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Abstract— This paper presents a method for identifying a and many methods have been proposed for the detection of such
set of dense subgraphs of a given sparse graph. Within the communities [8], [9]. It is beyond the scope of this paperisb |
main applications of this “dense subgraph problem”, the dese  the many existing approaches in such emerging applications
subgraphs are interpreted as communities, as in, .., sabi  Apong the techniques studied, a popular methodology is to
networks. The problem of identifying dense subgraphs helps . e . . .
analyze graph structures and complex networks and it is know gxplon graph parjutlo.nlr_lg techniques for outputtlpg aaskparti-
to be challenging. It bears some similarities with the probém tions, each of which is interpreted as a community. A broadte
of reordering/blocking matrices in sparse matrix techniques. partitioning techniques, such as hierarchical clustefii, [11],

We exploit this link and adapt the idea of recognizing matrix spectral partitioning [12], [13], and multilevel graph tioning
column similarities, in order to compute a partial clustering (e.g. METIS [14]), have been proposed or adapted for this pur
of the vertices in a graph, where each cluster represents a hose A common drawback for these methods is that the number

dense subgraph. In contrast to existing subgraph extractio - . .
techniques which are based on a complete clustering of the gph k of partitions is a mandatory input parameter, and the change

nodes, the proposed algorithm takes into account the fact tt Of & may result in a very different partitioning result, except
not every participating node in the network needs to belong for perhaps hierarchical based approaches. In most apptisa
to a community. Another advantage is that the method does the numberk is not known a priori. A number of researchers
not require to specify the number of clusters; this number is proposed to remedy this difficulty by tracking a goodnesssuea
usually not known in advance and is difficult to estimate. The of the partitioning as a function of. Some measures, such as
computational process is very eff|C|en.t, and the effgctwem;s of the conductance [4] and the modularity [11], are empirjcall
the proposed method is demonstrated in a few real-life exames. . ' .
studied to have local peaks or valleys, hence an optimalevalu
) ~ for k is possible to obtain. However, this remedy may not
Index Terms— Dense subgraph, social network, community, bi- g\ays be practical due to its expensive computational. cost
partite graph, matrix reordering, hierarchical clusterin g, partial Furthermore, most of these methods yieldamplete clustering
clustering. of the data. A more crucial question when attempting to disco
communities in this way is: “Why should every node belong to
some community?”
challenging problem in the analysis of graph structures is |n this paper, we propose a schematic approach to understand
the dense subgraph problemvhere given a sparse graphthe structure of a graph and identify its dense componetss. |
the objective is to identify a set of meaningful dense subigsa main features are (i) a partial clustering of the graph vesti
This problem has attracted much attention in recent yeaes dihere each cluster represents a dense subgraph, (ii) atydensi
to the increased interest in studying various complex nesyo concept with which communities are quantitatively meaguasd
such as the World Wide Web (information network), socigii) a hierarchy of the vertices such that a density thréstuan
networks, and biological networks, etc. The dense subgragie conveniently modified and the corresponding subgraphs ca
are often interpreted as “communities” [1]-[4], based oe thhe computed in real time. Indeed, there have been many gensit
basic assumption that a network system consists of a numbgked approaches proposed in the past (e.g., [5], [9]), & n
of communities, among which the connections are much fewgsssesses such a combination of features. An advantager of ou
than those inside the same community. approach is that a complete clustering of the vertices isdado
The recent data mining literature has seen various tecbsiqeven with the presence of a hierarchy as an outcome. (A hlgrar
for approaching this problem from different aspects. Witle t can be cut at some level to form a complete clustering.) The
knowledge of a few important nodes as sources, the Web a&al merit of this approach is that we can navigate the rbgar
be considered a flow network and max-flow/min-cut algorithmgnd adjust the density threshold (at almost no time cosi) unt
can be applied to identify communities centered at the &ourg desirable result is achieved. Note that the term “dense” is
nodes [3]. In [5], a greedy randomized adaptive search pioee somewhat ambiguous. The interpretation of this term in theys
is proposed to detect massive dense subgraphs with higitidens of social networks seems to be in a relative sense: A communit
In [6], bipartite graphs are considered and dense subgrap§siefined simply because the inner connections are muctedens
are iteratively grown by using local search heuristics. Apfr than the intra connections; however, the inner connect{tms
clustering approach [7], based on expansions and inflatiéns subgraph itself) may still be sparse. On the other hand,eira t
the stochastic matrix, was proposed to identify intrindigsters  “density” is rigorous and it can be defined on mathematicahse
in the graph. In many biological networks, communities thah this paper, we opt to identify subgraphs whose densities a
consist of a chain of adjacent cliques are of special interepeyond a certain threshold.
The authors are with the Department of Computer Science agihEer- We point out that the problem studied here is different from t

ing, University of Minnesota at Twin Cities, MN 55455. Emaflichen, densest subgraph probleft5], [16] or the densest:-subgraph
saad }@cs.umn.edu problem[17]-[19], both of which aim at identifying the subgraph
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which has thénighestdensity. Instead, we are interested in finding graph does not directly apply to the bipartite graph case.
a number of subgraphs that have a high enough density (not Finally, the density of a bipartite graph, as computed by

necessarily the densest). Of course, one possible apprtwach formula (1) can never reach one for bipartite graphs. In fact
our problem consists of a gradual procedure whereby theedéns it is an easy exercise to show that the density of an arbitrary
subgraph is extracted and then removed from the origingdhgra bipartite graph, as defined by formula (1) cannot exceed
and the process is repeated on the resulting reduced graphrgs the maximum value ob.5|V|/(|V| — 1), which is close

times as desired. However, the removal of the densest sulbgra to 1/2 for large graphs. Thus, we consider a the following
from the original graph may lead to a number of undesirable alternative definition for the density of a bipartite graph:
results. For example, the resulting subgraphs may haveregty |E|

different densities, and/or sizes. Our approach, beingergtwbal dg = VAl [Val’ ()
and progressive, is not prone to such extreme imbalancesayt
be possible to adapt these techniques for the problem atthand
this will not be investigated here.

According to this definitionds € [0,1], and a subgraph
has the density one if and only if it is a biclique.
The adjacency matrix4 of the above three types of graphs
Il. DENSE SUBGRAPHSEXTRACTION has specific patterns. Throughout the paper, we assumettisat
. . . sparse, because we are considering subgraphsspamsegraph.
Given a sparse grapt(V, [7) which consists of the vertex We also assume that the entriesAfare eithero or 1, since the

set V and the edge sek, we are interested in identifying "~ . .
dense subgraphs af. To be precise, the candidate subgraphvéle'ghts of the edges are not taken into account for the densit

should have densities higher than a threshold value in CI[l[ieI’Of a graph. In all cases, the diagonal afis empty, since we

be interesting. We consider the following three types ofppgsa do not allow S.e”'IOOpS' For updlrected graphs s symmetrlc,_
- . - . whereas for directed graphg, is only square. A natural matrix
with an appropriate definition adensityfor each one.

i . representation of a bipartite graph is a rectangular mafijx
1) Undirected graphs. Undirected graphs are the most commgnere 5(;. ) is nonzero if and only if there is an edge connecting

models of networks, where the directions of the conneg~ y, anq; ¢ v;,. The adjacency matrix for such a bipartite graph
tions are unimportant, or can be safely ignored. A naturgl i, qeed

definition of the graph density is the ratio | over the Ao 0 B
cardinality of the edge set of the complete graph with the BT o}’

same vertex s ie. .
e, ' where the vertices froni; are ordered before those froiy.

— ote that the diagonal blocks of are zero for a bipartite graph.
. |E] _ (1) Note that the di | blocks of for a biparti h
- Also, note that there are situations where we do not know that
VIV =1)/2 | hat th ituati h d k h
Note thatds € [0,1], and a subgraph has the density on#he given undirected graph is bipartite in advance, ieis given
if and only if it is a clique. in a permuted form where the abo2ex 2 block structure is
2) Directed graphs. The density of a directed graph is defing@t revealed. In such a case, a simple strategy adapted frem t
as breadth first search can be used to check if the inherentecidit
o= &7 (2) 9raph is bipartite, and if so to extract the two disjoint sibs
VI(v]=1) The dense subgraphs extraction methods proposed in thés pap

since the maximum number of possible directed edgese inspired by the so-calledatrix blockingproblem [20], [21],
cannot exceedV|(]V| — 1). In other words, the density which is introduced along with an efficient technique in thexmn
of a directed graph also lies in the range franto 1. It subsection. Naively applying the technique to our probleay m
is interesting to note that if we “undirectify” the graph,not be effective; nevertheless, the technique bears ttie iolesis
i.e., remove the directions of the edges and combine thed ingredients of the main algorithms proposed later fer th
duplicated resulting edges, we yield an undirected graplense subgraph problem.

G(V, E) with the edge seE. Then,

A. Matrix Blocking

Blocking is a vital ingredient of preconditioning methods.
An immediate consequence is that if we extract the sub? such methods an approximate Gaussian elimination, are.,
graphs of the undirected version of the graph given a densltycomplete LU (ILU) factorization is performed. This appro
threshold, we essentially obtain directed subgraphs withation is then used to improve the convergence of an iterativ
densities at least half of the threshold. method [22]. Block ILUs perform this elimination with dense

3) Bipartite graphs. A bipartite graph is an undirected rapblocks and so the matrix is stored in a block format. The hgk
whose vertex séit can be partitioned in two disjoint subsetsof the matrix may be exact and known in advance or an approxi-
V1 and V4, such that every edge connects a vertex figm mate blocking may be sought by some automatic tool as is done
and one fromVs. There are several reasons to considén [21]. The main motivation for these techniques is thatcklo
bipartite graphs separately from general undirected graplpreconditiong methods are known to yield better convergénan
The most important one is that a bipartite graph is generakgalar ones, see [21], [22] and references therein. Iniaddihey
used to model the connections between two different typase more economical since they tend to use more compacgstora
of entities in a data set, such as the relationship betweschemes. Fig. 1(b) illustrates the effects of blocking, nehiae
documents and terms, that between customers and products)zero entries ofi are moved toward the diagonal.
etc. Also, as will soon be discussed, the proposed denseéd simple yet effective blocking algorithm [21] exploits the
subgraph extraction algorithm for a general undirectesimilarities between a pair of columns in tipattern matrix P

1
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(a) A. (b) A after reordering. (c) Three columns of the reordered
matrix A.

Fig. 1. A blocking of a sparse symmetric mattik

of A. Recall thatP is obtained fromA by simply replacing block-diagonal matrix: the two off-diagonal blocks are getely
its nonzero entries by ones. The rationale behind this i$ theero (Fig. 2(c)). The last entry that was set to zero is acediti
the nonzero patterns of two columns corresponding to theesathreshold, since by this value the rows and columnsibfare
block should be more similar than those of the two columns thgartitioned in two subsets, and no smaller values can yield a
correspond to different blocks. To be specific, let some eenpartitioning. Once this initial partitioning is obtainethe zero-
block of the reordered” correspond to a subset of vertices. setting procedure is performed recursively on the two tewyl
Also, leti, j € Vs andk ¢ Vs; see Fig. 1(c). The heuristic is thatpartitions.
the cosine of the angle between thth and thej-th columns of The above procedure can be precisely stated in the language
P is large, whereas that of theth and thek-th (or thej-th and of hierarchical clustering. Given an undirected gra@lV, E)
the k-th) columns is small, sinceand; correspond to the sameand its adjacency matrix4, we construct a weighted graph
dense block but does not. The blocking algorithm is to findG’(V, E’) whose weighted adjacency matix is defined in (4).
maximal subsets of’ such that inside the same subset, for eachssume without loss of generality th&t is connected (otherwise
vertexi, there exists a vertex+ i such that the cosine d?(:,i) process each connected componentGsf separately). A top-
and P(:, ) is larger than a predefined threshold. down hierarchical clustering of the vertex sétis performed
The adjacency matrix of an undirected graph plays exacthy successively deleting the edge'se E’, in ascending order
the same role a$ here. Roughly speaking, the goal of densef the edge weights. Whe” first becomes disconnected,
subgraph extraction is to reorder the adjacency matrix @nd is partitioned in two subsets, each of which corresponds to a
find the dense diagonal blocks, each of which represents sedeconnected component @’. Then, the edge-removal process is
subgraph. One is tempted to directly apply the above atyarit continued on these two components to partition them in turn.
on the adjacency matrix of a given graph. However, a difficult One detail that is left is to decide when to terminate the
arises when choosing an appropriate similarity threshéld. recursions. Recall that the objective is to find meaningkehsk
further concern is that each block should employ a differestubgraphs ofG. Therefore, the usual termination criterion—
threshold. For example, two columns corresponding to aetargstopping when each partition contains only one vertex—is no
block have a higher probability of yielding a larger cosihart necessary. Instead, termination will take place when theside

those corresponding to a smaller block. of the partition passes a certain density threshilgl,. Thus, a
subset of the vertices is no longer partitioned if the cqoesling
B. The Case of Undirected Graphs subgraph has a density dn,. The only exception is that

Consider the matrix/ that stores the cosines between any twg°™Me Subsets never meet this requirement and are recyrsivel
columns of the adjacency matrik: pfartltloned until the_y result in trivial .subgraphs con@gt of
) ) singletons. These singletons bear no interest and aregdnor
M(i,j) = M (4 Algorithm 1 summarizes the proposed method. As an example,
[AGDIHIAG, ) we consider a graph with8 vertices anc29 edges as shown in
By reordering and partitioning the rows and columnsidfin  Fig. 3(a). (This example comes from a figure in [4].) A visual
the same way asi, the above mentioned algorithm (by usingnspection results that the graph has a dense component that
a predefined similarity threshold) effectively yields a ciply contains verticesl to 7 (and possibly vertexi0), as well as
structured M: Entries outside the diagonal blocks aff, are a plausible dense, though small, componéimt, 15,16}. The
all smaller than the threshold, whereas inside each neiadtri first step is to compute the similarity matrix and to sort its
diagonal block, there exists at least one entry larger tih@n tnonzero entries, as listed in (b). We construct the graphising
threshold for each row/column. Fig. 2(b) shows an illugtrat  the weighted adjacency matrix/. Starting from the smallest
To avoid setting a fixed similarity threshold, we consideentry in the list, we remove edges 6f one by one untilG’
all possible ones as represented by the nonzero entrie® of becomes disconnected. The two resulting subsets of verice
(excluding the diagonal of\f, where the similarities between{1,...,13,17,18} and {14, 15,16}. The latter subset happens
a column and itself is not useful at all). Going in ascendintp yield a subgraph that has a density higher than the desired
order of these entries, we set them to zero one by one. At sotheeshold0.75. Hence, it is output as a dense subgraph. On the
point after a few entries have been zeroéd,becomes @ x 2 other hand, the former subset does not yield a subgraplfysagis



(a) A. (b) M and its blocking. (c) M with the first batch of
nonzero entries set to zero.

Fig. 2. An adjacency matri¥l and its similarity matrix)/. Plot (b) shows a partitioning af/ by using a similarity threshol@.5. Plot (c) shows the first
partitioning of M in a recursive partitioning.

Algorithm 1 Finding Dense Subgraphs of a Sparse Undirecteff all the neighbors of the two vertices, then they two have a

Graph higher tendency to be grouped together, or a lower tendemcy t
Input: Sparse undirected graph, density thresholdl,,;,,. be separated. Thus, they should belong to a community/apbgr
1: Construct G’ with the weighted adjacency matri®/ as The second is the interpretation of the dendrogram. Instéad
defined in (4). outputting the dendrogram as is, or cutting the dendrogram a
2: Let C be the array of tuple$:, j, M(,5)), for all nonzero specific level to yield a predefined number of clusters, wekwal
M(i,7) andi < j, sorted in ascending order @f (i, 5). the dendrogram in a top-down fashion and return clusterg onl
3: Run DENSE-SUBGRAPHYG, G, C, dmin)- when they have high densities. All the returned clusterserwh
combined, do not constitute a complete partitioning of trepb;
4: function DENSE-SUBGRAPHYG, G, C, dmin) they only represent the dense parts of the graph.
5 k<0
6:  while G’ is connectedio
7 Delete edge{C[k].i, C[k].j}. C. The Case of Directed Graphs
8 k ‘__k +1 The adjacency matrixi of a directed graph is square but not
9. end while symmetric. When Algorithm 1 is applied to a non-symmetric
10: Le'f the tV\/IO conne/cted c/omponents@f be adjacency matrix, it will result in two different dendrogra,
Gs(Vs, Es) anth(%,Et). depending on whethed/ is computed as the cosines of the
11: Let the two corresponding subgraphs @fbe columns of A, or the rows of A. There may be applications
_GS(V& Es) and Gy(Vz, Er). where the direction is required and one can choose to pertfoem
12: if dg, > dmin then analysis with either (outgoing edges) or its transpose (incoming
13: OutputG;s as a dense subgraph. edges). However, in most applications, symmetrizing thaplgr
14:  else if|[Vs] > 1 then is a sensible strategy because an incoming edge and outgoing
15: Let Cs be the subarray of’, whereCs[k].i € Vs edge have a similar “cost” (think in terms of communicatiéms
and Cs[k].j € Vs for all k‘-/ parallel algorithms for example). This is often performed the
16: D_ENSE—SUBGRAPHS(GS, G5, Cs, dmin) somewhat related problem of graph partitioning for exampie
7. endif _ ) the following we symmetrize the matrix and use the resulting
18 Repeat I|nesllz—17 withs, Gs, Gis, Cs replaced symmetric adjacency matrix to compute the similarity mafvi.
by Vi, Gi, Gy, Ct. The rest of the procedure follows Algorithm 1.

19: end function Note that this technique is equivalent to removing the dioes

of the edges ift7, and extracting dense components from the undi-
rected version of the graph. As discussed at the very begirofi
the density requirement, so it is successively partitionedl the  this section, given an input parametér,;,, the output directed
subset{2,5,3,1,4,7,6} is reached. This gives the other densgubgraphs have densities guaranteed to be atdgasf?2. If the
subgraph. Fig. 3(c) shows the resulting hierarchy/dendrog occurrence of edge paif®;,v2) and (v2, v1), wherev; and vy
The output dense subgraphs are kept being partitioned in #@ two vertices, is rare, the densities of the output sybgravill
hierarchy just for illustration purposes. even be much higher.
Note that although the described algorithm is derived from t
idea of matrix blocking, it turns out that it can be explained
from another angle, which has been for long understood B} The Case of Bipartite Graphs

;ociologists: Build a dgndrogrgm of the graph vertices, andUnfortunater, Algorithm 1 does not work for a bipartite gha
interpret the clustering information from the dendrogra3]{ \here the vertex set” consists of two disjoint subsets; and
Yet there are two main differences here. The first is the ahityl V». To see this, consider its adjacency matrix

measure used for building the dendrogram. The interpoetaif
the cosine similarity we use here is that if two vertices slmmany e 0 B
neighbors and the shared neighbors constitute a largeoporti BT o]’
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(a) The graphG. (b) Sorted nonzeros af/. (c) The dendrogram.

Fig. 3. Two dense subgraphs (encapsulated in the red dashed) are found for a sparse undirected graph as shown.ifife) density threshold
dmin = 0.75.

where B(i,j) = 1 if there is an edge connectinge V; and edges between vertices inside the same biclique as shovi),in (
j € Vo, and B(i, j) = 0 otherwise. Then, the matri&/ defined then a blocking algorithm will easily recognize the threigwés

in (4) has the following form: in (c) and hence extract the three corresponding bicliques.
M 0 The question is what edges to add, since we do not know
M = { 01 M2]7 (5 Vi and V4. The similarity matricesM; (and M) in (5) are

especially useful for answering this question. Consider wer-
where]M; (resp.)Ms) contains the cosine similarities between th@ces, v, ,vs, € Vi, for example. The fact that; and V; are
rows (resp.lcolur_nns) oB. That is, without any edge removal ofdensely connected implies the high likelihood that and vs,
the graphG” (using M as the weighted adjacency matrix), theshare similar neighbors. In other words, the two columnstijn
vertex set is already partitioned into two subsétsand V. Any  which vs, andwvs, correspond to, have a large cosine similarity.
subsequent hierarchical partitioning will only furtherbsiivide Therefore, it is natural to add an edge between and vs,.
these two subsets separately. This dilemma arises becagiseryém the perspective of the similarity matrix, this is to obe
characterize the graph vertices inside a community by usieg the largest entries of/ and add them toA. To be precise, we

concept of “sharing neighbors”. The only opportunity forotw modify the adjacency matrid of a given bipartite graph into
vertices to share common neighbors in a bipartite graphds th

they both belong to a same sub$gt However, when considering i
a subgraph which consists of vertices from a single this
subgraph always has a zero density, thus eventually no apibgr . .
will be output from the algorithm. where M; (resp. Ms) is obtained by erasing the diagonal and
One way to overcome the difficulty of Algorithm 1 whenkeeping only the2|E| largest nonzero entries off; (resp.M2),
applied to bipartite graphs, is to perform a partial clusgr and|E|is the number of edges in the original graph (i.e., it equals
separately for the rows and for the columns Bf by using the number of nonzeros a@#).
the same similarity idea of Algorithm 1. In essence this is Once the densification process yields the modified adjacency
similar to the first approach suggested for directed graghsrev matrix A, which represents the augmented graph, we proceed to
the application warrants to differentiate between incgnémd calculate the similarity matrix\/:
outgoing edges. It is equivalent to finding subsetsipfwhere N
vertices share similar neighbors (from the complement/f N (i, j) = <A(:’Z)’A(:’j)> @)
However, separate subsets do not directly imply a denseapibg ’ A, 4) "A(:’j)" ’
of the original bipartite graph, i.e., for both sides of thpaitite
graph. Alternatively, we opt to use an approach that shdres tvhich is used to build the hierarchy for the vertex Bet Vi UV5.
spirit of co-clustering: Find two subsets; C V; andV; C V5, Algorithm 2 summarizes the steps. Note that the procedure
simultaneouslysuch that they are densely connected. DENSE-SUBGRAPHYG, G', C, dmin) has been introduced in
A reasonable strategy for purpose is to augment the originaligorithm 1.
bipartite graph by adding edges between some of the vertice toy example is shown in Fig. 5. The blue-green coloring
that are connected by a path of length two. Clearly, this adii indicates the two disjoint subset®] = {1,2,...,8} andV, =
edges between vertices of the saviemaking the graph a regular {9, 10...,13}. A visual inspection results that the bipartite graph
undirected graph. This will not change the density strectoi consists of two dense components: all the vertices to the lef
the bipartite graph itself; rather, it encourages the disgp of of 6 (including 6) contribute to one component, and the rest of
the dense components. W, and V; are densely connected, wethe vertices (arranged in a hexagon shape) form the other. Th
can add enough edges between the verticdg iand also edges densification of the graph, as shown in (b), further conwsnce
between those ifv;, then all the vertices iVs U V; will appear the conjecture of the two dense components. Using the mddifie
so densely connected that U V; can be easily extracted byweighted adjacency matrixi, we computeM and perform a
a blocking algorithm. Fig. 4 illustrates an extreme casee Thhierarchical clustering similar to the one shown in Fig.)3@y
bipartite graph consists of three bicliques. If we artifigidill in  using a density threshold,,;,, = 0.5, it happens that two dense

M, B
BT N

; (6)




(a) Adjacency matrixA.

(b) A after edge fill-in.

(c) Blocking of the matrix in (b).

Fig. 4. A bipartite graph with the effect of edge fill-in.

(c) The dendrogram constructed from (b).

(a) Bipartite graphG. (b) Densification ofG. Weights of the fill-in

edges (dashed) have not been shown.

Fig. 5. Two dense subgraphs (encapsulated in the red dastmds) are found for a sparse bipartite graph as shown iittfa)density threshold,,;, = 0.5.

Algorithm 2 Finding Dense Subgraphs of a Sparse Bipartiigill soon be seen, most of the steps have a computational cost
Graph only linear to the number of vertices in the graph, except tha
Input: Sparse bipartite grap&¥, density threshold/ ;... in addition we need to sort an array of size also linear in this
1: [Densification:] Modify the adjacency matrix of G into A number. Thus, the proposed methods have the potential o bei
as defined in (6). R scalable to very large data sets. However, it is noted thaxieth
2: Construct G’ with the weighted adjacency matri*/ as may be large prefactors in this simple big-O notation. Assalte
defined in (7). R to complement this incomplete theoretical analysis, wenshmo
3: Let C be the array of tuplesi, j, M(i,)), for all nonzero Section IV-B actual run times for a collection of real-lifeaghs
M (i, j) andi < 4, sorted in ascending order af (4, 7). from various application domains.
4: Run DENSE-SUBGRAPHYG, G, C, dmin)- Some additional notation is needed. For a given gi@ph, £),
the number of vertices i§/|, and the number of edges |&|.
Sinced is sparse, we typically assume that = O(|V|). If the

subgraphs are extracted, exactly the same as what we amejecgr@ph is undirected, then the adjacency maitbhasn = [V

by visual inspection{1,2,3,9,10,11} and{4,5,6,7,8,12,13}.  rows/columns anchz(A) = 2|E| nonzero entries. If the graph
A question may be asked why one shall not use Algorithm i$ directed, thend hasn = |V'| rows/columns andiz(A) = |E]|

as a universal solution for all the three types of graphs:-undiOnzeros. Further, if the graph is bipartite, the two digjsubsets

rected, directed, and bipartite. Indeed, in all cases tiaplgis Nave cardinalitiegVi| = ny and[V3| = na. Thus, the matrix

canonically associated with a matrix (either the squaraimat —Nas Sizéu xn2 with nz(B) = | E| nonzero entries. The adjacency

for undirected/directed graphs, or the rectangular maftifor Matrix A of a bipartite graph has size<n = (n1+n2) x (n1+n2)

bipartite graphs). As was stressed earlier, this approasidy With nz(4) = 2|E| nonzero entries. In all cases, we hawgA) =

build the hierarchy for both the rows and the columnsBofthis o(n).

simultaneity of the blocll<ing. on each side of the bipartitapgr is A. The Computation off (37)

a feature in a way that is similar to the problem of co-cluster i ] )

On the other hand, for a general undirected graph, both sifles According to Eqn. (4), a naive way of computing has the

: : s P
the matrix A represent the same set of vertices, in which caselg'€ complexityO(nz(A4)”) = O(n”), since to compute an entry
co-clustering is not sensible. M(i,j) takes time proportional to the sum of the numbers of

nonzeros ofA(:,¢) and A(:,5). However, note thad/ is equal to
X7T x, whereX is the matrixA with each column normalized. A
further investigation of Eqn. (6) (or (5)) indicates that tinatrices

Despite the conceptual simplicity of the ideas describethén 17, and M, also take the form¥” X. Thus, an efficient way of
previous section, a careful design is needed to obtain efici computingAZ and M is to exploit the fact thafX is sparse.
algorithms. This section discusses several importantilgetzat In the sequel, we consider how to multiply a sparse matfix
will lead to an efficient implementation. The computationeim- by its transpose:
plexities of these implementations will also be considerad

1. | MPLEMENTATION AND COMPUTATIONAL COSTS

Yy = XTX = 7X,



whereZ = XT'. The most efficient way in practice is to computgsee Fig. 6). After iterating the whole array, a single tree is
Y row by row. Note that returned, which is nothing buf.

Y(i,:) =D Z(, )X (5,0)-
J

Thus, we first transpos& into Z, then for each row of Z, we
compute a weighted sum of the rows &f which correspond to
the nonzero elements in rowof Z. A particular issue is how
to compute this weighted sum in time proportional to theltota
number of nonzeros involved, instead of to the length of a@bw
X. The technigue is to pre-allocate two working arrayand b,
each of which has a size the same as a roiw 0¥When computing
row ; of Y, we find the nonzero entrigs(i, 5), and for eacly, we
add the nonzeros of (4, :) multiplied by Z (i, j) into the working
arraya, and store the information of which locationscofias been
changed in the working arraly Then after the weighted sum is
computed, we use the information ino reset the array to zero
and also erase the contenttinthen proceed to the next Fig. 6. The dendrograrfi’ as a binary tree. Node is the lowest common

Let the maximum number of nonzeros per row Xf be p. ancestor ofi andj, andr; andr; are the children of.
Then the upper bound of the time cost of the above technique
for computing X” X is O(p - nz(X)), since to compute theth Note that the above process is equivalent to monitoring the
row of Y takes timeO(p-nz(Z(i,:))). In the average casg,can connected components of a graph when edges are successively
be considered a constant, thus the total time cost simplifiesinserted (a.k.a. incremental connected components [E¥{ally
O(nz(X)). Also, transposingX has the same time complexity. Inwe have a virtual graph with the vertex sétbut without edges.
the graph languagey is the column-normalizedi (or A™), and When reversely iterating the array, we merge the two subsets
p means the maximum number qf neighbors for a vertex. Thuﬁr,]dsjl whichi andj belongs to respectively, i; # s;. Finally,
the time cost of computing/ (or M) is O(nz(A)) = O(n). a single set, which contains all the verticeslin is returned.

We should note that the above method is a standard techniqugherefore, we can utilize the two standard disjoint-setrape

used for sparse matrix-matrix multiplications (cf. e.Q22]). tions S=7-FinD and S:T-UNION to assist the process of building
Perhaps the only important point to retain is the surprida®™ + \when we iterate” and get a pails, j) each time, we first do
that it takes time only linear in to multiply two sparse matrices, SET-FIND(i) — s; and ST-FIND(j) — s;. If s; = s;, nothing
assuming that the maximum numbgrof nonzeros per row is js gone, On the other hand, i # s;, we call ET-UNION to
bounded by a constant. It is noted that for some real-lif@lgsa ompines, ands;. Meanwhile, we make a new nodewhich has
the degree of a vertex may follow a power low distributiony,e ;.. and r; (stored with the disjoint-set data structure) as the

which means thap can become large for large graphs of a giveﬂ,vO children, and associatewith the combined set = s; U s;.
application. Nevertheless, in practice it is rare thatill be O(n), '

which leads to the situation that the computational cost nigé
to the forbiddingO(n?).

The total time of the above process can be split in two paas: (
the time of all the &T-FIND and SET-UNION calls, and (b) the
gross time to build’". Part (a) is indeed the incremental connected
component process, which takes tir@¢n + nz(M)), since the
B. The Computation of the Hierarchy/Dendrogram graph G’ hasn vertices andO(nz(M)) edges. Part (b), which

The routine EENSE-SUBGRAPHS(cf. Algorithm 1) essentially consists of making new nodes and assigning children, hasex ti
computes a hierarchy of the graph vertices in a top-dowridash complexity linear to the size df’, which isO(n).

Recursive calls of this routine are very time consuming esinc e still can improve the performance. Recall that the whole
between lines 5 and 9, with each removal of an edg& ira graph  bottom-up process is nothing but to yield the graghfrom a
traversal procedure (such as the breadth first search) éedee collection of isolated vertices by successively insergdges. We
examine the connectivity of the graph. However, as the two t@an stop the insertion of edges at some point. This esdgntial
examples (cf. Fig. 3(c) and 5(c)) suggest, it is entirelysile  yield an incomplete hierarchy, which is the part of below

to build the dendrogrant’ in an opposite way: the bottom-upsome level. We opt to stop after we have insexia) edges. In
fashion. practice, the number of inserted edges can be simply set(al,

The key is the array” which is sorted in ascending order ofor asr-nz(A) by introducing some coefficient parameterThis
the nonzero entries/ (i, j) (or M (i, j)). It indicates the order of may greatly reduce the cost of part (a) frab{n + nz(M)) to
the merges in the hierarchy/dendrograminitially, each vertex ((n), and also some minimal cost of part (b). By doing this, the
v €V is a separate tree in the forest. Beginning from the end pégative impact on the final dense subgraphs extractioregsade
the arrayC, each time we have a pajt, j). We find the roots hoped to be minimal, since we only miss, if any, large sublgsap
r; andr; of i andj, respectively. Ifr; andr; are different, we that have not been formed by merging in the hierarchy. We stil
make a new root with the left childr; and the right childr; are able to extract the dense parts of the hypotheticallgings

1To reduce the complication in reading, we thereafter ot téxt “(or large SUbgraph-S' Another advantage iS-that instead ohgotfie
M)" in this subsection. Readers are remir;ded that wheneeatialysis is nonzeros of in O(nz(M) log(nz(M))) time to make the array

applied to a bipartite graph, all the notions involvidg should be replaced C, we only need to sort the(n) largest nonzeros i®(n logn)
by M. time.



C. Collecting Density Information and Extracting Dense Sutflgorithm 3 Finding Dense Subgraphs of a Sparse Undirected
graphs Graph (Improved Version of Algorithm 1)

Recall that in the hierarchy, each internal node represents NPUt Sparse undirected graph, density thresholdiyin.
a subgraph of whose vertices are the leaf nodes of the subtred: COmpute the matrd/ as defined in (4). _
rooted atr. The dense subgraphs extraction process starts frofi SOrt the largest nonzero entries of/ in decreasing order,
visiting the root of7". If the subgraph corresponding to the current Wheret = nz(A). DenoteC the sorted array. _
node has the density higher than the input threshiglg,, it is 3 Cor!struct the hierarchy according to the sorted vertex pairs
output; otherwise the two children of the current node asited designated by
and the whole process is recursive. Thus, the extractiopepsy 4 COUNT-VERTICESAND-EDGEY(T, G) _
is equivalent to a traversal df and is very cheap, given that the 5 Computer.density for all nodesr of 7" according to (1).
densities of all the subgraphs have been computed and stored® EXTRACT-SUBGRAPHY(T'root)
the internal nodes. .

In the following we discuss how the subgraph densities ard: function COUNT-VERTICESAND-EDGES(T, G)
computed. For each internal nodeof 7, it is sufficient to store & Initialize r.num_edge < 0 for all nodesr of T'.
two values: the numbet, of vertices the corresponding subgraph & Construct the LCA data structure far.
contains, and the number of edges. The number of vertices cant®:  for all edge{i, j} of G do

be easily computed in a recursive way: = ny, +n,,, wherer; 1% Find the lowest common ancestorof i and j.
andr; are the two children of. However, the computation ef. 12: r.anum-edge < r.num-edge + 1
is not that straightforward. It is the sum ef;, e,; ande,(,, ), > end for

where e, ., is the number of edges crossing the subgraphd" COUNT-VERTICESAND-EDGES WRAP-UP(T'root)
r; and r; represent. Thus, the computation f can be split 15 end function

in two phases. The first phase is to compute,, ,. ) for each .

internal noder. The second phase is to recursively compyte- 16 function COUNT-VERTICES AND-EDGES-WRAP-UP(r)

er; + er; + oy, 1,y TOr NOder from its two children. 17:if rleft # nil andr.right # nil then
Further explanations on how,,. .., is counted are in order. & COUNT-VERTICESAND-EDGES WRAP-UP(r.lef?)
Recall in Fig. 6 thatr is the lowest common ancestor (LCA) 19 COUNT-VERTICESAND-EDGES WRAP-UP(r.right)

of i and j. Thus, we initializee, = 0 for all ». For each 20:  end if _ . .
edge{i, 7} in the undirected graph (either the original graph, thdl:  if mleft # nil andr.right # nil then

undirectified graph, or the densified graph), we find the lowe$? r.num-vertez «—
common ancestor of i and j and add1 to e,. After iterating r.leftnum-verter + r.right. num-vertex
all the edges, the temporagy. value for each internal node 23 rnum-edge «— '
in the hierarchy is exactly,(,, ), thus finishing phase one as r.left.num-edge +r.right.num-edge + r.num-edge
mentioned in the previous paragraph. 24:  else
Currently, the most efficient LCA data structure answerg> r.num_verter «— 1

queries in constant time after a linear time preprocessif, [ 2°: end 'f_

[26]. Thus, the time cost for phase oned$n +nz(A)) = O(n), 27: €nd function

since the tre&” hasO(n) nodes and we need to find the lowest )

common ancestors faP(nz(A)) pairs. This complexity applies 28: function EXTRACT-SUBGRAPHY(r)

to all the three types of graphs, since even after modifinatio 2 if r.density > dmin then

(either undirectification or densification), the adjacenatrix of ~ 30: Output the leaves of the subtree rooted-at
the graph always has(nz(A)) nonzeros. Therefore, the time cost3l: €IS ifr.left 7 nil andr.right # nil then

of computingn,- ande,- for all nodesr in the hierarchy takes time 32 EXTRACT-SUBGRAPHYrlef1)

O(n). This is also the cost of the final dense subgraphs extractiéf EXTRACT-SUBGRAPH(r.right)

process, which simply consists of a traversallof 34:  endif

In summary, the improved versions of the two algorithmg5: end function
presented in Sec. Il are shown in Algorithms 3 and 4, by in-
corporating the above discussions. These supersede #igaril . .
and 2 in the rest of the paper. In the pseudocodes, the hier%fﬂd used only one processor. The aIgor|thms were !mplertﬂIente
chy/dendrogrant is a tree with the roof.root. A noder in N C/C++, and the programs were compiled usgig- with -O2
the tree has the left childeft, the right childright, and the level optimization.
density density which is computed fromwum_vertex (n,) and
num_edge (er) according to the appropriate definition of densityA. Simulations and Accuracies

introduced at the beginning of Sec. II. In this subsection we show the dense subgraphs extraction
results of two simulated graphs. A visualization is shown in
IV. EXPERIMENTAL RESULTS AND APPLICATIONS Fig. 7. The graphs were randomly generated subject to the

This section shows a few experimental results to illustrafarameters given in Tab. . The simulated undirected gragsh h
the efficiency and the effectiveness of the proposed algost three dense components/subgraphs, and the bipartite draph
for extracting dense subgraphs. The experiments wererpetb four. We computed the densities of the dense components for
under a Linux desktop with four AMD Opteron Processorsach graph, and used the smallest of the densities as the inpu
(2.20GHz) and 16GB memory. The programs were not paralighrameterd,,;, to our algorithms. The aim of this experiment



Algorithm 4 Finding Dense Subgraphs of a Sparse Bipartite TABLE Il
Graph (Improved \ersion of Algorithm 2) ACCURACY OF THE EXTRACTED DENSE SUBGRAPHSIHE UPPER TABLE IS

|nput Sparse blpal‘tlte grapﬁ" denSIty thl’eSh0|di B FOR THE UNDIRECTED GRAPHAND THE BOTTOM ONE IS FOR THE
. ’ min-
1: [Densification:] Modify the adjacency matrix of G into A BIPARTITE GRAPH

as defined in (6). R Dense component 1 2 3

2: Compute the matrixd/ as defined in (7). Average F-score  0.9844 0.9882 0.9694

3: Sort the largest nonzero entries o\ in decreasing order, Dense component 1 > 3 )
wheret = nz(A). DenoteC the sorted array. Average F-score  0.9720 0.9310 0.9755 0.9730

4: Construct the hierarchy according to the sorted vertex pairs
designated by’

5. COUNT-VERTICESAND-EDGEYT, G). [Instead of counting words Reuters911 , foldoc , dictionary28 ), between
the number of vertices.num_vertex for each subgraph, users and moviesMovieLens ), and between words and doc-
count the number of vertices that belong p and V> for uments flewsgroup , cmuSame cmuDiff , cmuSim). In this

each subgraph, in a similar way.] subsection, we are mainly interested in the running timethef
6: Computer.density for all nodesr of T' according to (3). algorithms as opposed to the graph sizes. Some of the graphs
7: EXTRACT-SUBGRAPHYT .root) will be mentioned again in later subsections for analyzihg t

extraction results and understanding community strustuFer

such graphs, more information related to the semantics @f th

is to show that the proposed algorithms are able to discdwer graphs will be presented when appropriate.

intended dense components when a good parameter is provided

Other experiments for the situation when the density tlolesis

unknown in advance will be discussed in later subsections.
TABLE | Graph Description and Link

polblogs [27] A directed network of hyperlinks between welp
blogs on US politics.

TABLE Il
SOME REAL-LIFE GRAPHS

SIMULATION PARAMETERS FOR THE GRAPHS INFIG. 7. FOR THE

UNDIRECTED GRAPH EACH (s,t) PAIR MEANS A (SUB)GRAPH WITH s http://www-personal.umich.edu/
VERTICES AND APPROXIMATELY# EDGES FOR THE BIPARTITE GRAPH “mejn/netdata/ _
EACH (s1, 52, t) PAIR MEANS A (SUB)GRAPH WITH 51 + s2 VERTICES AND yeast [28] Protein-protein interaction network.
http://vlado.fmf.uni-lj.si/pub/
APPROXIMATELY ¢t EDGES networks/data/bio/Yeast/Yeast.
- S— htm
Graph Undirected Bipartite Reuters911 [29] | Reuters terror news network.
Whole (100, 2000) (100, 170, 1940) http://www.cise.ufl.edu/
Component 1 (25, 420) (20, 40, 370) research/sparse/matrices/Pajek/
Component 2 (30, 550) (20, 35, 280) Reuters911.html
Component 3 (20, 290) (17, 30, 260) foldoc _. free on-line dictionary of computing ...
Component 4 (15, 45, 340) http://www.cise.ufl.edu/
research/sparse/matrices/Pajek/
The criterion we use to measure the “accuracy” of the ex- foldoc.htm| : :
. hep The citation graph of the hep-th portion of arXiy.
tracted dense subgraphs is the F-score. Here, the termréagtu http://www.cs.cormell.edu/
only states how much the extracted subgraphs deviate frem th projects/kddcup/datasets.html

intended dense components. Indeed, a precise deternminaftio | epinions [30] | Trust network of the users on Epinions.com.

. . : http://www.trustlet.org/wiki/
the dense subgraphs in each simulated case does not exist.|As Downloaded_Epinions_dataset

long as the outpu_t subgraphs_have dgnsi_ties higher thamplme_ | [dictionary28 . dictionary ...
threshold, there is no harm in considering that the resulisis http:/www.cise.ufl.edu/ _
good as the “ground truth”. For each dense compondntthe research/sparse/matrices/Pajek/
intended construction, lev; be its vertex set. We comparné dictionary28 html
. . ot v . P NDwww31] Webpages within nd.edu domain.
with the extraction resulV;, and the F-score is defined as http://vlado.fmf.uni-lj.si/pub/
2 2 networks/data/ND/NDnets.htm
F;= i i = = . cmuSame[32] The 20 Newsgroups data set (three subsets)
— + |V;|~ + |V;|~ cmuDiff
precision  recall VinVi| = |VinVj cmuSim .
) MovieLens [33] The MovieLens data set.
Tab. 1l shows the average F-score for each comporiehy http://mww.grouplens.org/
simulating the graphs 100 times. It can be seen that theatixina taxonomy/term/14
results match the intended constructions quite well. newsgroup [34] | The 20 Newsgroups data set.

http://people.csail.mit.edu/
jrennie/20Newsgroups/

B. Real Graphs and Running Times

We tested the performance of our algorithms on real-lifplaga  The running times are shown in Tab. IV. Two aspects of the
with different sizes and from various application domaifhe experimental design are noted. First, the density thresfig],, is
graphs are listed in Tab. lll; they include a social networthe least important parameter in this experiment, sincéfects
(polblogs ), a biological networkyeast ), a citation network only the extraction time (the last column in the table), viahic
(hep), a trust network €pinions ), an information network is almost negligible compared with other times. This medlavh
(NDwwyy and graphs that represent the relationships betweiewlicates that the parameteéy,;, does not constitute a weakness
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(a) An undirected graph. (b) Dense subgraphs of (a). (c) A bipartite graph. (d) Dense subgraphs of (c).

Fig. 7. The extracted dense subgraphs of two simulated graph

of our algorithms—we can always tune the parameter in resd.ti 08 %0
We fixed dpmin to be 0.1 in this experiment. The second aspect . o
is the parameter, where recall that in Sec. IlI-B we insert- © g
nz(A) edges in the incremental connected component procesgm F30
This constructs an incomplete, yet probably sufficientrdrighy & g
T. The parameter directly affects the sorting time and the time °2 20
to compute the hierarchy. In most of the cases 1 is sufficient

. . . 0 10
to yield meaningful dense subgraphs, except that in a fewscas °© %2 04, 06 08 1 0 0z 04, 06 08 1

we tune the parameter to an appropriate value such thaabsir "~ N

subgraphs are extracted. The values @re listed in the table.
From Tab. IV we see that the proposed algorithms are efficiehig. 9. Percentage of vertices that belong to the extractede subgraphs.

A large part of the running time is spent on the matrix-matrix

multiplication (computingM or M), which is not difficult to

parallelize. Note that all the graphs are run on a singletdpsk D. A Blog Network Example

machine. In the future we will investigate parallel versiaf the . .
algorithms that can deal with massive graphs, at a minimal ru In this subsection we analyze the structure of a blog network
time ' polblogs . The data set, a network that connects bloggers of

different political orientations, was originally consttad around
the time of the 2004 U.S. presidential election, to study the
interactions between the two groups: liberal and conses/g7].
The graph contains 1,490 vertices, among which the first 788 a

To further understand the extraction results, we plot in Big liberal blogs, and the remaining 732 are conservative. Ageed
the distribution of the dense subgraph sizes. We experedenin the graph indicates the existence of citations betweertwio
with two graphs: a collaboration networkep) and a dictio- blogs. As can be seen from Figure 10(a), there are much denser
nary graph dictionary28 ), using various density thresholds.links between blogs that hold the same political orientatican
Within each plot, the horizontal axis is the size of a sublgramd between those with different leanings.
each plotted point shows the number of dense subgraphssof thiWe ran our algorithm on this graph by using different density
size. Remarkably, all the plots seem to indicate that thgrsydlh thresholds. A typical result is shown in plot (b), wheg,, = 0.4.
sizes follow the power law distribution—roughly speakirige Indeed, for all the thresholds we tried, only two dense sags
number P(z) of dense subgraphs is a power function of théof size larger thard) were identified. These two subgraphs
subgraph sizer, in the form P(z) oc 27 with v < 0. This adds perfectly correspond to the two politically oriented grsufhe
yet one more instance to the family of power laws previouslymaller subgraph (except for one vertex in the situationoof |
discovered on social and information networks [35], [36je t density thresholds) consists of conservative blogs, vasetbe
most notable of which is the power law distribution of thetegr larger subgraph consists of liberal blogs. Hence, thesestibsets
degrees. Each plot of Fig. 8 also shows a line that is the lea$tblogs are truly representative of the two groups.
squares fit to the plotted data in log-log scale. The slopehef t It is observed that the density of the smaller subgraph is in
line, which is essentially the exponentis typically in the range general larger than that of the larger subgraph. One cdpalus
from —3.5 to —1.5. from this is that conservative blogs tend to make a largerbaim

It is clear from our algorithms that the extracted dense corof citations to each other than liberal ones. This happeniseto
ponents resulting from a largek,,;, are all subgraphs of thosein agreement with the point made in [27] that “right-leaning
resulting from a smallei,,;,. This effectively means that in (conservative) blogs have a denser structure of strongemioms
the power law expressio®(z) « z7, the exponenty tends than the left (liberal)’, a result of a different analysisings
to decrease as the threshalg;, increases, since the extractedhe number of citations between different blogs. Howevieges
subgraphs become smaller and smaller. This can be seen fithen size of the liberal subgraph is much larger than that ef th
Fig. 8, where in general the fitted line becomes steep wihgn conservative (cf. plot (c)), an alternative conclusionhattmore
is increasing. Further, the total number of vertices théarmeto liberal blogs are willing to cite each other than conseweatines.
the extracted subgraphs will naturally decrease. A plog.(B) This is somehow opposite to the dense citations in conseevat
indicates that this decrease looks linear. blogs.

(a) hep (b) dictionary28

C. Power Law Distribution of the Dense Subgraph Sizes
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TABLE IV
RUNNING TIMES (UNIT: SECONDS FOR THE GRAPHS INTABLE IlI.

Graph Type V] |E| 7 | Similarity* Sorting Hierarchy Density’ Extractior?
polblogs directed 1,490 19,022 1 0.07 0.06 0.00 0.01 0.00
yeast undirected 2,361 6,646 1 0.00 0.03 0.00 0.01 0.00
Reuters911 undirected 13,332 148,038 1 1.58 0.59 0.02 0.05 0.00
foldoc directed 13,356 120,238 1 0.21 0.18 0.01 0.04 0.00
hep directed 27,770 352,768 1 2.10 1.14 0.06 0.15 0.00
epinions directed 49,288 487,182 3 3.86 2.04 0.12 0.17 0.02
dictionary28 undirected 52,652 89,038 1 0.22 0.11 0.04 0.08 0.01
NDwww directed 325,729 1,469,67930 13.98 42.07 2.46 0.67 0.07
Graph Type [V1] [Vl |E| 7 | Similarity? Sorting Hierarchy Density’ Extractior?
cmuSame | bipartite 3,000 5,932 263,326 1 11.81 0.51 0.01 0.08 0.00
cmuDiff bipartite 3,000 7,666 185,680 1 2.94 0.55 0.02 0.06 0.00
cmuSim bipartite 3,000 10,083 288,980 1 5.46 1.03 0.01 0.10 0.00
MovieLens bipartite 3,706 6,040 1,000,20910 40.26 5.59 0.58 0.28 0.00
newsgroup bipartite 18,774 61,188 2,435,2191 140.32 11.15 0.21 0.87 0.02

2 The time to computé/ or M, including the modification of4 in the bipartite graph case (cf. Sec. llI-A).
® The time to sortr - nz(A) nonzeros ofM or M (cf. Sec. Ill-B).

¢ The time to construct the hierarchy (cf. Sec. IlI-B).

4 The time to compute the densities of all the subgraphs in thetchy (cf. Sec. 11I-C).

€ The time to extract the dense subgraphs given a densityhthiceécf. Sec. 11I-C).
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(e) dictionary28 D dmin = 0.2.  (f) dictionary28 D dmin = 0.4. (@) dictionary28 * dmin = 0.6.  (h) dictionary28 *dmin = 0.8.

Fig. 8. Statistics of the extracted dense subgraphs foerdift density thresholds. The vertical axis is the numbeubfraphs, and the horizontal axis is
the subgraph cardinality. The plots are in log-log scalehE=®d line is a least squares fit to the data, with its slppedicated at the upper right corner of
each plot.

It is interesting to note here that plot (¢c) can suggest a way tonsecutive days by the news agency Reuters concerning the
select an “optimal” threshold,,;,,. In this particular casel,,;, = September 11 attack on the U.S., beginning at 9:00 AM EST
0.4 seems optimal, because beyond this point, the size of one911/01.” (See the link in Tab. Il for the description.) Ibrsists
the subgraphs starts decreasing significantly, whereas theno  of 13,332 words from these news reports, and two words are con
change wheni,,;,, grows from smaller values. nected if they appear in the same semantic unit (senteneg. her
By our technique (using a density threshalg;, = 0.5), we
extracted words that tend to be used together under suchtexton
such as those related to politidsouse of reps , senate ,

Words can be organized to form a network, where the strustutgouse , committee , capitol , hill , congressional
of the relations between words can be exploited in order tepublican , senator , democrat , those related to Arabic
analyze word usage and to understand linguistics. The datauntries and namesunisia , yahya, benaissa , ben,
set Reuters911 “is based on all stories released during 6&abib , morocco , rizig , syihab , and those related to the

E. A Text Network Example
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Dense subgraph extraction of a political blog nekwas shown in (a). Only two subgraphs (of size larger thpare identified for all the density

thresholds experimented with. Plot (b) shows the two suyiigrgusingd,,;, = 0.4) in red boxes. Plots (c) and (d) show the changes in the sizéshe

densities agl,;, varies.

economic impactanarket , stock , exchange , trade , wall

To measure the clustering quality of the documents, we céenpu

street

THE LARGEST GROUP OF WORDS THAT TEND TO APPEAR TOGETHER IN

attack
washington
afghan
troop
week
nation
new york
security
raid
opposition
hijack
flight
kandahar
bacterium
group

fbi

deadly
tower
state

man

TABLE V

911RELATED NEWS REPORTS

united states
afghanistan
american
tuesday
government
support

city

report
network
capital
suicide
authority

southern
target
information
letter

month

twin
saturday
member

pres bush

taliban
kabul

wednesday

friday
pakistan
time
war
new
america
hijacker
leader

stronghold

airport
campaign
mail

part
110-story

islamic
fighter

F. A Bipartite Graph Example

Bipartite graph models are common in text mining, rec-

official
country
al quaeda
military
thursday
saudi-born
terrorism
world
air
pakistani
aircraft
bomb
anthrax
possible
operation
test
threat

world trade ctr

muslim
agency

the entropy and the purity [41] of the document clusters. Eig
Perhaps the most important group of words (the largest eshows the plot. It indicates that the document clusters are,p
tracted subgraph) is listed in Tab. V. They can be used as kespecially when the density threshold is high. The plot alsmws
words to summarize the 911 tragedy and the stories behind itthe total number of clustered documents. It varies from 10% t
30% of the whole document set. From the document clusters, we
inspect the corresponding terms. We use the extractioritsesu

dmin = 0.9. In Tab. VI, we list the largest four term clusters, and

the newsgroup to which they (or most of them) correspond. It

people
bin laden N
force
day
monday
strike
terrorist
sunday
alliance
militant
plane
pentagon
case
white house
jet
dissident
federal
sept
11

Fig. 11.

ewsgroups.

can be seen that the words are very relevant to the topicseof th

0.8

0.6

0.4

0.2

e

S entropy
¢ purity
---clustered documents

clustered.

Clustering quality of the documents ewsgroup : entropy
and purity. “Clustered documents” is the percentage of omos that are

TABLE VI
THE LARGEST TERM CLUSTERS AND THE CORRESPONDING NEWSGROUPS

ommender systems, and other research fields. We show thik-politicsmideast talkpoliics.guns sci.crypt misrsale
. Injuries overwhelmed transfering cruising
newsgroup example where the dense subgraph extraction re-comatose conceded betwen barreling
sults can be interpreted as a partial co-clustering of thmageand boyhood crudely keyboards liscence
the documents. Unlike existing co-clustering approact8#g-| gra”'rs § dettfacmés numiock OCEUfa”CGd
. . evalue outrage: micronics reknowne:
[40] that return a complete clustering of. .the data matrixy ou oo revocation speedier copious
method returns only a subset of the entities where dense conmunicipalities mailbombing phantom loper
nections exist in each cluster. shaman confidentiality preffered armadillo

The data sethewsgroup (see Tab. Ill) is organized as a
term-document matrix, where there are approximately 18,77 '(368 in total)

documents from 20 different newsgroups. The dictionaryn(oer

(29 in total)

(28 intotal) (28 in total)

of terms) has size 61,188. The matrix represents a sparpé gra
where connections are drawn between two types of entities:
terms and documents. We extracted dense subgraphs using the
parameterd,,;, ranging from 0.1 to 0.9, and required that a We have proposed a method to extract meaningful dense
subgraph should consist of at least 5 documents and 3 termisbgraphs from a given sparse graph (either undirecteei;tdt,

V. CONCLUDING REMARKS



or bipartite). There are two major distinctions between pihe
posed method and previous ones that exploit complete clugte
techniques. First, the output subgraphs are guaranteecv® h
high densities (above a certain prescribed threshold)or&kc
the number of clusters, which is in general difficult to estie

is no longer a required parameter. The proposed algorithm is

inspired by a matrix approximate blocking technique whic

utilizes the cosine similarity of matrix columns. It effaety

builds a hierarchy for the graph vertices, and computes tiapar

clustering for them. The real-life examples of Section Idigate
that the uses of the algorithm are flexible and the results 38

meaningful.
In the proposed algorithm, we introduced a density threkhol

parameterd,;, to control the density of the output subgraphd4l

This parameter provides the flexibility needed to intexestyi

explore the graph structure and the resulting communitie=an

be tuned in real time, and results are easily visualized. ibg

[11]

[12]

[15]

example in Sec. IV-D has shown the appeal of exploiting such%9!

tunable parameter in understanding the extraction results

The experiment in Sec. IV-C unraveled what appears to beia)

new power law for large sparse graphs: the power law digidbu
of the dense subgraph sizes. It is still unclear if this eséng
phenomenon is intrinsic to real-life complex systems. Tawly
discovered structure may have an influence on understariding

sizes of the communities in social networks.

A future avenue of research is to design algorithms to ide
tify overlapping dense subgraphs. Many social and biokdgic
networks have shown empirically overlapping structuresens
communities do not have a distinct borderline. The idertifomn

[18]
[19
[20]

By

[22]

of such characters that connect different communities thage (23]

may help better understand the network systems. We intend(3@ p. Eppstein, z. Galil, and G. F. Italiano, “Dynamic graglgorithms.” in

explore how the algorithm proposed in this paper can be adapt

for this task.
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