
Multilevel Nonlinear Dimensionality Reduction for

Manifold Learning∗

Haw-ren Fang† Sophia Sakellaridi‡ Yousef Saad‡

September 14, 2009

Abstract

Nonlinear dimensionality reduction techniques for manifold learning, e.g., Isomap,
may become exceedingly expensive to carry out for large data sets. This paper explores
a multilevel framework with the goal of reducing the cost of unsupervised manifold
learning. In addition to savings in computational time, the proposed multilevel tech-
nique essentially preserves the geodesic information, and so it can potentially improve
on some manifold learning methods which do not preserve isometry. An application to
K-means clustering is also presented. Experimental results indicate that the multilevel
approach can be an appealing alternative to standard techniques.

Keywords: Manifold learning, multilevel techniques, nonlinear dimensionality reduction,
nearest-neighbor graph, eigenvalue problem

1 Introduction

Real world high dimensional data can often be represented as points or vectors in a much
lower dimensional nonlinear manifold. Examples include face databases, continuous video
images, digital voices, microarray gene expression data, and financial time series. The ob-
served dimensions is the size of the number of pixels per image, or generally the number of
numerical values per data item, and can be characterized by far fewer features.

Recently a number of algorithms have been developed to ‘learn’ the low dimensional
manifold of high dimensional data sets. Given a set of high dimensional data represented
by vectors x1, . . . , xn in R

m, the task is to represent these with low dimensional vectors
y1, . . . , yn ∈ R

d with d ≪ m, such that nearby points remain nearby, and distant points
remain distant. Linear methods of dimensionality reduction, such as the classical Princi-
pal Component Analysis (PCA) and metric Multi-Dimensional Scaling (MDS), can become

∗This work was supported by NSF grant DMS-0810938 and by the Minnesota Supercomputing Institute.
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

Email: hrfang@mcs.anl.gov
‡Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455,

USA. Email: {sakell,saad}@cs.umn.edu

1

inadequate because the meaningful low dimensional structure extracted from high dimen-
sional data is often nonlinear. Therefore, considerable research effort has been devoted to
the development of effective nonlinear methods to discover underlying manifolds of given
data sets.

Multilevel techniques, which aim at reducing the problem size and improving computa-
tional efficiency, have been successfully applied to various scientific problems, such as graph
and hypergraph partitioning, e.g., [10, 11]. On the other hand, their incorporation into
dimensionality reduction methods is currently under-explored. Inspired by their success in
other applications, we presented a graph-based multilevel scheme for linear dimensionality
reduction [15]. The goal of this paper is to expand this work by presenting a multilevel frame-
work for nonlinear dimensionality reduction. The framework of these methods relies on an
affinity graph and so it can be especially useful for affinity-graph-based manifold learning
methods.

The multilevel framework proposed in this paper consists of three phases: data coars-
ening, nonlinear dimension reduction, and data refining. To coarsen the data, we employ a
graph coarsening algorithm based on maximum independent sets. In practice, it is common
to employ a k-nearest neighbor (kNN) graph at the highest level. After this, we project
the coarsened data at the lowest level using one of several known (nonlinear) dimensionality
reduction method for manifold learning. Finally, we recursively refine the data level by level,
by solving a linear system to go from a given level to a higher level. The linear system
comes from a least squares optimization which aims to preserve the closeness of data points
between two adjacent levels.

Landmark versions of Isomap [5] and maximum variance unfolding (MVU) [26] by random
sampling have been proposed to reduce the problem size and therefore the computational
cost. The method proposed in this paper has three distinct advantages over the landmark
approach. First, maximum independent sets provide a better representation of the original
data than landmarks obtained from random sampling. Second, a kNN graph of the full data
set rather than the sampled data points, is computed. By recursive coarsening we obtain
a succession of graphs on which our refining scheme is based and this phase is independent
of the dimensionality reduction method. Third, the multilevel structure propagates the
geodesic information into the coarsened graphs and this may be beneficial to some manifold
learning algorithms which do not preserve isometry.

In this paper we consider three well-known manifold learning algorithms: Isomap [22],
Locally Linear Embedding (LLE) [14, 17], and Laplacian eigenmaps [2], which are represen-
tative in manifold learning [18]. Note that our multilevel framework is not limited to these
methods. It can be applied to virtually all affinity-graph-based manifold learning methods,
such as maximum variance unfolding (MVU) [27], Hessian LLE [6], conformal Isomap [5],
incremental Isomap [13], diffusion maps [4, 12], conformal eigenmaps [19], and minimum
volume embedding [20].

The rest of this paper is organized as follows. Section 2 reviews the three manifold
learning algorithms, namely Isomap and LLE, and Laplacian eigenmaps. Section 3 presents
our multilevel nonlinear dimensionality reduction framework. An application to clustering,
the multilevel K-means algorithm, is discussed in Section 4. Sections 5 and 6 report on
some results of manifold learning experiments and clustering experiments, respectively. All
experiments were performed in sequential mode on a PC equipped with two dual-core AMD

2

Opteron(tm) 2214 @ 2.2GHz processors, using our Matlab implementation. A conclusion is
given in Section 7.

2 Manifold Learning

We say that a given open set Ψ ∈ R
m in m-dimensional Euclidean space resides in a lower

d-dimensional manifold (typically d ≪ m), if there is a continuously differential function
f : Ω→ R

m on an open domain Ω ∈ R
d, such that f(Ω) = Ψ. The parameterized manifold

Ψ = f(Ω) is called regular, if the Jacobian matrix J(y) of f(y) has full rank for all y ∈ Ω,
and f(y) does not self-intersect; i.e., yi 6= yj implies f(yi) 6= f(yj). We call the mapping
f isometric, if it preserves the Euclidean distances between nearby points. In other words,
‖f(y+p) − f(y)‖2 ≈ ‖p‖2 for y, y+p ∈ Ω and small ‖p‖2. Formally, ‖J(y)p‖2 = ‖p‖2 for
y ∈ Ω and p ∈ R

d, which means that the singular values of J(y) are all one, or equivalently,
J(y) consists of orthogonal columns for y ∈ Ω.

Manifold learning methods attempt to find a function f that maps points in Ω ∈ R
m into

points of a (much) lower dimension R
d. In practice, we often have a discrete and possibly

noisy sampled data x1, . . . , xn ∈ R
m of Ψ, and the objective is to find the corresponding

low dimensional embedding y1, . . . , yn ∈ R
d. The goal of the mapping is to preserve the

closeness of nearby points, for which an affinity graph G = (V, E), normally a kNN graph,
is employed.

In this paper, we use matrices X = [x1, . . . , xn] ∈ R
m×n and Y = [y1, . . . , yn] ∈ R

d×n

(d < n) to denote the original high dimensional data and the mapped low dimensional data,
respectively. The column vector of ones is denoted by e. We also use integers 1, . . . , n to
denote the vertices of the affinity graph G = (V, E), i.e., V = {1, . . . , n}.

2.1 Isomap

Isomap [22] is a nonlinear generalization of the linear multidimensional scaling (MDS). It re-
places the Euclidean distances in MDS by the geodesic distances approximated by an affinity
graph G = (V, E), whose vertices 1, . . . , n in V correspond to the input data x1, . . . , xn ∈ R

m,
and edges in E define the closeness of them. The length of the shortest path between vertices
xi and xj , denoted by d̃ij , is the approximate geodesic distance between them.

The algorithm can be summarized as follows. It starts by constructing an affinity graph,
typically a kNN graph for the data. With this, the all-pair shortest path problem is solved
and all the squared approximate geodesic distances d̃2

ij are saved in a symmetric matrix

D̃ ∈ R
n×n. The next step is to compute the Grammian matrix B̃ = −1

2
JD̃J ∈ R

n×n, where
J = I − 1

n
eeT ∈ R

n×n with I ∈ R
n×n the identity matrix and e ∈ R

n a column vector of
ones. Then Isomap maps X = [x1, . . . , xn] ∈ R

m×n nonlinearly to Y = [y1, . . . , yn] ∈ R
d×n

by minimizing ‖B̃−Y T Y ‖F . To be precise, denote by λi ∈ R and vi ∈ R
n the ith eigenvalue

and eigenvector of B̃ in decreasing order. Let Σd ∈ R
d×d be the diagonal matrix formed by

λ1, . . . , λd, and the columns of Vd ∈ R
n×d be v1, . . . , vd. The mapped low dimensional data

is Y = Σ
1/2
d V T

d ∈ R
d×n.

The relation between the metric MDS and Isomap is worth noting. The metric MDS uses
a distance matrix D whose (i, j) entry is ‖xi − xj‖

2
2. Without loss of generality, we assume

3

the inputs are translated so that the centroid is at origin, i.e.,
∑n

i=1 xi = 0. Then the (i, j)
entry of the Grammian matrix B = −1

2
JDJ is xT

i xj , i.e., B = XT X. The linear mapping
Y = [y1, . . . , yn] ∈ R

d×n is obtained from minimizing ‖B − Y T Y ‖F . Alternatively, Isomap

minimizes ‖B̃ − Y T Y ‖F to obtain the low dimensional data Y ∈ R
d×n, where B̃ = −1

2
JD̃J ,

with D̃ formed by the squared approximate geodesic distances rather than the squared
Euclidean distances in MDS.

2.2 Locally Linear Embedding

Locally linear embedding (LLE) [14, 17] maps the high dimensional input data x1, . . . , xn ∈
R

m to y1, . . . , yn ∈ R
d in a lower dimensional space (i.e., d < n) by three steps.

First, a kNN graph is constructed. Second, the reconstruction weights W = [wij] ∈ R
n×n

are obtained by minimizing the cost function:

E(W) =
n∑

i=1

‖xi −
n∑

j=1

wijxj‖
2
2, (1)

subject to that wij = 0 if xj is not one of k nearest neighbors of xi, and
∑n

j=1 wij = 1

for i = 1, . . . , n. Minimizing ‖xi −
∑n

j=1 wijxj‖
2
2 in (1) requires solving a constrained least

squares problem for each i = 1, . . . , n.
Finally, the high dimensional data X = [x1, . . . , xn] ∈ R

m×n is mapped to the low
dimensional data Y = [y1, . . . , yn] ∈ R

d×n by minimizing the embedding cost function:

Φ(Y) =
n∑

i=1

‖yi −
n∑

j=1

wijyj‖
2
2 = ‖Y − Y W T‖2F = trace[Y (I −W)T (I −W)Y T]. (2)

Two constraints are added for the problem to be well-posed. First, it is required that the
projected data be centered, i.e.,

∑n
i=1 yi = 0. Second, the mapped data, subject to scaling,

must have unit covariance, i.e.,
∑n

i=1 yiy
T
i = Y Y T = I.

Let M = (I−W)T (I−W). Then Me = 0, where e is the column vector of ones. Therefore,
e is a eigenvector of M associated with the smallest eigenvector 0. Other eigenvectors v satisfy
vT e = 0. The embedding is formed by the d right singular vectors of I −W corresponding
to the second to the (d+1)st singular values in increasing order.

2.3 Laplacian Eigenmaps

In Laplacian eigenmaps, an affinity graph of X = [x1, . . . , xn] ∈ R
m×n is also constructed.

The low dimensional embedding Y = [y1, . . . , yn] ∈ R
d×n is the minimizer of the cost function:

Ψ(Y) =
∑

i,j

wij‖yi − yj‖
2
2 = 2 trace(Y (D −W)Y T), (3)

where W = [wij] is a symmetric weight matrix, D is a diagonal matrix with dii =
∑n

j=1 wij.
The weights can be simple-minded: wij = 1 if xi and xj are neighbors defined by the

affinity graph, and otherwise wij = 0. Alternatively, we may use the heat kernel:

wij = exp(−‖xi − xj‖
2
2/σ

2) (4)

4

for each pair of neighboring points xi, xj, where σ > 0 is a preset parameter. Setting σ =∞
in (4), we obtain the simple-minded weighting method.

To make the minimization of (3) well-posed, the constraint Y DY T = I is imposed. The
problem is transformed to solving the generalized eigenvalue problem (D − W)z = λDz,
whose d generalized eigenvectors corresponding to the second to the (d+1)st eigenvalues
form Y . The bottom generalized eigenvector e associated with eigenvalue 0 is ignored.

2.4 Discussion

Some characteristics of the methods just described are now summarized; see [18]. First, all
algorithms first construct an affinity graph of the input data, typically a kNN graph. Isomap,
and Laplacian eigenmaps require that the affinity graph be undirected, while LLE normally
employs a kNN graph without symmetrization (i.e., still a directed graph). Second, Isomap
which makes an implicit assumption of isometry of the manifold mapping, aims to preserve
geodesic distances. On the other hand, LLE and Laplacian eigenmaps are designed to pre-
serve the closeness of nearby points, and therefore not isometric. Third, LLE and Laplacian
eigenmaps are relatively inexpensive. They compute the eigenvalues and generalized eigen-
values of sparse matrices, respectively. Isomap is more expensive since it begins by solving an
all-pair shortest path problem and then computes eigenvalues of a dense Grammian matrix.
These properties will be discussed again later in the framework of our multilevel technique.

3 Multilevel Nonlinear Dimensionality Reduction

This section presents our multilevel framework for nonlinear dimensionality reduction for
manifold learning. This approach consists of three phases: data coarsening, nonlinear di-
mension reduction, and data refining. Figure 1 provides an illustration. In a nutshell, a
few levels of coarsening are performed leading to a sequence of smaller and smaller graphs.
The analysis of the data is done at the lowest level using a standard dimension reduction
technique such as Isomap, LLE, or Laplacian eigenmaps. Then an ‘uncoarsening’ step of
this low dimensional data is performed backing up to the highest level. Details are provided
next.

3.1 The Coarsening Phase

Coarsening a graph G = (V, E) means finding a ‘coarse’ approximation Ĝ = (V̂ , Ê) that

represents G = (V, E), where |V̂ | < |V |. By recursively coarsening we obtain a succession of
smaller graphs which approximate the original graph G.

For graph coarsening steps we used maximum independent sets, which have been in use
for multilevel graph partitioning [1, 3]. Connectivity of an affinity graph is important to
many manifold learning algorithms but coarsening by maximum independent sets does not
guarantee that the coarse graph is connected. However, Algorithm 1 visits the vertices in a
special order to build the maximum independent set, so that it preserves the connectivity of
the graph in the coarsening stage. This is now explained.

Consider the steps of Algorithm 1 to compute the coarse graph Ĝ = (V̂ , Ê). We claim

that for each vertex k added to V̂ , other than the very first element k0 added to S, there

5

●

● ●
●

●

●.
.
.
.

. . .
.

.
.

.
.

...
. .

. .

.

●

● ●
●

●

●.
.
.
.

. . .
.

.
.

.
.

...
. .

. .

.

●

● ●
●

●

●.
.
.
.

. . .
.

.
.

.
.

...
. .

. .

.

●

● ●
●

●

●.
.
.
.

. . .
.

.
.

.
.

...
. .

. .

.

●

● ●
●

●

●.
.
.
.

. . .
.

.
.

.
.

...
. .

. .

.

Coarsen

Coarsen

Project

Graph
n

mX

Last Level

dY

Expand

Yi

n L

Y

n

Expand

Xm d

d

n L

r
r

Figure 1: A sketch of the multilevel reduction.

exists a path consisting of edges in Ê linking vertices k0 and k. We now prove our claim by
induction. All vertices in V̂ are from S in (*) and added in (**). Each element k ever in S,
except the very first k0 in (†), is added to S in (††), where there exist (i, j), (j, k) ∈ E with

i already in V̂ . Since there is a path i → j → k in the fine graph, if k is added into V̂ in
some later iteration, then there will be an edge (i, k) ∈ Ê in the coarse graph as instructed
by the bottom part of the algorithm. Assuming that previous vertices added to V̂ satisfy
our claim, there exists a path consisting of edges in Ê linking k0 and i, unless i = k0. Since
(i, k) ∈ Ē, k0 also links to k via a path in the coarse graph. This proves our claim by

induction. Therefore, the coarse graph Ĝ = (V̂ , Ê) is guaranteed to be connected under the
condition that the original graph is.

Algorithm 1 provides an affinity graph Ĝ = (V̂ , Ê) of the coarse level. Therefore, it is
not necessary to compute a kNN graph for the graphs obtained at each level. In addition, we
need the distances between nearby points in the coarse graph in the following two situations.
First, some manifold learning algorithms, such as Isomap, need distances between nearby
points to compute the mapping. Second, the multilevel refining stage, to be described later,
will require the edge weights, and some weighting schemes, such as heat kernel, depend on
the distances between nearby points.

We use δ and δ̂ to denote the distances at the fine and coarse levels, respectively. Given
(i, j) ∈ Ê, one can simply use the actual distance δ̂(xi, xj) = ‖xi − xj‖2 for the coarse level.
Alternatively, we can define

δ̂(xi, xj) = min
(i,k),(k,j)∈E

δ(xi, xk) + δ(xk, xj). (5)

Then distance computations are avoided at the coarse level. More importantly, if we compute
distances by (5) at all levels, the computed distances indeed approximate geodesic distances.
Recall that the goal of manifold learning is to unfold the underlying structure of a given data
set into a lower dimensional space. Therefore, geodesic distances appear more useful than

6

Input: A connected undirected graph G = (V, E) with V = {1, . . . , n}.

Output: The coarsened graph Ĝ = (V̂ , Ê).

V̂ ← ∅ ⊲ maximum independent set
Û ← ∅ ⊲ complement set of V̂
Randomly pick k0 ∈ V ; S ← {k0}. ⊲ (†)
repeat

Randomly pick i ∈ S; S ← S \ {i}. ⊲ (*)

if i /∈ Û ∪ V̂ then
V̂ ← V̂ ∪ {i} ⊲ (**)

for all (i, j) ∈ E, j /∈ Û do

Û ← Û ∪ {j}
for all (j, k) ∈ E do

if k /∈ Û ∪ V̂ then
S ← S ∪ {k} ⊲ (††)

end if
end for

end for
end if

until S = ∅
Ê ← ∅ ⊲ edge set of Ĝ
for all i, k ∈ V̂ do

if ∃j such that (i, j), (j, k) ∈ E then

Ê ← Ê ∪ {(i, k)}
end if

end for
Algorithm 1: Graph coarsening by a maximum independent set.

actual distances to discover the nonlinear manifold. This is especially important to Isomap
which aims at preserving isometry.

By recursively coarsening the graph, we obtain a succession of graphs G1, G2, . . . , Gr,
where Gi = (Vi, Ei) is the coarse graph of level i for i = 1, . . . , r, and Gr is the lowest level
graph. The corresponding data sets are denoted by matrices Xi ∈ R

m×|Vi| for i = 1, . . . , r.

3.2 The Dimension Reduction Phase

Given a data set X = [x1, x2, . . . , xn] ∈ R
m×n, a dimensionality reduction algorithm produces

Y = [y1, y2, . . . , yn] ∈ R
d×n (d < m) such that Y preserves certain features of X. In our

multilevel framework, presented in Figure 1, we apply a dimensionality reduction method
to the data set Xr ∈ R

m×|Vr| of the lowest level (rth level), and obtain a set Yr ∈ R
d×|Vr|

(d < m). The dimensionality reduction methods considered for this task are affinity-graph-
based, such as Isomap, LLE, and Laplacian eigenmaps, where the graph from the multilevel
framework is used. Recall that it is not necessary to build a kNN graph at the lowest level.

Note that Isomap and Laplacian eigenmaps use an undirected affinity graph (i.e., applying
symmetrization to a kNN graph), whereas LLE uses a directed affinity graph (i.e., a kNN

7

graph without symmetrization). In our multilevel framework the affinity graph is undirected,
regardless of the dimensionality reduction method applied at the bottom level.

3.3 The Refining Phase

The objective of the refining phase is to obtain a reduced representation Y ∈ R
d×n of the data

X ∈ R
m×n, where n = |V1|, at the topmost level, starting from the reduced representation

Yr ∈ R
d×|Vr | of data Xr ∈ R

m×|Vr | of the lowest level (rth level).
We refine the data level by level in the low dimensional space as follows. We denote by

G = (V, E) and Ĝ = (V̂ , Ê) the two graphs of the kth and (k+1)st levels, respectively.
For each level k = r−1, r−2, . . . , 1, we recursively build the reduced representation Y of
the kth level from Ŷ of the (k+1)st level in a low dimensional space, by solving a least
squares problem which minimizes the sum of squared distances between data points in the
low dimensional space:

E =
∑

i,j∈V

wij‖yi − yj‖
2
2, (6)

where W = [wij] is a symmetric weight matrix; each entry wij is nonzero only if the vertices
i, j are adjacent (i.e., connected by an edge). The closer the vertices, the heavier the weight.

Yet not specified are the weights between nearby data points. We adopt the two weighting
schemes used in Laplacian eigenmaps [2]. One is the heat kernel, wij = e−δ(xi,xj)

2/σ2

for some
scalar σ > 0. The distance function δ(xi, xj) between xi and xj can be the Euclidean distance
‖xi − xj‖2 as that in (4). With our multilevel framework we use the approximate geodesic
distance (5) across all levels, since this is a more faithful distance measure for the underlying
manifold of the given data. The other scheme, obtained when σ =∞, is the ‘simple-minded’
weighting, in which wij = 1 for all adjacent vertices.

We denote the vertex set of the coarse level by V̂ ⊂ V , and its complement by Û = V \ V̂ .

Therefore Û ∪ V̂ = V and Û ∩ V̂ = ∅. Since the weights are symmetric, we can rewrite (6)
as

E =
∑

i∈bU

∑

j∈bU

wij‖yi − yj‖
2
2 +

∑

i∈bV

∑

j∈bV

wij‖yi − yj‖
2
2 + 2

∑

i∈bU

∑

j∈bV

wij‖yi − yj‖
2
2. (7)

The first term of (7) can be written as

∑

i∈bU

∑

j∈bU

wij‖yi − yj‖
2
2 = 2 trace[Y1(D1 −W1)Y

T
1], (8)

where Y1 ∈ R
d×|bU | includes the points to be determined in Y , W1 ∈ R

|bU |×|bU | is the weight
matrix between all points in Y1, and D1 ∈ R

|bU |×|bU | is the diagonal matrix whose entries are
the row/column sums of W1.

The second term of (7) is a constant,

∑

i∈bV

∑

j∈bV

wij‖yi − yj‖
2
2 = 2 trace[Y2(D2 −W2)Y

T
2] = Const1, (9)

since it depends only on points in Y2 ∈ R
d×|bV | that have been already determined at the

coarse level. The matrices D2 and W2 in (9) are defined similarly to D1 and W1 in (8).

8

The third term of (7), after some algebra, can be written as

2
∑

i∈bU

∑

j∈bV

wij‖yi − yj‖
2
2 = 2

∑

i∈bU

∑

j∈bV

wijy
T
i yi − 4

∑

i∈bU

∑

j∈bV

wijy
T
i yj + 2

∑

i∈bU

∑

j∈bV

wijy
T
j yj

= 2 trace[Y1D12Y
T
1]− 4 trace[Y1W12Y

T
2] + Const2, (10)

where W12 ∈ R
|bU |×|bV | is the weight matrix between the points to be determined (i.e., indexed

by Û) and those already determined (i.e., indexed by V̂), D12 ∈ R
|bU |×|bU| is the diagonal

matrix whose entries are the column sums of W12.
Putting these expressions (8), (9), and (10) together back into (7), we obtain a quadratic

function:
E = 2 trace[Y1(D1 −W1 + D12)Y

T
1]− 4 trace[Y2W

T
12Y

T
1] + Const. (11)

To minimize E, we set the partial derivatives of (11) to zero, and obtain

Y1(L1 + D12) = Y2W
T
12, (12)

where L1 = D1 −W1 ∈ R
|bU |×|bU | is the Laplacian matrix of the points to be determined.

Two observations deserve noting. First, L1 is symmetric and diagonally dominant with
a positive diagonal. By the Gershgorin circle theorem, L1 is positive semidefinite. It also
has the smallest eigenvalue 0 associated with eigenvector e, the column vector of ones.
D12 is diagonal with nonnegative entries. Therefore, the objective function (11) is convex,
and Y1 is the minimizer if and only if (12) holds. Second, our data coarsening method is
based on maximum independent sets, and we refine the mapping level by level. Hence each
undetermined vertex i ∈ Û has at least one determined neighbor j ∈ V̂ associated with a
positive weight wij > 0. So D12 has a positive diagonal. Recall that L1 is symmetric positive
semidefinite. By a theorem of Weyl [21, Corollary 4.9], stated below, L1 + D12 is positive
definite and therefore nonsingular. Thus, the solution to the linear system (12) is unique,
and so is the minimizer of (11).

Theorem 1 (Weyl) Let A, B be two n×n Hermitian matrices and λk(A), λk(B), λk(A+B)
be the eigenvalues of A, B, and A + B arranged in increasing order for k = 1, . . . , n. Then
for k = 1, . . . , n, we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B).

Putting the points as columns of Y1 (i.e., indexed by Û) and those already determined

as columns of Y2 (i.e., indexed by V̂) together, we obtain the reduced representation of the

finer level (i.e., vertices indexed by Û ∪ V̂). By recursively refining the data this way, we
obtain a reduced representation of the original data.

4 Application to Clustering

Given set of points X = [x1, x2, . . . , xn] in Euclidean space, the objective of clustering is
to partition it into a certain number of subsets, called clusters, which are as distinct as

9

possible. The K-means algorithm, as one of the best-known clustering methods available,
(locally) minimizes the quantization error:

E(s, w) =
n∑

i

‖xi − c(s(i))‖22, (13)

where s(i) is the index of the cluster to which xi belongs, and c(j) is the prototype, e.g., the
centroid of cluster j.

When the clustering s is fixed, the minimizer of (13) in terms of c is when c(j) is the
centroid of the data entries in cluster j. On the other hand, if c is fixed, the minimizer of
(13) in terms of s is reached when s(i) is the cluster index of the closest prototype to xi.
K-means iteratively minimizes E(s, c) in terms of s and c, until the value of E(s, c) cannot
be further reduced. For details, see, e.g., [9, chapter 14].

The main drawback of the K-means clustering is that it is sensitive to initialization.
Random initialization could yield poor results in extreme cases, which may be avoided by a
structured initialization scheme utilizing our multilevel technique. The procedure is sketched
next.

We first recursively apply the graph coarsening method in Algorithm 1, and obtain a
succession of graphs Gi = (Vi, Ei) for i = 1, . . . , r, where V1 = {1, . . . , n} is the set of indices
of the given data x1, . . . , xn. Then we cluster the data points at the bottom level by the
K-means algorithm, which may be initialized randomly. For each level i = r−1, r−2, . . . , 1,
we still do the K-means clustering, initialized by the clustering centroids at (i+1)st level.

For high dimensional data, it is useful to remove redundancy and noise of the data by
dimensionality reduction techniques. In our dimensionality reduction framework presented
in Figure 1, we have a succession of sets of low dimensional points Yr, Yr−1, . . . , Y1, to which
we apply the K-means algorithm sequentially. The cluster centroids at level i+1 are used to
initialize the K-means clustering at level i for i = r−1, r−2, . . . , 1. At the bottom level r we
may use random initialization. The pseudocode is given in Algorithm 2.

{Given X = [x1, · · · , xn] ∈ R
m×n, partition it into K clusters.}

Obtain Y1, Y2, . . . , Yr by multilevel dimensionality reduction. ⊲ Figure 1
Apply the K-means clustering, initialized randomly, to bottom level points Yr.
for i = r−1, . . . , 1 do

Apply K-means clustering to points in Yi, initialized by the K centroids at level i+1.
end for

Algorithm 2: Multilevel K-means clustering with dimensionality reduction.

5 Manifold Learning Experiments

In this section we illustrate the application of the proposed multilevel manifold learning
scheme to various data sets. We use the three nonlinear dimensionality reduction methods,
Isomap [22], LLE [17], and Laplacian eigenmaps [2], and the versions of the multilevel al-
gorithms which incorporate these techniques at the lowest level as described earlier. The

10

Floyd-Warshall algorithm was utilized to solve the all-pairs shortest path problem [7, 25]
which arises in Isomap and multilevel-Isomap.

Section 5.1 describes the embedding evaluation metrics used in our experiments. The
outputs of two sampled synthetic data sets, Swissroll and S-curve, are displayed in Sec-
tion 5.2. Sections 5.3, 5.4 and 5.5 present the results of experiments on three data sets,
Sculpture images, Frey Face video frames, and Teapot images, respectively.

Since Algorithm 1 for coarsening the data is randomized, we report the average numbers
from 100 random runs for each data set, each method, and each level r = 2, 3, 4 in Tables 1–
3, which display the average number of images at each coarsening level, and the average
CPU time used for graph coarsening, processing for dimensionality reduction, and data
refining. For all methods, processing time includes the time used for eigen-computation.
For Isomap and multilevel-Isomap, processing time also includes the time to compute the
geodesic distances. For LLE, it includes the time to obtain the reconstruction weights. In
the embedding quality measurement plots in Figures 7, 9, and 11, we used 50 random runs
for each data set, each method, and each level r = 2, 3, 4 and took the average.

We may ‘fix’ Algorithm 1 (i.e., without randomization) by visiting the vertices in the
order in which the data items are listed. By doing so the manifold mappings in Figures 3–6,
8, and 10 were obtained.

5.1 Embedding Evaluation

In order to compare the quality of the nonlinearly mapped data, we adopt the embedding
evaluation metrics, the trustworthiness and continuity of the proximity relationships of data
entries [23, 24].

Let x1, . . . , xn be the points in the high dimensional space, and y1, . . . , yn be the mapped
points in the low dimensional space. Denote by r(i, j) the rank of xj in the ordering according
to the distance from xi. The longest vertex xj from xi has r(i, j) = 1, and the shortest
vertex xj from xi has r(i, j) = n−1. Likewise, denote by r̂(i, j) the rank of yj in the ordering
according to the distance from yi. The trustworthiness is defined by

T (p) =
2

np(2n− 3p− 1)

n∑

i=1

∑

j∈Up(i)

(r(i, j)− p),

where Up(i) contains the indices of p nearest neighbors of yi in the low dimensional space.
The continuity is defined by

C(p) =
2

np(2n− 3p− 1)

n∑

i=1

∑

j∈Vp(i)

(r̂(i, j)− p),

where Vp(i) contains the indices of p nearest neighbors of xi in the high dimensional space.
The higher the trustworthiness or continuity, the better the performance. Both T (p) and

C(p) are bounded above by 1. The upper bound 1 is reached if and only if Up(i) = Vp(i)
for i = 1, . . . , n, which means that the p nearest neighbors for each data entry in the high
dimensional space coincide with those in the low dimensional space.

11

We also measure the mapping quality by the harmonic mean of the trustworthiness and
continuity, which we call H-score:

H(p) =
2 T (p)C(p)

T (p) + C(p)
.

5.2 Synthetic Data

We used two synthetic data sets sampled in three-dimensional space: the Swissroll and
the S-curve, each with 2,000 sample points, as shown in Figure 2. These data sets, though
embedded in three-dimensional space, reside on two-dimensional manifolds.

−10 0 10 20 0

20
−10

0

10

Swissroll

−1 0 1 0
5−1

0

1

2

3

S−curve

Figure 2: Two examples of data points sampled on 3-D manifolds.

Figures 3–5 illustrate the two-dimensional projections of Swissroll and S-curve data
sets using the embedding methods Isomap, LLE, Laplacian eigenmaps, and those with multi-
level techniques with the number of levels r = 2, 3, 4. In the kNN graph construction, we set
to k = 8 the number of nearest neighbors per sampled point. In each graph coarsening step,
the vertices were visited in the order in which the data items are listed. For data refining and
also for Laplacian eigenmaps, we used the simple-minded weighting scheme. For Swissroll,
the number of points at each of the four levels is 2,000, 351, 113, and 38, respectively. For
S-curve, the numbers of points at four levels are 2,000, 353, 110, and 34, respectively. The
result tends to indicate that the cohesiveness is pretty much kept while the number of levels
is increased.

5.3 Sculpture Face Images

The Sculpture Face data set [22]1 includes 698 images of size 64-by-64 in grayscale of
a sculpture face rendered with different poses and lighting directions. Within the 4,096-
dimensional input space, all of the images lie on an intrinsically three-dimensional manifold,
that can be parameterized by three variables: left-right pose, up-down pose, and the lighting
direction.

1http://isomap.stanford.edu/datasets.html

12

−40 −20 0 20 40

−10

−5

0

5

10

Isomap, k=8, n=2000

−10 0 10 20

−6

−4

−2

0

2

4

6

8
multilevel−Isomap, r=2, n=351

−10 −5 0 5 10
−4

−2

0

2

4
multilevel−Isomap, r=3, n=113

−5 0 5

−2

−1

0

1

2

multilevel−Isomap, r=4, n=38

(a) Swissroll

−5 0 5

−2

−1

0

1

2

Isomap, k=8, n=2000

−10 −5 0 5 10

−5

0

5

multilevel−Isomap, r=2, n=353

−5 0 5

−4

−2

0

2

4

6

multilevel−Isomap, r=3, n=110

−4 −2 0 2 4

−3

−2

−1

0

1

2
multilevel−Isomap, r=4, n=34

(b) S-curve

Figure 3: 2D projections using Isomap and multilevel-Isomap (k = 8).

−0.05 0 0.05

−0.05

0

0.05

0.1

LLE, k=8, n=2000

−0.1 −0.05 0 0.05
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

multilevel−LLE, r=2, n=351

−0.2 −0.1 0 0.1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

multilevel−LLE, r=3, n=113

−0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

multilevel−LLE, r=4, n=38

(a) Swissroll

−0.06 −0.04 −0.02 0 0.02 0.04
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

LLE, k=8, n=2000

−0.15 −0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

0.15

0.2

multilevel−LLE, r=2, n=353

−0.1 0 0.1 0.2

−0.1

0

0.1

0.2

0.3

0.4

multilevel−LLE, r=3, n=110

−0.4 −0.2 0 0.2
−0.2

0

0.2

0.4

0.6

multilevel−LLE, r=4, n=34

(b) S-curve

Figure 4: 2D projections using LLE and multilevel-LLE (k = 8).

−0.01 −0.005 0 0.005 0.01

−0.01

−0.005

0

0.005

0.01

Eigenmaps, k=8, n=2000

−0.02 0 0.02 0.04

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

multilevel−Eigenmaps, r=2, n=351

−0.05 0 0.05

−0.1

−0.05

0

0.05

multilevel−Eigenmaps, r=3, n=113

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

0.15

multilevel−Eigenmaps, r=4, n=38

(a) Swissroll

−0.01 −0.005 0 0.005 0.01

−0.01

−0.005

0

0.005

0.01

Eigenmaps, k=8, n=2000

−0.02 0 0.02

−0.04

−0.02

0

0.02

0.04
multilevel−Eigenmaps, r=2, n=353

−0.05 0 0.05

−0.05

0

0.05

0.1

0.15

multilevel−Eigenmaps, r=3, n=110

−0.1 0 0.1
−0.2

−0.1

0

0.1

0.2

multilevel−Eigenmaps, r=4, n=34

(b) S-curve

Figure 5: 2D projections using Eigenmaps and multilevel-Eigenmaps (k = 8).

13

We report the results of experiments using a kNN graph with k = 6 and embedding
dimensions d = 2. In our multilevel framework we used the heat kernel weighting scheme
when refining the data, and also when the Laplacian eigenmaps is employed.

Figure 6 illustrates the two-dimensional mappings using Isomap and multilevel-Isomap.
Observe that in these plots, each coordinate axis of the embedding correlates highly with one
degree of freedom underlying the original data: left-right pose is correlated with the x axis,
and the up-down pose with the y axis. The plots by LLE, multilevel-LLE, and Eigenmaps
and multilevel-Eigenmaps, not shown due to space limit, also have this characteristic.

−80 −60 −40 −20 0 20 40 60 80

−40

−30

−20

−10

0

10

20

30

40

50

Isomap, k=6, n=698

−80 −60 −40 −20 0 20 40 60 80

−50

−40

−30

−20

−10

0

10

20

30

40

50

Multilevel−Isomap, k=6, r=2, n=157

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

Multilevel−Isomap, k=6, r=3, n=47

−100 −80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Multilevel−Isomap, k=6, r=4, n=13

Figure 6: 2D mappings of Sculpture Face data set by Isomap and multilevel-Isomap.

Table 1 reports the average CPU time for kNN graph construction, graph coarsening,
dimensionality reduction, and data refining. Note that our multilevel technique generally
achieved significant savings in CPU time. For example, using r = 2 levels, our multilevel
technique achieved about 83% savings in computation time for Isomap, 34% savings for LLE,
and insignificant (2%) savings for Eigenmaps. Omitting the time for kNN graph construction,
the savings were 99%, 84%, and 38% for Isomap, LLE, and Eigenmaps. Using more levels
resulted in more time savings.

14

Table 1: Computation time for Sculpture Face data set.

kNN average coarsen. Isomap LLE Eigenmaps
time level # of time proc. ref. proc. ref. proc. ref.
(secs) images (secs) time time time time time time

1.58

#1 698 N/A 12.180 N/A 1.0600 N/A 0.1000 N/A
#2 142.69 0.0330 0.0744 0.0110 0.1065 0.0329 0.0192 0.0099
#3 44.13 0.0058 0.0104 0.0018 0.0326 0.0062 0.0157 0.0020
#4 15.54 0.0015 0.0062 0.0007 0.0137 0.0014 0.0131 0.0010

0 10 20 30 40 50

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Scuplture, d=2, k=6

p

tr
us

tw
or

th
in

es
s

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Scuplture, d=2, k=6

p

co
nt

in
ui

ty

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

Scuplture, d=2, k=6

p
H

−
sc

or
e

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50

0.75

0.8

0.85

0.9

Scuplture, d=2, k=6

p

tr
us

tw
or

th
in

es
s

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.86

0.88

0.9

0.92

0.94

0.96

Scuplture, d=2, k=6

p

co
nt

in
ui

ty

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Scuplture, d=2, k=6

p

H
−

sc
or

e

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.8

0.82

0.84

0.86

0.88

0.9

Scuplture, d=2, k=6

p

tr
us

tw
or

th
in

es
s

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

0 10 20 30 40 50

0.88

0.9

0.92

0.94

0.96

0.98

Scuplture, d=2, k=6

p

co
nt

in
ui

ty

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

0 10 20 30 40 50

0.84

0.86

0.88

0.9

0.92

0.94

Scuplture, d=2, k=6

p

H
−

sc
or

e

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

Figure 7: Trustworthiness, continuity, and H-score of Sculpture Face data set by Isomap
and multilevel-Isomap, LLE and multilevel-LLE, Eigenmaps and multilevel-Eigenmaps.

15

Figure 7 displays the plots of trustworthiness, continuity, and H-score values as a function
of p, the size of the neighborhood used in the measurement, where we set the number of
levels up to four. In this experiment our multilevel technique improved Isomap and LLE,
but multilevel-Eigenmaps performed less satisfactory than Eigenmaps.

5.4 Frey Face Video Frames

The Frey Face data set [17]2 contains 1,965 face images of a single person, Brendan Frey,
taken from sequential frames of a small video. Each image is of size 20-by-28 in grayscale,
and hence in 560-dimensional space after vectorization.

We report the result using a kNN graph with k = 12 and embedding dimensions d = 2.
In our multilevel framework we used the heat kernel weighting scheme when refining the
data, and also when the Laplacian eigenmaps is employed.

Figure 8 illustrates the two-dimensional mappings of the these images obtained by LLE
and multilevel-LLE. We can observe that all plots exhibits two intrinsic attributes, i.e.,
pose (left-right) and expression (serious-happy), which are correlated with the coordinate
axes. This property is also more or less reflected in the plots by Isomap, multilevel-Isomap,
Eigenmaps, and multilevel-Eigenmaps, which are not shown to save space.

The computation time is displayed in Table 2. Our multilevel technique reduced the
computation time significantly for Isomap and LLE. For example, with r = 2 levels the
savings for Isomap and LLE are more than 99% and 87%. For Eigenmaps there was no
computation savings, since the cost for multilevel graph coarsening and data refining is
comparable to that for dimensionality reduction.

Table 2: Computation time for Frey Face data set.

kNN average coarsen. Isomap LLE Eigenmaps
time level # of time proc. ref. proc. ref. proc. ref.
(secs) images (secs) time time time time time time

1.38

#1 1965 N/A 393.67 N/A 14.22 N/A 0.3500 N/A
#2 252.15 0.2328 0.4771 0.1493 0.2025 0.1461 0.0254 0.1472
#3 47.01 0.0212 0.0115 0.0053 0.0225 0.0056 0.0173 0.0050
#4 12.59 0.0026 0.0073 0.0007 0.0069 0.0010 0.0117 0.0020

Figure 9 displays the plots of trustworthiness, continuity, and H-score values as a func-
tion of p, the size of the neighborhood used in measuring them, where we set the number of
levels up to four. Clearly the multilevel technique improved Isomap and LLE in both com-
putation time and embedding quality, while multilevel-Eigenmaps performed comparable to
Eigenmaps using this data set.

2http://www.cs.toronto.edu/~roweis/data.html

16

−0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

LLE, k=12, n=1965

−0.3 −0.2 −0.1 0 0.1 0.2

−0.1

−0.05

0

0.05

0.1

0.15

Multilevel−LLE, k=12, r=2, n=267

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Multilevel−LLE, k=12, r=3, n=45

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Multilevel−LLE, k=12, r=4, n=10

Figure 8: 2D mappings of Frey Face database using LLE and multilevel-LLE.

17

0 10 20 30 40 50

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

Frey faces, d=2, k=12

p

tr
us

tw
or

th
in

es
s

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

Frey faces, d=2, k=12

p

co
nt

in
ui

ty

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

Frey faces, d=2, k=12

p

H
−

sc
or

e

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

Frey faces, d=2, k=12

p

tr
us

tw
or

th
in

es
s

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Frey faces, d=2, k=12

p

co
nt

in
ui

ty

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Frey faces, d=2, k=12

p

H
−

sc
or

e

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

Frey faces, d=2, k=12

p

tr
us

tw
or

th
in

es
s

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

0 10 20 30 40 50
0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975
Frey faces, d=2, k=12

p

co
nt

in
ui

ty

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

0 10 20 30 40 50

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

Frey faces, d=2, k=12

p

H
−

sc
or

e

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

Figure 9: Trustworthiness, continuity, and H-score of Frey Face database by Isomap and
multilevel-Isomap, LLE and multilevel-LLE, Eigenmaps and multilevel-Eigenmaps.

18

5.5 Rotating Teapot Images

The Teapot data set [27]3, generated by Jihun Ham, includes 400 images of size 76-by-101
pixels, with 3-byte color depth, giving rise to inputs of p = 23, 028 dimensions. The images
were created by viewing a teapot from different angles.

We report the results of experiments using a kNN graph with k = 10 and the embedding
dimensions d = 2. In our multilevel framework we used the heat kernel weighting scheme
when refining the data, and also when the Laplacian eigenmaps is employed.

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Eigenmaps, k=10, n=400

−0.2 −0.1 0 0.1 0.2 0.3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Multilevel−Eigenmaps, k=10, r=2, n=51

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Multilevel−Eigenmaps, k=10, r=3, n=25

−0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Multilevel−Eigenmaps, k=10, r=4, n=12

Figure 10: 2D mappings of Teapot data set using Eigenmaps and multilevel-Eigenmaps.

Figure 10 illustrates the two-dimensional mappings of the Teapot data set obtained by
Eigenmaps and multilevel-Eigenmaps. Though very high dimensional, we observe that the
images in this data set can be effectively parameterized by one degree of freedom, the angle of
rotation. The mapped points in the two-dimensional space typically formed a round shape.

The computation time is displayed in Table 3. Using r = 2 levels, our multilevel technique
achieved about 58% savings in computation time for Isomap, 66% savings for LLE, and

3http://www.weinbergerweb.net/Downloads/Data.html

19

insignificant (3%) savings for Eigenmaps.

Table 3: Computation time for Teapot data set.

kNN average coarsen. Isomap LLE Eigenmaps
time Level # of time proc. ref. proc. ref. proc. ref.
(secs) images (secs) time time time time time time

1.67

#1 400 N/A 2.34 N/A 3.59 N/A 0.0800 N/A
#2 50.35 0.0139 0.0124 0.0077 0.0916 0.0073 0.0155 0.0068
#3 24.85 0.0014 0.0081 0.0008 0.0464 0.0011 0.0149 0.0013
#4 12.30 0.0003 0.0053 0.0013 0.0239 0.0007 0.0109 0.0008

Figure 11 displays the plots of trustworthiness, continuity and H-score values as a function
of p, the size of the neighborhood used in measuring them, where we set the number of levels
up to four. Our multilevel-LLE and multilevel-Eigenmaps achieved comparable embedding
quality with LLE and Eigenmaps, respectively. On the other hand, multilevel-Isomap, while
achieve significant computational savings, performed less satisfactory than Isomap for this
data set, in terms of the resulting embedding quality.

6 Clustering Experiments

We compare empirically the performance of three clustering algorithms discussed in Section 4.

1. K-means clustering with random initialization.

2. Nonlinear dimensionality reduction (e.g., Isomap, LLE, and Laplacian eigenmaps) and
then K-means clustering with random initialization.

3. Multilevel dimensionality reduction joint with multilevel K-means clustering with ran-
dom initialization at the bottom level.

Section 6.1 describes the methods to evaluate the quality of clusters. Sections 6.2 and 6.3
reports the results of experiments on ORL face database and UMIST face database, respectively.

6.1 Clustering Evaluation

We evaluate the quality of clusters by purity and entropy [28]:

purity =

K∑

i=1

ni

n
purity(i), purity(i) =

1

ni
max

j

(
nj

i

)
,

and

entropy =
K∑

i=1

ni

n
entropy(i), entropy(i) = −

K∑

j=1

nj
i

ni

logK

nj
i

ni

,

20

0 10 20 30 40 50

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Teapot, d=2, k=10

p

tr
us

tw
or

th
in

es
s

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Teapot, d=2, k=10

p

co
nt

in
ui

ty

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50
0.88

0.9

0.92

0.94

0.96

0.98

1
Teapot, d=2, k=10

p

H
−

sc
or

e

Isomap
multilevel−Isomap, r=2
multilevel−Isomap, r=3
multilevel−Isomap, r=4

0 10 20 30 40 50

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Teapot, d=2, k=10

p

tr
us

tw
or

th
in

es
s

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.9

0.92

0.94

0.96

0.98

1
Teapot, d=2, k=10

p

co
nt

in
ui

ty

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Teapot, d=2, k=10

p

H
−

sc
or

e

LLE
multilevel−LLE, r=2
multilevel−LLE, r=3
multilevel−LLE, r=4

0 10 20 30 40 50
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
Teapot, d=2, k=10

p

tr
us

tw
or

th
in

es
s

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

0 10 20 30 40 50

0.9

0.92

0.94

0.96

0.98

1
Teapot, d=2, k=10

p

co
nt

in
ui

ty

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

0 10 20 30 40 50

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Teapot, d=2, k=10

p

H
−

sc
or

e

Eigenmaps
multilevel−Eigenmaps, r=2
multilevel−Eigenmaps, r=3
multilevel−Eigenmaps, r=4

Figure 11: Trustworthiness, continuity and H-score of Teapot data set by Isomap and
multilevel-Isomap, LLE and multilevel-LLE, Eigenmaps and multilevel-Eigenmaps.

where K is the number of clusters, nj
i is the number of entries of class j in cluster i, and

ni is the number of data entries in cluster i. Note that we have assumed that each entry is
associated with a label indicating the class to which it belongs.

Both purity and entropy are bounded between 0 and 1. The larger the purity, or the
smaller the total entropy, the better the performance. The optimal value 0 of entropy and
the optimal value 1 of purity are met, if and only if the clusters match exactly the classes.

6.2 ORL Face Database

We used ORL (Olivetti Research Laboratory) database [16] which contains 40 subjects each
having 10 grayscale images of size 112-by-92 with various facial expressions (smiling/non-
smiling, etc.), giving a total of 400 images. After vectorizing the images, we obtained a
matrix X of size 10,304-by-400. Sample face images of the first two individuals are shown
in Figure 12.

21

Figure 12: Sample ORL face images.

For the dimensionality reduction we constructed a kNN graph with k = 5 neighbors per
data entry4, and used the embedding dimensions d = 10, 20, . . . , 50. For each method and
each parameter setting, we report the average numbers of 100 random runs. The random-
ization applies the data coarsening, initialization for K-means clustering, and initialization
at the bottom level of multilevel K-means clustering.

Figure 13 show the plots of purity and entropy values of the resulting clusters. Moreover,
Table 4 reports the number of iterations, the CPU time, the purity and entropy for various
clustering methods, where we set the embedding dimensions d = 30, and the number of
iterations refers to the number of K-means iterations at topmost level. The CPU time
includes the time for the kNN graph construction when a dimensionality reduction method
was used, and includes graph coarsening and refining time when our multilevel technique
was incorporated.

Table 4: Statistics of clustering results of ORL data set.

K-means
K-means with dimensionality reduction (d = 30)

Isomap
m-level-

LLE
m-level-

E-maps
m-level-

Isomap LLE E-maps
iterations 7.46 8.57 6.70 10.63 6.52 9.34 6.43
CPU time 11.45 2.732 0.711 1.327 0.766 0.563 0.668

purity 0.641 0.700 0.729 0.680 0.727 0.694 0.725
entropy 0.206 0.169 0.151 0.182 0.150 0.168 0.155

As expected, a dimensionality reduction method may improve clustering quality in terms
of both purity and entropy by removing redundancy and noise in the data. It may also reduce
the computational cost by clustering data in a lower dimensional space. Further improve-
ment can be made by structured initialization by our multilevel dimensionality reduction
technique.

4This kNN graph with k = 5, after symmetrization, was disconnected with two components. We added
the shortest edge between the vertices of the two components to make a connected graph.

22

10 15 20 25 30 35 40

0.62

0.64

0.66

0.68

0.7

0.72

ORL, k=5

dimensions

pu
rit

y

K−means
Isomap, Kmeans
multilevel−Isomap, multilevel K−means

10 15 20 25 30 35 40
0.6

0.62

0.64

0.66

0.68

0.7

0.72

ORL, k=5

dimensions

pu
rit

y

K−means
LLE, Kmeans
multilevel−LLE, multilevel K−means

10 15 20 25 30 35 40

0.62

0.64

0.66

0.68

0.7

0.72

ORL, k=5

dimensions

pu
rit

y

K−means
Eigenmaps, Kmeans
multilevel−Eigenmaps, multilevel K−means

10 15 20 25 30 35 40

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

ORL, k=5

dimensions

en
tr

op
y

K−means
Isomap, Kmeans
multilevel−Isomap, multilevel K−means

10 15 20 25 30 35 40

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

ORL, k=5

dimensions

en
tr

op
y

K−means
LLE, Kmeans
multilevel−LLE, multilevel K−means

10 15 20 25 30 35 40

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22
ORL, k=5

dimensions

en
tr

op
y

K−means
Eigenmaps, Kmeans
multilevel−Eigenmaps, multilevel K−means

Figure 13: Purity and entropy values of clustering results of ORL data set.

6.3 UMIST Face Database

The UMIST database [8] contains 565 images in grayscale of 20 subjects with 19 to 48 images
per subject. We used cropped images of size 112-by-92 in our experiments. Figure 14 shows
sample images of the first individual.

Figure 14: Sample UMIST face images.

For the dimensionality reduction we constructed a kNN graph with k = 7 neighbors per
data entry, and used the embedding dimensions d = 5, 10, . . . , 25. For each method and each
parameter setting, we report the average numbers of 100 random runs. The randomization
applies the data coarsening, initialization for K-means clustering, and initialization at the
bottom level of multilevel K-means clustering.

Figure 15 show the plots of purity and entropy values of the resulting clusters. Moreover,
Table 5 reports the number of iterations, the CPU time, the purity and entropy for various

23

clustering methods, where we set the embedding dimensions d = 15, and the number of
iterations refers to the number of K-means iterations at topmost level. The CPU time
includes the time for kNN graph construction when a dimensionality reduction method was
used, and includes graph coarsening and refining time when our multilevel technique was
incorporated.

5 10 15 20 25

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

UMIST, k=7

dimensions

pu
rit

y

K−means
Isomap, Kmeans
multilevel−Isomap, multilevel K−means

5 10 15 20 25

0.48

0.5

0.52

0.54

0.56

0.58

0.6

UMIST, k=7

dimensions

pu
rit

y

K−means
LLE, Kmeans
multilevel−LLE, multilevel K−means

5 10 15 20 25

0.45

0.5

0.55

0.6

0.65

UMIST, k=7

dimensions

pu
rit

y

K−means
Eigenmaps, Kmeans
multilevel−Eigenmaps, multilevel K−means

5 10 15 20 25
0.28

0.3

0.32

0.34

0.36

0.38

0.4

UMIST, k=7

dimensions

en
tr

op
y

K−means
Isomap, Kmeans
multilevel−Isomap, multilevel K−means

5 10 15 20 25
0.26

0.28

0.3

0.32

0.34

0.36

UMIST, k=7

dimensions

en
tr

op
y

K−means
LLE, Kmeans
multilevel−LLE, multilevel K−means

5 10 15 20 25
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

UMIST, k=7

dimensions
en

tr
op

y

K−means
Eigenmaps, Kmeans
multilevel−Eigenmaps, multilevel K−means

Figure 15: Purity and entropy values of clustering results of UMIST data set.

Table 5: Statistics of clustering results of UMIST data set.

K-means
K-means with dimensionality reduction (d = 30)

Isomap
m-level-

LLE
m-level-

E-maps
m-level-

Isomap LLE E-maps
iterations 11.99 15.07 10.01 14.85 8.88 10.19 8.39
CPU time 12.13 10.976 0.637 2.149 0.744 0.451 0.569

purity 0.500 0.515 0.567 0.572 0.593 0.633 0.585
entropy 0.365 0.361 0.317 0.327 0.290 0.259 0.298

As can be observed, dimensionality reduction methods improved clustering quality by
removing redundancy and noise in the data. The computational cost is also reduced because
of clustering data in a lower dimensional space. Further improvement on the K-means clus-
tering with Isomap and LLE dimensionality reduction methods was achieved by structured
initialization by our multilevel dimensionality reduction technique.

24

7 Conclusion

The class of multilevel nonlinear dimension reduction techniques for manifold learning pre-
sented in this paper aim at reducing cost without sacrificing accuracy. As was observed a
side benefit of performing a coarsening of the kNN graph is that it often leads to improved
accuracy. This in effect shows that the combination of coarsening with standard manifold
learning methods can be powerful. This remains to be explored further because the beneficial
effect just mentioned is not seen for all methods. Experiments indicate that the proposed
multilevel framework usually reduces the computational cost of some existing methods for
manifold learning, while yielding comparable or better results. We have shown an applica-
tion of the method to clustering, by incorporating the multilevel dimensionality reduction
technique with the K-means algorithm for structured initialization. Experiments show that
this often results in a significant improvement in clustering quality and in computational
time.

References

[1] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and Experi-
ence, 6:101–107, 1994.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Computation, 15(6):1373–1396, 2003.

[3] T. Chan, B. Smith, and J. Zou. Multigrid and domain decomposition methods for
unstructured meshes. In Third International Conference on Advances in Numerical
Methods and Applications, pages 53–62, Sofia, Bulgaria, 1994.

[4] R. R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmon. Anal., 21:5–30,
2006.

[5] V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimension-
ality reduction. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, pages 705–712. MIT Press, Cambridge, MA, 2003.

[6] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques
for high-dimensional data. In Proceedings of the National Academy of Arts and Sciences,
pages 100:5591–5596, 2003.

[7] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.

[8] D. B. Graham and N. M. Allinson. Face recognition: From theory to applications. In
H. Wechsler, P. J. Phillips, V. Bruce, F. Fogelman-Soulie, and T. S. Huang, editors,
NATO ASI Series F, Computer and Systems Sciences, Vol. 163, pages 446–456, 1998.

[9] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.
Springer-Verlag, 2nd edition edition, 2009.

25

[10] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
J. Parallel Distrib. Comput., 48(1):96–129, 1998.

[11] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI Design,
11(3):285–300, 2000.

[12] S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: a unified framework
for dimensionality reduction, graph partitioning, and data set parameterization. IEEE
Trans. Pattern Analysis and Machine Intelligence, 28(9):1393–1403, 2006.

[13] M. H. C. Law and A. K. Jain. Incremental nonlinear dimensionality reduction by
manifold learning. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(3):377–
391, 2006.

[14] S. T. Rowies and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[15] S. Sakellaridi, H.-r. Fang, and Y. Saad. Graph-based multilevel dimensionality reduction
with applications to eigenfaces and latent semantic indexing. In ICMLA ’08: Proceedings
of the 2008 Seventh International Conference on Machine Learning and Applications,
pages 194–200, Washington, DC, USA, 2008. IEEE Computer Society.

[16] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human
face identification. In Proceedings of 2nd IEEE Workshop on Applications of Computer
Vision, pages 138–142, 1994.

[17] L. K. Saul and S. T. Rowies. Think globally, fit locally: Unsupervised learning of low
dimensional manifolds. J. of Machine Learning Research, 4:119–155, 2003.

[18] L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral meth-
ods for dimensionality reduction. In O. Chapelle, B. Schölkopf, and A. Zien, editors,
Semisupervised Learning. MIT Press, Cambridge, MA, 2006.

[19] F. Sha and L. K. Saul. Analysis and extension of spectral methods for nonlinear di-
mensionality reduction. In Proceedings of the 22nd international conference on Machine
learning (ICML’05), pages 784–791, New York, NY, USA, 2005. ACM.

[20] B. Shaw and T. Jebara. Minimum volume embedding. In Proc. 11th Conference on
Artificial Intelligence and Statistics (AISTATS), volume 2, pages 460–467, 2007.

[21] G. W. Stewart and J.-g. Sun. Matrix Perturbation Theory. Academic Press, 1990.

[22] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[23] J. Venna and S. Kaski. Neighborhood preservation in nonlinear production methods: An
experimental study. In ICANN, International Conference on Artificial Neural Networks,
2001.

26

[24] J. Venna and S. Kaski. Local multidimensional scaling. Neural Networks, 19:889–899,
2006.

[25] S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962.

[26] Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimensionality reduction
by semidefinite programming and kernel matrix factorization. In Proc. of the 10th
International Workshop on Artificial Intelligence and Statistics (AISTATS), pages 381–
388, 2005.

[27] K. Q. Weinerger and L. K. Saul. Unsupervised learning of image manifolds by semidef-
inite programming. International Journal on Computer Vision, 70(1):77–90, 2006.

[28] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion
functions for document clustering. Machine Learning, 55(3):311–331, 2004.

27

