∑

j∈H

cj

κj

(λj − 1) .(3.5)

6

Note that, for the hyperedges from HI , κj equals one and equations (3.5) and (3.1)
are the same. Furthermore, those hyperedges that have larger internal connectivity
are more prone to being split, which supports our objective of cutting interface hyper-
edges. Thus, we may distinguish the interface hyperedges as those hyperedges with
the internal connectivity κ greater than one. Let assume that the hyperedges that
contain only vertices lying on the subdomain boundaries have κ = 1. An example
in Fig. 4.1 shows two hyperedges, hi ∈ HI and hj ∈ HJ , with κi = 1 and κj = 2,
respectively.

With the proposed weight schemes, which distinguish the ”jump” hyperedges in
their entirety, it may be difficult to control the precise location where a hyperedge
from HJ is cut. For example, the jump hyperedge may actually be cut across two
interface nodes. This appears detrimental to the iterative process and is contrary to
our partitioning focus of keeping together strongly coupled nodes in an effort to ob-
tain good convergence. Fortunately, hypergraphs provide a useful vertex aggregation
mechanism since hyperedges, by definition, may contain an arbitrary number of ver-
tices. Such a flexibility is quite helpful in this context and leads to a new hypergraph
representation described next, firstly as an idea outline, secondly as a pseudo-code.

4. Hyperedge representation of internal boundary. To facilitate the pre-
cise splitting of interface hyperedges while preserving the internal-interface bound-
aries, we will re-construct the interface hyperedge set HJ , such that the boundary
locations of a PDE with discontinuities are evidenced from the new hyperedge struc-
ture, which may be assigned distinct weights.

First, we order all the subdomains Ωk according to decreasing absolute values of
the coefficient αk related to the domain, see equation (2.2). For simplicity we assume
that ties are broken arbitrarily, although elaborate tie-breaking heuristics may help
improve the balancing requirement of the resulting hypergraph representation. In
addition, a hyperedge will be indexed by the same index j as one of its vertices which
we will call the principal vertex. For example, in the column-net model for PDEs,
hj will represent column j and the principal vertex is vj . Then, for each Ωk in the
sequence (Ω1, . . . , ΩN), we start from an interface hyperedge hj ∈ HJ to generate
new hyperedges if the following conditions hold: hj has not been considered already
from a preceding subdomain; the connectivity set Kj contains Ωk; and the principal
vertex vj /∈ Ωk. Specifically, from such a hyperedge hj ∈ HJ :

1. A new set of hyperedges is created, such that each new hyperedge contains
only one (unique) pair of vertices (vj , vj−), where vj− ∈ hj and vj− /∈ Ωk.
The smallest constant weight is assigned to each new hyperedge, which we
will also call a weak hyperedge.

2. One hyperedge h̃j is created containing vj and all those vj+ ∈ hj that satisfy
vj+ ∈ Ωk. A large weight

c̃j = 1 +
⌈

|ajj | × γ̃j

⌉

is assigned to h̃j , such that the scaling factor γ̃j is defined for the hyperedge

h̃j as in (3.3). We will call h̃j a strong hyperedge.
In the end, HJ is modified and augmented to mark possible splittings within certain
columns of MJ . The HJ modification and weight assignment is implemented in the
Split Interface Hyperedges (SIHω) procedure shown in Algorithm 4.1, an explanation
of which follows.

Let each hj ∈ HJ be attributed a sequence of tags marking the intersection of
this hyperedge with each subdomain Ωk. Specifically, for each hj ∈ HJ , we introduce

7

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

J5

J3

J1

J
I2

I1

I

h
ihj

1 ΩΩ 2

Fig. 4.1. Examples of internal connectivity for hyperedges. (The vertices are denoted only
by their indices omitting the symbol v. Interface and internal hyperedges depicted as dashed and
dash-dotted closed splines, respectively.)

a sequence tj of N integers, called tags of the hyperedge hj , such that, in accordance
with the ordering of internal subdomains, tj = (τ1

j , . . . , τN
j), where

τk
j =

1 if vj ∈ Ωk ;
0 if Ωk /∈ Kj ;

−1 if vj /∈ Ωk .
(4.1)

Then, T J is defined as a set of all such sequences. Note that the cardinality of T J is
equal to that of HJ .

SIHω considers the first nonzero tag τk′

j (line 03) from the current tj and decides

(in line 04) to modify hj if τk′

j equals -1, i.e., if vj /∈ Ωk′ . Then, for each vertex vi in
the hyperedge hj, the tag sequence ti of its corresponding hyperedge hi is examined
(line 07). A two-node (weak) hyperedge is created (line 08) only if vi is not in Ωk′ .
For this to happen, three possibilities exist (1) hi is not in HJ , i.e., ti /∈ T J , (2)
Ωk′ is not in Ki, i.e., τi

k′

= 0, and (3) vi does not belong to Ωk′ , i.e., τi
k′

6= 1.
These three choices are illustrated in Fig. 4.2(a). Otherwise, vi is added to the strong
hyperedge h̃j (line 10). A large weight is assigned (line 13) to the strong hyperedge

(which may be a simple copy of hj (line 12) if τk′

j equals 1). Note that the indices
of the weak hyperedges start after the largest index of the of the strong hyperedges
(line 01). Thus, the total number of the hyperedges in the modified set HJ is equal
to the largest obtained index of the weak hyperedges (line 15).

Algorithm 4.1. Split Interface Hyperedges with weights (SIHω)
Input: Interface hyperedges HJ and tags T J ; Matrix diagonal entries {aii}i=1,...,n.
Output: Interface hyperedges HJ (modified); Interface hyperedge weights CJ .
01. ℓ = |HJ | # Numbering of weak hyperedges.

02. Foreach hyperedge hj ∈ HJ Do:

03. Find in tj the first k′ such that τk′

j 6= 0

04. If (τk′

j == −1) Then:

05. h̃j = {vj}
06. Foreach vi ∈ hj Do:

07. If (ti /∈ T J or τi
k′

< 1) Then:

8

08. ℓ = ℓ + 1; h̃ℓ = {vj , vi}; c̃ℓ = 1
09. Else:

10. h̃j = h̃j ∪ {vi}
11. Else:

12. h̃j = hj

13. γ̃j = |h̃j |/h̄ ; c̃j = 1 +
⌈

|ajj | × γ̃j

⌉

14. EndDo

15. HJ = {h̃1, . . . , h̃ℓ} ; CJ = {c̃1, . . . , c̃ℓ}

Fig. 4.2(b) illustrates the SIHω algorithm: An interface hyperedge hj has the
internal connectivity set Kj = {Ω1, Ω2} of cardinality κj = 2. If there are only
two discontinuity regions in Ω, then the corresponding interface tag sequence tj has
two elements: tj = (τ1

j , τ2
j), where τ1

j = −1 and τ2
j = 1. Let us assume that the

hyperedges with the principal vertices j1 and j5 are not in HJ , i.e., they have no tag
sequences. Vertices j2, j3, and j4 lie across the interface and the tag sequences of the
respective hyperedges have τ1

j2
= τ1

j3
= τ1

j4
= 1. Thus, for the original hj, two weak

hyperedges, h̃ℓ1 and h̃ℓ2, and the strong hyperedge h̃j are constructed, such that

h̃ℓ1 = {j, j1}; h̃ℓ2 = {j, j5};

h̃j = {j, j2, j3, j4}.

The weights are assigned as c̃ℓ1 = c̃ℓ2 = 1 on h̃ℓ1 and h̃ℓ2 and as c̃j , calculated in

line 13 of Algorithm 4.1, on h̃j .

In summary, the objective of the new hypergraph representation is two-fold (1)
to keep hyperedges in HI together; (2) to avoid splitting interface hyperedges across
the strongly connected nodes. We have modified the interface hyperedge set HJ , such
that now, in a strong hyperedge hj ∈ HJ , all the discretization neighbor vertices of the
principal vertex vj are from the same discontinuity subdomain Ωk. This separability
of the created hyperedges allows us to weigh them by assigning large weights to
the hyperedges comprising only the nodes strongly connected in the discretization
scheme and by scaling the weights based on the number of such connections. A two-
node structure and small weight of the weak hyperedges facilitate their cutting by the
partitioner. The vertex weights remain all ones to balance the parts in terms of the
number of unknowns.

SIHω has no restrictions on the nature of internal interfaces and a type of dis-
cretized PDE, except the assumptions stated in equation (2.1). The algorithm starts
with a standard hypergraph model for square matrices (arising in PDE applications)
and a set of tags labeling the interface hyperedges. So it is applicable to a broad class
of problems with internal boundaries. It is interesting to draw parallels between SIH

and coarsening techniques in multigrid. The paper [33] discusses an interface pre-

serving coarsening whose essence is to select coarse grid points so that the interfaces

are aligned with all the coarse grids to paraphrase the author. In particular, first the
points on the interfaces are assigned to be coarse grid points, then a standard coars-
ening for the remaining points is performed. This “selective interface” coarsening was
found to be mandatory for MG to work.

Discontinuity information. It is typical to describe any existing discontinuities in
a PDE by stating which terms of the equations are discontinuous and by specifying
the location of the discontinuity region. This information may be evidenced in the
resulting matrix after the problem is discretized. For example, we may detect the

9

Ω1 Ω2 3Ω

I1

I2

I4

I3

Jhi2

hi1

i3hhj

J1

J4

J3

J2

jh~
J5

ΩΩ2 1

jh

h

l1h~

l2
~

J

(a) Three possibilities for creating weak

hyperedges (dash-dotted straight lines)

for Ω3: (1) {vj , vi1}, where the hyperedge

hi1 ∈ HI , (2) {vj , vi2}, where Ω3 /∈ Ki2 ,

and (3) {vj , vi3}, where vi3 /∈ Ω3.

(b) Illustration for interface hyperedge hj ,

principal vertex vj , and two subdomains

Ω1 and Ω2, which have been ordered ac-

cording to the coefficient relation: α1 >

α2.

Fig. 4.2. Split Interface Hyperedge (SIHω) procedure. The hyperedges are shown as closed-spline
(dashed) lines.

columns with the largest diagonal entries for the grid points in the discontinuity
subregion or the columns having both large and small off-diagonal entries for the
points lying across the discontinuity boundary. Some differencing methods modify
the number of the column (row) matrix entries for the internal boundary points [19].
Thus, in the case of regular grids and the PDE type considered here, it is possible
to derive the criterion for discriminating matrix columns from the problem statement
and the differencing method. In general, however, it is difficult to state this criterion
based solely on the matrix information, without any knowledge of the discontinuity
attributes/tags which, however, may be readily provided by the user from the mesh
information. For example, a set of tags for the interface nodes may be provided to
convey the discontinuity information into a standard hypergraph representation and
to label the interface hyperedges accordingly. The more precise this information is,
the better the resulting partitioning is likely to perform.

5. Numerical experiments. The experiments were performed on two comput-
ing platforms at NERSC1 using the PaToH [7] hypergraph partitioner, which imple-
ments partitioning sequentially and thus has some limitations on the matrix size. To
perform truly large-scale tests, a new Zoltan [9] hypergraph partitioning is already
available [10] and will be used in our future work. We have used the default choices
for most settings in PaToH partitioning except that the partitioning of superior qual-

1(1) The IBM SP RS/6000, named Seaborg (now retired), is a distributed memory computer
with 380 compute nodes with 16 processors per node. Each processor has a peak performance of 1.5
GFlops. The nodes having 16 GBytes of shared memory were used. (2) The IBM p575 POWER5
system, named Bassi, is a distributed memory computer with 111 compute nodes with 8 processors
per node. Each processor has a peak performance of 7.6 GFlops. The nodes are configured to use
20 GBytes of shared memory.

10

ity QUALITY was asked with the cost objective function Cλ(Π). Note that in PaToH
many parameter choices are based on randomized algorithms, e.g., the default for
initial partitioning parameter is a greedy algorithm starting with a randomly selected
vertex. By prescribing a particular seed for the randomized algorithms, we obtain
consistent partitioning performance from one execution to another for the the sake of
experiment comparisons.

5.1. Test problems. Consider a specific formulation of equations given in (2.1):

−
∂

∂x
(a(x, y)

∂u

∂x
) −

∂

∂y
(b(x, y)

∂u

∂y
) = 0(5.1)

on a square Ω̄ = [0, 1] × [0, 1] domain with Dirichlet boundary conditions on ∂Ω and
the interface Γ separating the domain into exterior Ω− and interior Ω+ = (0.25, 0.75)×
(0.25, 0.75). The discretization is a five-point centered finite-difference scheme on a
20 × 20 grid, excluding boundary points. Consider two cases of the variability in the
coefficients a and b: (P1) only a(x, y) varies, such that a(x, y) = 100 and b(x, y) = 1
on Ω+ and a(x, y) = b(x, y) = 1 elsewhere (Fig. 5.1(a)); (P2) both a(x, y) and b(x, y)
vary, such that a(x, y) = b(x, y) = 100 in Ω+ and a(x, y) = b(x, y) = 1 elsewhere
(Fig. 5.1(b)). Note that, in P1, the one-directional nature of the variability essentially
induces multiple interface regions within Ω+, shown as dashed lines in Fig. 5.1(a).

As a more complex test, we consider a three-dimensional version of (5.1) on a
cube Ω = [0, 1] × [0, 1] × [0, 1] with the same boundary conditions. The interface Γ
separates Ω− from Ω+ = (0.25, 0.75)× (0.25, 0.75)× (0.25, 0.75). Now we consider the
following two cases of the variability in the coefficients: (P3) only a and b vary, such
that a = b = 20 and c = 1 on Ω+ and a = b = c = 1 elsewhere; and (P4) all the three
coefficients a, b, and c have jumps, such that a = b = c = 20 in Ω+ and a = b = c = 1
elsewhere. The discretization is done on the 7-point stencil on 100 × 100 × 100 grid.

5.2. Algorithms tested. The testing has been performed using the pARMS
[20] library of accelerators and preconditioners. In particular, we used the flexible
variant of the restarted GMRES(20) accelerator [24] with the accuracy of 10−9 and
Additive Schwarz (Algorithm 2.1) preconditioner with the ARMS procedure [24] to
solve the local systems. Five inner iterations of the preconditioner were performed
for this linear system. A number of methods to build the hypergraph are compared
as to their effect on the iterative convergence. The following notation was used.
SIH denotes the unweighted hypergraph construction method: The interior (HI)

hyperedges correspond to the M I matrix columns, the interface (HJ) hyper-
edges are created by Algorithm 4.1, and the weight set C is empty.

SIHω denotes the procedure in Algorithm 4.1: The interior hyperedges are assigned
weights as in (3.4) and the interface ones have weights as shown in Algo-
rithm 4.1.

St refers to the unweighted standard column-net model as described in Section 3.
Stω refers to St with weights assigned as in equation (3.4).
B1 refers to a partitioning performed by manually assigning vertices to the processors

by exploiting the knowledge of internal boundary locations within Ω, such
that interface hyperedges may be split only across the weak connections of
points in the underlying discretization. In addition, in the subdomain Ω+,
we cut only the weak connections of descretization points as provided by
coefficients b of problem P1.

B2 refers to B1 but with an arbitrary hyperedge splitting inside Ω+.

11

1/4 3/4

1/4

3/4

x

y

1/4 3/4

1/4

3/4

x

y

b(x,y)=1

a(x,y)=100

a(x,y)=b(x,y)=1

(a) Problem P1: jump in a coefficient only

1/4 3/4

1/4

3/4

x

y

b(x,y)=100

a(x,y)=100

a(x,y)=b(x,y)=1

(b) Problem P2: jump in a and b coefficients

Fig. 5.1. 2-D test problem with discontinuity region Ω+. The points corresponding to the
matrix “jump” column set MJ are depicted as solid light-shaded thick lines, while the dashed lines
in (a) go along the direction of the large coefficient.

5.3. Results and discussion.

2-D Problem. Fig. 5.2–5.5 depict the outcomes of the hypergraph partitioning
methods as denoted in Section 5.2 Tables 5.1(top) and 5.1(bottom) show the outer
iteration numbers (column It) and solution time (column T) in seconds for 8- and
16-processor executions on Seaborg, respectively. Columns rCut present the number
of hyperedge cuts relative to the total number of hyperedges for each construction
method (Column Alg). It is remarkable that the partitioning of the hypergraph built
by the SIHω procedure leads to a convergence similar to the “ideal” one, i.e, corre-
sponding to the manual partitioning B1 shown in Fig. 5.5(a). Furthermore, if the
discontinuity region is cut across (as in B2, Fig. 5.5(b)), the convergence deterio-
rates sharply for the problem P1. SIHω has also the smallest rCut among weighted
algorithms on P1.

3-D problem. This problem is more difficult to solve. Hence, to show the com-
parative performance within a reasonable computation time, we have decreased the
values of the coefficient in Ω+ from 100 to 20, increased the maximum number of iter-
ations to 1000 while applying the preconditioner without inner iterations. Fig. 5.6–5.7
show (a) the number of outer iterations to convergence normalized by the number of
the iterations when SIHω is used, and (b) the total time spent to reach convergence
for a series of processor numbers shown in the x-axes. For P3, the variant SIHω still
performs the best: All the bars are above 1 in Fig. 5.6(a). The gains of SIHω on P3
are quite pronounced always leading to fast convergence. For P4, the weighted variant
Stω appears competitive with SIHω on some processor numbers. As in the case of
the “toy” 2D problem, this is not unexpected since, to produce balanced partitions,
all the weighted methods cut across discontinuities and result in partitions of similar
quality. On the other hand, the absence of weights (as in SIH and St) often results
in a poor convergence and solution time.

6. Conclusions. Hypergraphs were initially advocated mainly as a tool to bet-
ter optimize communications and memory usage when solving non-symmetric linear
systems on parallel platforms. We have shown that, thanks to their flexibility, hyper-
graphs provide a powerful environment to build partitionings of good intrinsic quality.
We have proposed a heuristic to construct a hypergraph guided by the knowledge of

12

Table 5.1

Convergence and hyperedge cut information for 2-D problem (5.1): (top) 8-processor and (bot-
tom) 16-processor execution.

P1 P2

Alg It T rCut It T rCut

SIH 200 .13 .26 98 .06 .36
SIHω 33 .03 .27 59 .04 .39
St 200 .12 .39 83 .06 .39
Stω 200 .13 .48 81 .06 .44
B1 29 .02 .39 36 .04 .39
B2 198 .12 .39 46 .03 .39

P1 P2

Alg It T rCut It T rCut

SIH 200 .13 .39 120 .08 .58
SIHω 39 .03 .46 86 .06 .60
St 200 .13 .61 106 .07 .61
Stω 200 .14 .71 116 .08 .70

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(a) SIH (b) SIHω

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(c) St (d) Stω

Fig. 5.2. 8-way partitioning for problem P1 using standard column-net model and its modifi-
cation SIH as in Algorithm 4.1 with and without weights

13

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(a) SIH SIHω

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(c) St (d) Stω

Fig. 5.3. 8-way partitioning for problem P2

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(a) P1 (b) P2

Fig. 5.4. 8-way partitioning standard column-net model weights assigned as in equations (3.4)

the underlying problem, such as locations of discontinuities in the physical domain and
some geometric information about the discretization of the problem. Our experiments
suggest that the strongly connected vertices, such as those within a discontinuity re-
gion with large function values, should be kept in the same part.

When it comes to partitioning a mesh, the experiments underscore the importance
of aiming for a good quality partitioning, which should take into consideration the con-
vergence behavior of the iterative solver perhaps more so than considerations related

14

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

(a) B1 (b) B2

Fig. 5.5. 8-way parts obtained with “By hand” partitioning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 16 23 32 48 52 64

N
o
r
m

a
li

z
e
d

 i
te

r
a
ti

o
n

s

Processors

3D Problem P3; 100x100x100

SIH

Stw

St

 0

 10

 20

 30

 40

 50

 60

 8 16 23 32 48 52 64

B
a
s
s
i

s
e
c
o
n

d
s

Processors

3D Problem P3; 100x100x100

SIHw

SIH

Stw

St

(a) (b)

Fig. 5.6. Performance for the 3D problem P3

to load balancing and reduced communication cost. Indeed, straightforward applica-
tions of existing hypergraph models may lead to highly ineffective iterations. For hard
problems, using matrix values for the hyperedge weight assignment in a combination
with a special treatment of matrix columns (rows) that express the discontinuity may
lead to good convergence whereas using unweighted hypergraph representations often
leads to convergence failure.

Although we have considered only elliptic PDEs defined on regular grids, there
are no restrictions on the nature of internal interfaces and on the type of PDE. The
proposed methods for hypergraph construction and weight schemes are applicable
to more complex problems with a broad class of internal boundaries. They require
only some user-provided information about the locations of the internal interface
boundaries.

REFERENCES

[1] R. E. Alcouffe, A. Brandt, J. J. E. Dendy, and J. W. Painter, The multi-grid method for
the diffusion equation with strongly discontinuous coefficients, SIAM Journal on Scientific
and Statistical Computing, 2 (1981), pp. 430–454.

[2] C. Aykanat, A. Pinar, and Ü. V. Çatalyürek, Permuting sparse rectangular matrices into
block-diagonal form, SIAM J. Sci. Comput., 25 (2004), pp. 1860–1879.

[3] G. Birkhoff and R. E. Lynch, Numerical solution of elliptic problems, SIAM, Philadelphia,
PA, 1984.

15

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 16 23 32 48 52 64

N
o
r
m

a
li

z
e
d

 i
te

r
a
ti

o
n

s

Processors

3D Problem P4; 100x100x100

SIH

Stw

St

 0

 10

 20

 30

 40

 50

 60

 70

 80

 8 16 23 32 48 52 64

B
a
s
s
i

s
e
c
o
n

d
s

Processors

3D Problem P4; 100x100x100

SIHw

SIH

Stw

St

(a) (b)

Fig. 5.7. Performance for the 3D problem P4

[4] R. H. Bisseling and W. Meesen, Communication balancing in parallel sparse matrix-vector
multiplication, Electronic Transactions on Numerical Analysis, 21 (2005), pp. 47–65.

[5] X. C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM Journal on Scientific Computing, 21 (1999), pp. 792–797.

[6] Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication., IEEE Trans. Parallel Distrib. Syst., 10 (1999),
pp. 673–693.

[7] , PaToH: A multilevel hypergraph partitioning tool, version 3.0, tech. rep., Bilkent Uni-
versity, Department of Computer Engineering, Ankara, 06533 Turkey, 1999.

[8] Ü. V. Çatalyürek and C. Aykanat, A hypergraph-partitioning approach for coarse-grain
decomposition, in Proceedings of Scientific Computing 2001 (SC2001), Denver, Colorado,
November 2001, pp. 10–16.

[9] K. Devine, E. Boman, R. Heapby, B. Hendrickson, and C. Vaughan, Zoltan data manage-
ment service for parallel dynamic applications, Computing in Science and Engg., 4 (2002),
pp. 90–97.

[10] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek, Parallel hypergraph
partitioning for scientific computing, in Proc. of 20th International Parallel and Distributed
Processing Symposium (IPDPS’06), IEEE, 2006.

[11] I. S. Duff, S. Riyavong, and M. B. van Gijzen, Parallel preconditioners based on partitioning
sparse matrices, Tech. Rep. TR/PA/04/114, CERFACS, Toulouse, France, 2004.

[12] B. Hendrickson, Graph partitioning and parallel solvers: has the emperor no clothes?, Lect.
Notes Comput. Sci., 1457 (1998), pp. 218–225.

[13] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing., Parallel
Computing, 26 (2000), pp. 1519–1534.

[14] B. Hendrickson and T. G. Kolda, Partitioning rectangular and structurally unsymmetric
sparse matrices for parallel processing, SIAM J. Sci. Comput., 21 (2000), pp. 2048–2072.

[15] B. Hendrickson and R. Leland, The Chaco user’s guide — version, 1994.
[16] G. Karypis and V. Kumar, MeTiS, unstructured graph partitioning and sparse matrix or-

dering system. version 2.0, tech. rep., University of Minnesota, Department of Computer
Science, Minneapolis, MN 55455, Aug. 1995.

[17] G. Karypis and V. Kumar, Multilevel algorithms for multi-constraint hypergraph partitioning,
Tech. Rep. 99-034, University of Minnesota, Department of Computer Science/Army HPC
Research Center, Minneapolis, MN 55455, November 1998.

[18] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley–Teubner, Chich-
ester, U.K., 1990.

[19] R. J. LeVeque and Z. L. Li, The immersed interface method for elliptic equations with discon-
tinuous coefficients and singular sources, SIAM Journal on Numerical Analysis, 31 (1994),
pp. 1019–1044.

[20] Z. Li, Y. Saad, and M. Sosonkina, pARMS: A parallel version of the algebraic recursive
multilevel solver, Numerical Linear Algebra with Applications, 10 (2003), pp. 485–509.

[21] L. Little, Z. Li, H. G. Choi, and Y. Saad, Particle partitioning strategies for the paral-
lel computation of solid-liquid flows, Computers in Math. with Applications, 43 (2002),
pp. 1591–1616.

[22] A. Pinar and B. Hendrickson, Partitioning for complex objectives, in Proceedings of the 15th

16

International Parallel and Distributed Processing Symposium, IEEE Computer Society,
2001.

[23] A. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. McCormick, ed., vol. 3
of Frontiers in Applied Mathematics, SIAM, 1987, ch. 4.

[24] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA,
2003.

[25] Y. Saad and M. Sosonkina, Distributed Schur Complement techniques for general sparse
linear systems, SIAM J. Scientific Computing, 21 (1999), pp. 1337–1356.

[26] Y. Saad and M. Sosonkina, Non-standard parallel solution strategies for distributed sparse
linear systems, in Parallel Computation: Proc. of ACPC’99, A. U. P. Zinterhof, M. Vajter-
sic, ed., Lecture Notes in Computer Science, Berlin, 1999, Springer-Verlag.

[27] Y. Saad, M. Sosonkina, and J. Zhang, Domain decomposition and multi-level type techniques
for general sparse linear systems, in Domain Decomposition Methods 10, Providence, RI,
1998, American Mathematical Society.

[28] B. Smith, P. Bjørstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, New York, 1996.

[29] B. Uçar and C. Aykanat, Encapsulating multiple communication-cost metrics in partitioning
sparse rectangular matrices for parallel matrix-vector multiplies, SIAM J. Sci. Comput.,
25 (2004), pp. 1827–1859.

[30] , Revisiting hypergraph models for sparse matrix partitioning, SIAM Rev., (accepted for
publication, 2006).

[31] , Partitioning sparse matrices for parallel preconditioned iterative methods, SIAM J. Sci.
Comput., (submitted, 2004).

[32] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel
sparse matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

[33] W. L. Wan, Interface preserving coarsening multigrid for elliptic problems with highly discon-
tinuous coefficients, Numer. Linear Algebra Appl., 7 (2000), pp. 727–741.

17

