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Finding Dense Subgraphs for Sparse Undirected,
Directed, and Bipartite Graphs

Jie Chen and Yousef Saad

Abstract— This paper presents a method for identifying a
set of dense subgraphs of a given sparse graph. Within the
main applications of this “dense subgraph problem”, the dense
subgraphs are interpreted as communities, as in, e.g., social
networks. The problem of identifying dense subgraphs helps
analyze graph structures and complex networks and it is known
to be challenging. It bears some similarities with the problem
of reordering/blocking matrices in sparse matrix techniques.
We exploit this link and adapt the idea of recognizing matrix
column similarities, in order to compute a partial clustering
of the vertices in a graph, where each cluster represents a
dense subgraph. In contrast to existing subgraph extraction
techniques which are based on a complete clustering of the graph
nodes, the proposed algorithm takes into account the fact that
not every participating node in the network needs to belong
to a community. Another advantage is that the method does
not require to specify the number of clusters; this number is
usually not known in advance and is difficult to estimate. The
computational process is very efficient, and the effectiveness of
the proposed method is demonstrated in a few real-life examples.

Index Terms— Dense subgraph, social network, community, bi-
partite graph, matrix reordering, hierarchical clusterin g, partial
clustering.

I. I NTRODUCTION

A challenging problem in the analysis of graph structures is
the dense subgraph problem, where given a sparse graph,

the objective is to identify a set of meaningful dense subgraphs.
This problem has attracted much attention in recent years due
to the increased interest in studying various complex networks,
such as the World Wide Web (information network), social
networks, and biological networks, etc. The dense subgraphs
are often interpreted as “communities” [1]–[4], based on the
basic assumption that a network system consists of a number
of communities, among which the connections are much fewer
than those inside the same community.

The recent data mining literature has seen various techniques
for approaching this problem from different aspects. With the
knowledge of a few important nodes as sources, the Web can
be considered a flow network and max-flow/min-cut algorithms
can be applied to identify communities centered at the source
nodes [3]. In [5], a greedy randomized adaptive search procedure
is proposed to detect massive dense subgraphs with high densities.
In [6], bipartite graphs are considered and dense subgraphs
are iteratively grown by using local search heuristics. A graph
clustering approach [7], based on expansions and inflationsof
the stochastic matrix, was proposed to identify intrinsic clusters
in the graph. In many biological networks, communities that
consist of a chain of adjacent cliques are of special interest,
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and many methods have been proposed for the detection of such
communities [8], [9]. It is beyond the scope of this paper to list
the many existing approaches in such emerging applications.

Among the techniques studied, a popular methodology is to
exploit graph partitioning techniques for outputting a setof parti-
tions, each of which is interpreted as a community. A broad set of
partitioning techniques, such as hierarchical clustering[10], [11],
spectral partitioning [12], [13], and multilevel graph partitioning
(e.g. METIS [14]), have been proposed or adapted for this pur-
pose. A common drawback for these methods is that the number
k of partitions is a mandatory input parameter, and the change
of k may result in a very different partitioning result, except
for perhaps hierarchical based approaches. In most applications,
the numberk is not known a priori. A number of researchers
proposed to remedy this difficulty by tracking a goodness measure
of the partitioning as a function ofk. Some measures, such as
the conductance [4] and the modularity [11], are empirically
studied to have local peaks or valleys, hence an optimal value
for k is possible to obtain. However, this remedy may not
always be practical due to its expensive computational cost.
Furthermore, most of these methods yield acomplete clustering
of the data. A more crucial question when attempting to discover
communities in this way is: “Why should every node belong to
some community?”

In this paper, we propose a schematic approach to understand
the structure of a graph and identify its dense components. Its
main features are (i) a partial clustering of the graph vertices
where each cluster represents a dense subgraph, (ii) a density
concept with which communities are quantitatively measured, and
(iii) a hierarchy of the vertices such that a density threshold can
be conveniently modified and the corresponding subgraphs can
be computed in real time. Indeed, there have been many density-
based approaches proposed in the past (e.g., [5], [9]), but none
possesses such a combination of features. An advantage of our
approach is that a complete clustering of the vertices is avoided,
even with the presence of a hierarchy as an outcome. (A hierarchy
can be cut at some level to form a complete clustering.) The
real merit of this approach is that we can navigate the hierarchy
and adjust the density threshold (at almost no time cost) until
a desirable result is achieved. Note that the term “dense” is
somewhat ambiguous. The interpretation of this term in the study
of social networks seems to be in a relative sense: A community
is defined simply because the inner connections are much denser
than the intra connections; however, the inner connections(the
subgraph itself) may still be sparse. On the other hand, the term
“density” is rigorous and it can be defined on mathematical terms.
In this paper, we opt to identify subgraphs whose densities are
beyond a certain threshold.

We point out that the problem studied here is different from the
densest subgraph problem[15], [16] or the densestk-subgraph
problem[17]–[19], both of which aim at identifying the subgraph
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which has thehighestdensity. Instead, we are interested in finding
a number of subgraphs that have a high enough density (not
necessarily the densest). Of course, one possible approachto
our problem consists of a gradual procedure whereby the densest
subgraph is extracted and then removed from the original graph,
and the process is repeated on the resulting reduced graph asmany
times as desired. However, the removal of the densest subgraph
from the original graph may lead to a number of undesirable
results. For example, the resulting subgraphs may have extremely
different densities, and/or sizes. Our approach, being more global
and progressive, is not prone to such extreme imbalances. Itmay
be possible to adapt these techniques for the problem at handbut
this will not be investigated here.

II. D ENSESUBGRAPHSEXTRACTION

Given a sparse graphG(V, E) which consists of the vertex
set V and the edge setE, we are interested in identifying
dense subgraphs ofG. To be precise, the candidate subgraphs
should have densities higher than a threshold value in orderto
be interesting. We consider the following three types of graphs,
with an appropriate definition ofdensityfor each one.

1) Undirected graphs. Undirected graphs are the most common
models of networks, where the directions of the connec-
tions are unimportant, or can be safely ignored. A natural
definition of the graph density is the ratio of|E| over the
cardinality of the edge set of the complete graph with the
same vertex setV , i.e.,

dG =
|E|

|V |(|V | − 1)/2
. (1)

Note thatdG ∈ [0, 1], and a subgraph has the density one
if and only if it is a clique.

2) Directed graphs. The density of a directed graph is defined
as

dG =
|E|

|V |(|V | − 1)
, (2)

since the maximum number of possible directed edges
cannot exceed|V |(|V | − 1). In other words, the density
of a directed graph also lies in the range from0 to 1. It
is interesting to note that if we “undirectify” the graph,
i.e., remove the directions of the edges and combine the
duplicated resulting edges, we yield an undirected graph
G̃(V, Ẽ) with the edge set̃E. Then,

1

2
d

G̃
≤ dG ≤ d

G̃
.

An immediate consequence is that if we extract the sub-
graphs of the undirected version of the graph given a density
threshold, we essentially obtain directed subgraphs with
densities at least half of the threshold.

3) Bipartite graphs. A bipartite graph is an undirected graph
whose vertex setV can be partitioned in two disjoint subsets
V1 andV2, such that every edge connects a vertex fromV1

and one fromV2. There are several reasons to consider
bipartite graphs separately from general undirected graphs.
The most important one is that a bipartite graph is generally
used to model the connections between two different types
of entities in a data set, such as the relationship between
documents and terms, that between customers and products,
etc. Also, as will soon be discussed, the proposed dense
subgraph extraction algorithm for a general undirected

graph does not directly apply to the bipartite graph case.
Finally, the density of a bipartite graph, as computed by
formula (1) can never reach one for bipartite graphs. In fact
it is an easy exercise to show that the density of an arbitrary
bipartite graph, as defined by formula (1) cannot exceed
the maximum value of0.5|V |/(|V | − 1), which is close
to 1/2 for large graphs. Thus, we consider a the following
alternative definition for the density of a bipartite graph:

dG =
|E|

|V1| · |V2|
. (3)

According to this definition,dG ∈ [0, 1], and a subgraph
has the density one if and only if it is a biclique.

The adjacency matrixA of the above three types of graphs
has specific patterns. Throughout the paper, we assume thatA is
sparse, because we are considering subgraphs of asparsegraph.
We also assume that the entries ofA are either0 or 1, since the
weights of the edges are not taken into account for the density
of a graph. In all cases, the diagonal ofA is empty, since we
do not allow self-loops. For undirected graphs,A is symmetric,
whereas for directed graphs,A is only square. A natural matrix
representation of a bipartite graph is a rectangular matrixB,
whereB(i, j) is nonzero if and only if there is an edge connecting
i ∈ V1 andj ∈ V2. The adjacency matrix for such a bipartite graph
is indeed

A =

»

0 B

BT 0

–

,

where the vertices fromV1 are ordered before those fromV2.
Note that the diagonal blocks ofA are zero for a bipartite graph.
Also, note that there are situations where we do not know that
the given undirected graph is bipartite in advance, i.e.,A is given
in a permuted form where the above2 × 2 block structure is
not revealed. In such a case, a simple strategy adapted from the
breadth first search can be used to check if the inherent undirected
graph is bipartite, and if so to extract the two disjoint subsets.

The dense subgraphs extraction methods proposed in this paper
are inspired by the so-calledmatrix blockingproblem [20], [21],
which is introduced along with an efficient technique in the next
subsection. Naively applying the technique to our problem may
not be effective; nevertheless, the technique bears the basic ideas
and ingredients of the main algorithms proposed later for the
dense subgraph problem.

A. Matrix Blocking

Blocking is a vital ingredient of preconditioning methods.
In such methods an approximate Gaussian elimination, i.e.,an
Incomplete LU (ILU) factorization is performed. This approxi-
mation is then used to improve the convergence of an iterative
method [22]. Block ILUs perform this elimination with dense
blocks and so the matrix is stored in a block format. The blocking
of the matrix may be exact and known in advance or an approxi-
mate blocking may be sought by some automatic tool as is done
in [21]. The main motivation for these techniques is that block
preconditiong methods are known to yield better convergence than
scalar ones, see [21], [22] and references therein. In addition, they
are more economical since they tend to use more compact storage
schemes. Fig. 1(b) illustrates the effects of blocking, where the
nonzero entries ofA are moved toward the diagonal.

A simple yet effective blocking algorithm [21] exploits the
similarities between a pair of columns in thepattern matrixP



3

(a) A. (b) A after reordering.

i j k

(c) Three columns of the reordered
matrix A.

Fig. 1. A blocking of a sparse symmetric matrixA.

of A. Recall thatP is obtained fromA by simply replacing
its nonzero entries by ones. The rationale behind this is that
the nonzero patterns of two columns corresponding to the same
block should be more similar than those of the two columns that
correspond to different blocks. To be specific, let some dense
block of the reorderedP correspond to a subset of verticesVs.
Also, let i, j ∈ Vs andk /∈ Vs; see Fig. 1(c). The heuristic is that
the cosine of the angle between thei-th and thej-th columns of
P is large, whereas that of thei-th and thek-th (or thej-th and
the k-th) columns is small, sincei andj correspond to the same
dense block butk does not. The blocking algorithm is to find
maximal subsets ofV such that inside the same subset, for each
vertexi, there exists a vertexj 6= i such that the cosine ofP (:, i)

andP (:, j) is larger than a predefined threshold.
The adjacency matrix of an undirected graph plays exactly

the same role asP here. Roughly speaking, the goal of dense
subgraph extraction is to reorder the adjacency matrix and to
find the dense diagonal blocks, each of which represents a dense
subgraph. One is tempted to directly apply the above algorithm
on the adjacency matrix of a given graph. However, a difficulty
arises when choosing an appropriate similarity threshold.A
further concern is that each block should employ a different
threshold. For example, two columns corresponding to a larger
block have a higher probability of yielding a larger cosine than
those corresponding to a smaller block.

B. The Case of Undirected Graphs

Consider the matrixM that stores the cosines between any two
columns of the adjacency matrixA:

M(i, j) =
〈A(:, i), A(:, j)〉

‖A(:, i)‖ ‖A(:, j)‖
. (4)

By reordering and partitioning the rows and columns ofM in
the same way asA, the above mentioned algorithm (by using
a predefined similarity threshold) effectively yields a specially
structuredM : Entries outside the diagonal blocks ofM , are
all smaller than the threshold, whereas inside each non-trivial
diagonal block, there exists at least one entry larger than the
threshold for each row/column. Fig. 2(b) shows an illustration.

To avoid setting a fixed similarity threshold, we consider
all possible ones as represented by the nonzero entries ofM

(excluding the diagonal ofM , where the similarities between
a column and itself is not useful at all). Going in ascending
order of these entries, we set them to zero one by one. At some
point after a few entries have been zeroed,M becomes a2 × 2

block-diagonal matrix: the two off-diagonal blocks are completely
zero (Fig. 2(c)). The last entry that was set to zero is a critical
threshold, since by this value the rows and columns ofM are
partitioned in two subsets, and no smaller values can yield a
partitioning. Once this initial partitioning is obtained,the zero-
setting procedure is performed recursively on the two resulting
partitions.

The above procedure can be precisely stated in the language
of hierarchical clustering. Given an undirected graphG(V, E)

and its adjacency matrixA, we construct a weighted graph
G′(V, E′) whose weighted adjacency matrixM is defined in (4).
Assume without loss of generality thatG′ is connected (otherwise
process each connected component ofG′ separately). A top-
down hierarchical clustering of the vertex setV is performed
by successively deleting the edgese′ ∈ E′, in ascending order
of the edge weights. WhenG′ first becomes disconnected,V

is partitioned in two subsets, each of which corresponds to a
connected component ofG′. Then, the edge-removal process is
continued on these two components to partition them in turn.

One detail that is left is to decide when to terminate the
recursions. Recall that the objective is to find meaningful dense
subgraphs ofG. Therefore, the usual termination criterion—
stopping when each partition contains only one vertex—is not
necessary. Instead, termination will take place when the density
of the partition passes a certain density thresholddmin. Thus, a
subset of the vertices is no longer partitioned if the corresponding
subgraph has a density≥ dmin. The only exception is that
some subsets never meet this requirement and are recursively
partitioned until they result in trivial subgraphs consisting of
singletons. These singletons bear no interest and are ignored.

Algorithm 1 summarizes the proposed method. As an example,
we consider a graph with18 vertices and29 edges as shown in
Fig. 3(a). (This example comes from a figure in [4].) A visual
inspection results that the graph has a dense component that
contains vertices1 to 7 (and possibly vertex10), as well as
a plausible dense, though small, component{14, 15, 16}. The
first step is to compute the similarity matrixM and to sort its
nonzero entries, as listed in (b). We construct the graphG′ using
the weighted adjacency matrixM . Starting from the smallest
entry in the list, we remove edges ofG′ one by one untilG′

becomes disconnected. The two resulting subsets of vertices are:
{1, . . . , 13, 17, 18} and {14, 15, 16}. The latter subset happens
to yield a subgraph that has a density higher than the desired
threshold0.75. Hence, it is output as a dense subgraph. On the
other hand, the former subset does not yield a subgraph satisfying
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(a) A. (b) M and its blocking. (c) M with the first batch of
nonzero entries set to zero.

Fig. 2. An adjacency matrixA and its similarity matrixM . Plot (b) shows a partitioning ofM by using a similarity threshold0.5. Plot (c) shows the first
partitioning ofM in a recursive partitioning.

Algorithm 1 Finding Dense Subgraphs of a Sparse Undirected
Graph
Input: Sparse undirected graphG, density thresholddmin.

1: Construct G′ with the weighted adjacency matrixM as
defined in (4).

2: Let C be the array of tuples(i, j, M(i, j)), for all nonzero
M(i, j) and i < j, sorted in ascending order ofM(i, j).

3: Run DENSE-SUBGRAPHS(G, G′, C, dmin).

4: function DENSE-SUBGRAPHS(G, G′, C, dmin)
5: k ← 0

6: while G′ is connecteddo
7: Delete edge{C[k].i, C[k].j}.
8: k← k + 1

9: end while
10: Let the two connected components ofG′ be

G′

s(Vs, E′

s) andG′

t(Vt, E
′

t).
11: Let the two corresponding subgraphs ofG be

Gs(Vs, Es) andGt(Vt, Et).
12: if dGs

≥ dmin then
13: OutputGs as a dense subgraph.
14: else if |Vs| > 1 then
15: Let Cs be the subarray ofC, whereCs[k].i ∈ Vs

andCs[k].j ∈ Vs for all k.
16: DENSE-SUBGRAPHS(Gs, G′

s, Cs, dmin)
17: end if
18: Repeat lines 12–17 withVs, Gs, G′

s, Cs replaced
by Vt, Gt, G′

t, Ct.
19: end function

the density requirement, so it is successively partitioned, until the
subset{2, 5, 3, 1, 4, 7, 6} is reached. This gives the other dense
subgraph. Fig. 3(c) shows the resulting hierarchy/dendrogram.
The output dense subgraphs are kept being partitioned in the
hierarchy just for illustration purposes.

Note that although the described algorithm is derived from the
idea of matrix blocking, it turns out that it can be explained
from another angle, which has been for long understood by
sociologists: Build a dendrogram of the graph vertices, and
interpret the clustering information from the dendrogram [23].
Yet there are two main differences here. The first is the similarity
measure used for building the dendrogram. The interpretation of
the cosine similarity we use here is that if two vertices share many
neighbors and the shared neighbors constitute a large portion

of all the neighbors of the two vertices, then they two have a
higher tendency to be grouped together, or a lower tendency to
be separated. Thus, they should belong to a community/subgraph.
The second is the interpretation of the dendrogram. Insteadof
outputting the dendrogram as is, or cutting the dendrogram at a
specific level to yield a predefined number of clusters, we walk
the dendrogram in a top-down fashion and return clusters only
when they have high densities. All the returned clusters, when
combined, do not constitute a complete partitioning of the graph;
they only represent the dense parts of the graph.

C. The Case of Directed Graphs

The adjacency matrixA of a directed graph is square but not
symmetric. When Algorithm 1 is applied to a non-symmetric
adjacency matrix, it will result in two different dendrograms,
depending on whetherM is computed as the cosines of the
columns of A, or the rows ofA. There may be applications
where the direction is required and one can choose to performthe
analysis with eitherA (outgoing edges) or its transpose (incoming
edges). However, in most applications, symmetrizing the graph
is a sensible strategy because an incoming edge and outgoing
edge have a similar “cost” (think in terms of communicationsin
parallel algorithms for example). This is often performed for the
somewhat related problem of graph partitioning for example. In
the following we symmetrize the matrixA and use the resulting
symmetric adjacency matrix to compute the similarity matrix M .
The rest of the procedure follows Algorithm 1.

Note that this technique is equivalent to removing the directions
of the edges inG, and extracting dense components from the undi-
rected version of the graph. As discussed at the very beginning of
this section, given an input parameterdmin, the output directed
subgraphs have densities guaranteed to be at leastdmin/2. If the
occurrence of edge pairs(v1, v2) and (v2, v1), wherev1 and v2

are two vertices, is rare, the densities of the output subgraphs will
even be much higher.

D. The Case of Bipartite Graphs

Unfortunately, Algorithm 1 does not work for a bipartite graph
where the vertex setV consists of two disjoint subsetsV1 and
V2. To see this, consider its adjacency matrix

A =

»

0 B

BT 0

–

,
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(a) The graphG.

i j M(i, j)

10 3 0.1890

10 5 0.2041

16 3 0.2182
...

...
...

4 1 0.8944

12 11 1.0000

9 8 1.0000

(b) Sorted nonzeros ofM .

2 5 3 1 4 7 6 10 18 8 9 11 12 17 13 14 15 16

(c) The dendrogram.

Fig. 3. Two dense subgraphs (encapsulated in the red dashed frames) are found for a sparse undirected graph as shown in (a). The density threshold
dmin = 0.75.

where B(i, j) = 1 if there is an edge connectingi ∈ V1 and
j ∈ V2, andB(i, j) = 0 otherwise. Then, the matrixM defined
in (4) has the following form:

M =

»

M1 0

0 M2

–

, (5)

whereM1 (resp.M2) contains the cosine similarities between the
rows (resp. columns) ofB. That is, without any edge removal of
the graphG′ (using M as the weighted adjacency matrix), the
vertex set is already partitioned into two subsets:V1 andV2. Any
subsequent hierarchical partitioning will only further subdivide
these two subsets separately. This dilemma arises because we
characterize the graph vertices inside a community by usingthe
concept of “sharing neighbors”. The only opportunity for two
vertices to share common neighbors in a bipartite graph is that
they both belong to a same subsetVi. However, when considering
a subgraph which consists of vertices from a singleVi, this
subgraph always has a zero density, thus eventually no subgraphs
will be output from the algorithm.

One way to overcome the difficulty of Algorithm 1 when
applied to bipartite graphs, is to perform a partial clustering
separately for the rows and for the columns ofB, by using
the same similarity idea of Algorithm 1. In essence this is
similar to the first approach suggested for directed graphs where
the application warrants to differentiate between incoming and
outgoing edges. It is equivalent to finding subsets ofVi where
vertices share similar neighbors (from the complement ofVi).
However, separate subsets do not directly imply a dense subgraph
of the original bipartite graph, i.e., for both sides of the bipartite
graph. Alternatively, we opt to use an approach that shares the
spirit of co-clustering: Find two subsets,Vs ⊂ V1 and Vt ⊂ V2,
simultaneously, such that they are densely connected.

A reasonable strategy for purpose is to augment the original
bipartite graph by adding edges between some of the vertices
that are connected by a path of length two. Clearly, this willadd
edges between vertices of the sameVi, making the graph a regular
undirected graph. This will not change the density structure of
the bipartite graph itself; rather, it encourages the discovery of
the dense components. IfVs and Vt are densely connected, we
can add enough edges between the vertices inVs and also edges
between those inVt, then all the vertices inVs ∪ Vt will appear
so densely connected thatVs ∪ Vt can be easily extracted by
a blocking algorithm. Fig. 4 illustrates an extreme case. The
bipartite graph consists of three bicliques. If we artificially fill in

edges between vertices inside the same biclique as shown in (b),
then a blocking algorithm will easily recognize the three cliques
in (c) and hence extract the three corresponding bicliques.

The question is what edges to add, since we do not know
Vs and Vt. The similarity matricesM1 (and M2) in (5) are
especially useful for answering this question. Consider two ver-
tices, vs1

, vs2
∈ Vs, for example. The fact thatVs and Vt are

densely connected implies the high likelihood thatvs1
and vs2

share similar neighbors. In other words, the two columns inA,
which vs1

and vs2
correspond to, have a large cosine similarity.

Therefore, it is natural to add an edge betweenvs1
and vs2

.
From the perspective of the similarity matrix, this is to choose
the largest entries ofM and add them toA. To be precise, we
modify the adjacency matrixA of a given bipartite graph into

Â =

"

M̂1 B

BT M̂2

#

, (6)

where M̂1 (resp. M̂2) is obtained by erasing the diagonal and
keeping only the2|E| largest nonzero entries ofM1 (resp.M2),
and|E| is the number of edges in the original graph (i.e., it equals
the number of nonzeros ofB).

Once the densification process yields the modified adjacency
matrix Â, which represents the augmented graph, we proceed to
calculate the similarity matrixM̂ :

M̂(i, j) =

D

Â(:, i), Â(:, j)
E

‚

‚

‚Â(:, i)
‚

‚

‚

‚

‚

‚Â(:, j)
‚

‚

‚

, (7)

which is used to build the hierarchy for the vertex setV = V1∪V2.
Algorithm 2 summarizes the steps. Note that the procedure
DENSE-SUBGRAPHS(G, G′, C, dmin) has been introduced in
Algorithm 1.

A toy example is shown in Fig. 5. The blue-green coloring
indicates the two disjoint subsets:V1 = {1, 2, . . . , 8} and V2 =

{9, 10 . . . , 13}. A visual inspection results that the bipartite graph
consists of two dense components: all the vertices to the left
of 6 (including 6) contribute to one component, and the rest of
the vertices (arranged in a hexagon shape) form the other. The
densification of the graph, as shown in (b), further convinces
the conjecture of the two dense components. Using the modified
weighted adjacency matrix̂A, we computeM̂ and perform a
hierarchical clustering similar to the one shown in Fig. 3(c). By
using a density thresholddmin = 0.5, it happens that two dense
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(a) Adjacency matrixA. (b) A after edge fill-in. (c) Blocking of the matrix in (b).

Fig. 4. A bipartite graph with the effect of edge fill-in.
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(a) Bipartite graphG.
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(b) Densification ofG. Weights of the fill-in
edges (dashed) have not been shown.

1 11 2 9 3 10 6 5 7 8 4 12 13

(c) The dendrogram constructed from (b).

Fig. 5. Two dense subgraphs (encapsulated in the red dashed frames) are found for a sparse bipartite graph as shown in (a).The density thresholddmin = 0.5.

Algorithm 2 Finding Dense Subgraphs of a Sparse Bipartite
Graph
Input: Sparse bipartite graphG, density thresholddmin.

1: [Densification:] Modify the adjacency matrixA of G into Â

as defined in (6).
2: Construct G′ with the weighted adjacency matrix̂M as

defined in (7).
3: Let C be the array of tuples(i, j, M̂(i, j)), for all nonzero

M̂(i, j) and i < j, sorted in ascending order of̂M(i, j).
4: Run DENSE-SUBGRAPHS(G, G′, C, dmin).

subgraphs are extracted, exactly the same as what we conjecture
by visual inspection:{1, 2, 3, 9, 10, 11} and{4, 5, 6, 7, 8, 12, 13}.

A question may be asked why one shall not use Algorithm 2
as a universal solution for all the three types of graphs: undi-
rected, directed, and bipartite. Indeed, in all cases the graph is
canonically associated with a matrix (either the square matrix A

for undirected/directed graphs, or the rectangular matrixB for
bipartite graphs). As was stressed earlier, this approach would
build the hierarchy for both the rows and the columns ofB. this
simultaneity of the blocking on each side of the bipartite graph is
a feature in a way that is similar to the problem of co-clustering.
On the other hand, for a general undirected graph, both sidesof
the matrixA represent the same set of vertices, in which case a
co-clustering is not sensible.

III. I MPLEMENTATION AND COMPUTATIONAL COSTS

Despite the conceptual simplicity of the ideas described inthe
previous section, a careful design is needed to obtain efficient
algorithms. This section discusses several important details that
will lead to an efficient implementation. The computationalcom-
plexities of these implementations will also be considered. As

will soon be seen, most of the steps have a computational cost
only linear to the number of vertices in the graph, except that
in addition we need to sort an array of size also linear in this
number. Thus, the proposed methods have the potential of being
scalable to very large data sets. However, it is noted that there
may be large prefactors in this simple big-O notation. As a result,
to complement this incomplete theoretical analysis, we show in
Section IV-B actual run times for a collection of real-life graphs
from various application domains.

Some additional notation is needed. For a given graphG(V, E),
the number of vertices is|V |, and the number of edges is|E|.
SinceG is sparse, we typically assume that|E| = O(|V |). If the
graph is undirected, then the adjacency matrixA has n = |V |

rows/columns andnz(A) = 2|E| nonzero entries. If the graph
is directed, thenA hasn = |V | rows/columns andnz(A) = |E|

nonzeros. Further, if the graph is bipartite, the two disjoint subsets
have cardinalities|V1| = n1 and |V2| = n2. Thus, the matrixB
has sizen1×n2 with nz(B) = |E| nonzero entries. The adjacency
matrixA of a bipartite graph has sizen×n = (n1+n2)×(n1+n2)

with nz(A) = 2|E| nonzero entries. In all cases, we havenz(A) =

O(n).

A. The Computation ofM (M̂ )

According to Eqn. (4), a naive way of computingM has the
time complexityO(nz(A)2) = O(n2), since to compute an entry
M(i, j) takes time proportional to the sum of the numbers of
nonzeros ofA(:, i) andA(:, j). However, note thatM is equal to
XT X, whereX is the matrixA with each column normalized. A
further investigation of Eqn. (6) (or (5)) indicates that the matrices
M1 andM2 also take the formXT X. Thus, an efficient way of
computingM andM̂ is to exploit the fact thatX is sparse.

In the sequel, we consider how to multiply a sparse matrixX

by its transpose:
Y = XT X := ZX,
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whereZ = XT . The most efficient way in practice is to compute
Y row by row. Note that

Y (i, :) =
X

j

Z(i, j)X(j, :).

Thus, we first transposeX into Z, then for each rowi of Z, we
compute a weighted sum of the rows ofX which correspond to
the nonzero elements in rowi of Z. A particular issue is how
to compute this weighted sum in time proportional to the total
number of nonzeros involved, instead of to the length of a rowof
X. The technique is to pre-allocate two working arraysa and b,
each of which has a size the same as a row ofX. When computing
row i of Y , we find the nonzero entriesZ(i, j), and for eachj, we
add the nonzeros ofX(j, :) multiplied byZ(i, j) into the working
arraya, and store the information of which locations ofa has been
changed in the working arrayb. Then after the weighted sum is
computed, we use the information inb to reset the arraya to zero
and also erase the content inb, then proceed to the nexti.

Let the maximum number of nonzeros per row ofX be p.
Then the upper bound of the time cost of the above technique
for computingXT X is O(p · nz(X)), since to compute thei-th
row of Y takes timeO(p ·nz(Z(i, :))). In the average case,p can
be considered a constant, thus the total time cost simplifiesto
O(nz(X)). Also, transposingX has the same time complexity. In
the graph language,X is the column-normalizedA (or AT ), and
p means the maximum number of neighbors for a vertex. Thus,
the time cost of computingM (or M̂) is O(nz(A)) = O(n).

We should note that the above method is a standard technique
used for sparse matrix-matrix multiplications (cf. e.g., [22]).
Perhaps the only important point to retain is the surprisingfact
that it takes time only linear inn to multiply two sparse matrices,
assuming that the maximum numberp of nonzeros per row is
bounded by a constant. It is noted that for some real-life graphs
the degree of a vertex may follow a power low distribution,
which means thatp can become large for large graphs of a given
application. Nevertheless, in practice it is rare thatp will be O(n),
which leads to the situation that the computational cost will rise
to the forbiddingO(n2).

B. The Computation of the Hierarchy/Dendrogram

The routine DENSE-SUBGRAPHS(cf. Algorithm 1) essentially
computes a hierarchy of the graph vertices in a top-down fashion.
Recursive calls of this routine are very time consuming since
between lines 5 and 9, with each removal of an edge inG′, a graph
traversal procedure (such as the breadth first search) is needed to
examine the connectivity of the graph. However, as the two toy
examples (cf. Fig. 3(c) and 5(c)) suggest, it is entirely possible
to build the dendrogramT in an opposite way: the bottom-up
fashion.

The key is the arrayC which is sorted in ascending order of
the nonzero entriesM(i, j) (or M̂(i, j))1. It indicates the order of
the merges in the hierarchy/dendrogramT . Initially, each vertex
v ∈ V is a separate tree in the forest. Beginning from the end of
the arrayC, each time we have a pair(i, j). We find the roots
ri and rj of i and j, respectively. Ifri and rj are different, we
make a new rootr with the left child ri and the right childrj

1To reduce the complication in reading, we thereafter omit the text “(or
M̂ )” in this subsection. Readers are reminded that whenever the analysis is
applied to a bipartite graph, all the notions involvingM should be replaced
by M̂ .

(see Fig. 6). After iterating the whole arrayC, a single tree is
returned, which is nothing butT .

r

ri rj

i j

T

Fig. 6. The dendrogramT as a binary tree. Noder is the lowest common
ancestor ofi and j, andri andrj are the children ofr.

Note that the above process is equivalent to monitoring the
connected components of a graph when edges are successively
inserted (a.k.a. incremental connected components [24]).Initially
we have a virtual graph with the vertex setV but without edges.
When reversely iterating the arrayC, we merge the two subsetssi

andsj , which i andj belongs to respectively, ifsi 6= sj . Finally,
a single set, which contains all the vertices inV , is returned.

Therefore, we can utilize the two standard disjoint-set opera-
tions SET-FIND and SET-UNION to assist the process of building
T . When we iterateC and get a pair(i, j) each time, we first do
SET-FIND(i) → si and SET-FIND(j) → sj . If si = sj , nothing
is done. On the other hand, ifsi 6= sj , we call SET-UNION to
combinesi andsj. Meanwhile, we make a new noder which has
the ri and rj (stored with the disjoint-set data structure) as the
two children, and associater with the combined sets = si ∪ sj .

The total time of the above process can be split in two parts: (a)
the time of all the SET-FIND and SET-UNION calls, and (b) the
gross time to buildT . Part (a) is indeed the incremental connected
component process, which takes timeO(n + nz(M)), since the
graph G′ has n vertices andO(nz(M)) edges. Part (b), which
consists of making new nodes and assigning children, has a time
complexity linear to the size ofT , which is O(n).

We still can improve the performance. Recall that the whole
bottom-up process is nothing but to yield the graphG′ from a
collection of isolated vertices by successively insertingedges. We
can stop the insertion of edges at some point. This essentially
yield an incomplete hierarchy, which is the part ofT below
some level. We opt to stop after we have insertedO(n) edges. In
practice, the number of inserted edges can be simply set asnz(A),
or asτ ·nz(A) by introducing some coefficient parameterτ . This
may greatly reduce the cost of part (a) fromO(n + nz(M)) to
O(n), and also some minimal cost of part (b). By doing this, the
negative impact on the final dense subgraphs extraction process is
hoped to be minimal, since we only miss, if any, large subgraphs
that have not been formed by merging in the hierarchy. We still
are able to extract the dense parts of the hypothetically missing
large subgraphs. Another advantage is that instead of sorting the
nonzeros ofM in O(nz(M) log(nz(M))) time to make the array
C, we only need to sort theO(n) largest nonzeros inO(n log n)

time.
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C. Collecting Density Information and Extracting Dense Sub-
graphs

Recall that in the hierarchyT , each internal noder represents
a subgraph ofG whose vertices are the leaf nodes of the subtree
rooted atr. The dense subgraphs extraction process starts from
visiting the root ofT . If the subgraph corresponding to the current
node has the density higher than the input thresholddmin, it is
output; otherwise the two children of the current node are visited
and the whole process is recursive. Thus, the extraction process
is equivalent to a traversal ofT and is very cheap, given that the
densities of all the subgraphs have been computed and storedin
the internal nodesr.

In the following we discuss how the subgraph densities are
computed. For each internal noder of T , it is sufficient to store
two values: the numbernr of vertices the corresponding subgraph
contains, and the numberer of edges. The number of vertices can
be easily computed in a recursive way:nr = nri +nrj , whereri

andrj are the two children ofr. However, the computation ofer

is not that straightforward. It is the sum oferi , erj andec(ri,rj),
where ec(ri,rj) is the number of edges crossing the subgraphs
ri and rj represent. Thus, the computation ofer can be split
in two phases. The first phase is to computeec(ri,rj) for each
internal noder. The second phase is to recursively computeer =

eri + erj + ec(ri,rj) for noder from its two children.
Further explanations on howec(ri,rj) is counted are in order.

Recall in Fig. 6 thatr is the lowest common ancestor (LCA)
of i and j. Thus, we initializeer = 0 for all r. For each
edge{i, j} in the undirected graph (either the original graph, the
undirectified graph, or the densified graph), we find the lowest
common ancestorr of i and j and add1 to er. After iterating
all the edges, the temporaryer value for each internal noder
in the hierarchy is exactlyec(ri,rj), thus finishing phase one as
mentioned in the previous paragraph.

Currently, the most efficient LCA data structure answers
queries in constant time after a linear time preprocessing [25],
[26]. Thus, the time cost for phase one isO(n +nz(A)) = O(n),
since the treeT hasO(n) nodes and we need to find the lowest
common ancestors forO(nz(A)) pairs. This complexity applies
to all the three types of graphs, since even after modifications
(either undirectification or densification), the adjacencymatrix of
the graph always hasO(nz(A)) nonzeros. Therefore, the time cost
of computingnr ander for all nodesr in the hierarchy takes time
O(n). This is also the cost of the final dense subgraphs extraction
process, which simply consists of a traversal ofT .

In summary, the improved versions of the two algorithms
presented in Sec. II are shown in Algorithms 3 and 4, by in-
corporating the above discussions. These supersede Algorithms 1
and 2 in the rest of the paper. In the pseudocodes, the hierar-
chy/dendrogramT is a tree with the rootT.root. A node r in
the tree has the left childleft, the right child right, and the
densitydensity which is computed fromnum vertex (nr) and
num edge (er) according to the appropriate definition of density
introduced at the beginning of Sec. II.

IV. EXPERIMENTAL RESULTS AND APPLICATIONS

This section shows a few experimental results to illustrate
the efficiency and the effectiveness of the proposed algorithms
for extracting dense subgraphs. The experiments were performed
under a Linux desktop with four AMD Opteron Processors
(2.20GHz) and 16GB memory. The programs were not parallel

Algorithm 3 Finding Dense Subgraphs of a Sparse Undirected
Graph (Improved Version of Algorithm 1)
Input: Sparse undirected graphG, density thresholddmin.

1: Compute the matrixM as defined in (4).
2: Sort the largestt nonzero entries ofM in decreasing order,

wheret = nz(A). DenoteC the sorted array.
3: Construct the hierarchyT according to the sorted vertex pairs

designated byC.
4: COUNT-VERTICES-AND-EDGES(T , G)
5: Computer.density for all nodesr of T according to (1).
6: EXTRACT-SUBGRAPHS(T.root)

7: function COUNT-VERTICES-AND-EDGES(T , G)
8: Initialize r.num edge← 0 for all nodesr of T .
9: Construct the LCA data structure forT .

10: for all edge{i, j} of G do
11: Find the lowest common ancestorr of i and j.
12: r.num edge← r.num edge + 1

13: end for
14: COUNT-VERTICES-AND-EDGES-WRAP-UP(T.root)
15: end function

16: function COUNT-VERTICES-AND-EDGES-WRAP-UP(r)
17: if r.left 6= nil andr.right 6= nil then
18: COUNT-VERTICES-AND-EDGES-WRAP-UP(r.left)
19: COUNT-VERTICES-AND-EDGES-WRAP-UP(r.right)
20: end if
21: if r.left 6= nil andr.right 6= nil then
22: r.num vertex←

r.left.num vertex + r.right.num vertex

23: r.num edge←

r.left.num edge+ r.right.num edge+ r.num edge

24: else
25: r.num vertex← 1

26: end if
27: end function

28: function EXTRACT-SUBGRAPHS(r)
29: if r.density > dmin then
30: Output the leaves of the subtree rooted atr.
31: else if r.left 6= nil andr.right 6= nil then
32: EXTRACT-SUBGRAPHS(r.left)
33: EXTRACT-SUBGRAPHS(r.right)
34: end if
35: end function

and used only one processor. The algorithms were implemented
in C/C++, and the programs were compiled usingg++ with -O2
level optimization.

A. Simulations and Accuracies

In this subsection we show the dense subgraphs extraction
results of two simulated graphs. A visualization is shown in
Fig. 7. The graphs were randomly generated subject to the
parameters given in Tab. I. The simulated undirected graph has
three dense components/subgraphs, and the bipartite graphhas
four. We computed the densities of the dense components for
each graph, and used the smallest of the densities as the input
parameterdmin to our algorithms. The aim of this experiment
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Algorithm 4 Finding Dense Subgraphs of a Sparse Bipartite
Graph (Improved Version of Algorithm 2)
Input: Sparse bipartite graphG, density thresholddmin.

1: [Densification:] Modify the adjacency matrixA of G into Â

as defined in (6).
2: Compute the matrixM̂ as defined in (7).
3: Sort the largestt nonzero entries ofM̂ in decreasing order,

wheret = nz(Â). DenoteC the sorted array.
4: Construct the hierarchyT according to the sorted vertex pairs

designated byC.
5: COUNT-VERTICES-AND-EDGES(T , G). [Instead of counting

the number of verticesr.num vertex for each subgraph,
count the number of vertices that belong toV1 and V2 for
each subgraph, in a similar way.]

6: Computer.density for all nodesr of T according to (3).
7: EXTRACT-SUBGRAPHS(T.root)

is to show that the proposed algorithms are able to discover the
intended dense components when a good parameter is provided.
Other experiments for the situation when the density threshold is
unknown in advance will be discussed in later subsections.

TABLE I

SIMULATION PARAMETERS FOR THE GRAPHS INFIG. 7. FOR THE

UNDIRECTED GRAPH, EACH (s, t) PAIR MEANS A (SUB)GRAPH WITH s

VERTICES AND APPROXIMATELYt EDGES. FOR THE BIPARTITE GRAPH,

EACH (s1, s2, t) PAIR MEANS A (SUB)GRAPH WITH s1 + s2 VERTICES AND

APPROXIMATELY t EDGES.

Graph Undirected Bipartite
Whole (100, 2000) (100, 170, 1940)
Component 1 (25, 420) (20, 40, 370)
Component 2 (30, 550) (20, 35, 280)
Component 3 (20, 290) (17, 30, 260)
Component 4 (15, 45, 340)

The criterion we use to measure the “accuracy” of the ex-
tracted dense subgraphs is the F-score. Here, the term “accuracy”
only states how much the extracted subgraphs deviate from the
intended dense components. Indeed, a precise determination of
the dense subgraphs in each simulated case does not exist. As
long as the output subgraphs have densities higher than the input
threshold, there is no harm in considering that the result isas
good as the “ground truth”. For each dense componenti in the
intended construction, letVi be its vertex set. We compareVi

with the extraction result̃Vi, and the F-score is defined as

Fi =
2

1

precision
+

1

recall

=
2

|Vi|

|Vi ∩ Ṽi|
+

|Ṽi|

|Vi ∩ Ṽi|

.

Tab. II shows the average F-score for each componenti by
simulating the graphs 100 times. It can be seen that the extraction
results match the intended constructions quite well.

B. Real Graphs and Running Times

We tested the performance of our algorithms on real-life graphs
with different sizes and from various application domains.The
graphs are listed in Tab. III; they include a social network
(polblogs ), a biological network (yeast ), a citation network
(hep ), a trust network (epinions ), an information network
(NDwww), and graphs that represent the relationships between

TABLE II

ACCURACY OF THE EXTRACTED DENSE SUBGRAPHS. THE UPPER TABLE IS

FOR THE UNDIRECTED GRAPH, AND THE BOTTOM ONE IS FOR THE

BIPARTITE GRAPH.

Dense component 1 2 3
Average F-score 0.9844 0.9882 0.9694

Dense component 1 2 3 4
Average F-score 0.9720 0.9310 0.9755 0.9730

words (Reuters911 , foldoc , dictionary28 ), between
users and movies (MovieLens ), and between words and doc-
uments (newsgroup , cmuSame, cmuDiff , cmuSim). In this
subsection, we are mainly interested in the running times ofthe
algorithms as opposed to the graph sizes. Some of the graphs
will be mentioned again in later subsections for analyzing the
extraction results and understanding community structures. For
such graphs, more information related to the semantics of the
graphs will be presented when appropriate.

TABLE III

SOME REAL-LIFE GRAPHS.

Graph Description and Link
polblogs [27] A directed network of hyperlinks between web-

blogs on US politics.
http://www-personal.umich.edu/
˜mejn/netdata/

yeast [28] Protein-protein interaction network.
http://vlado.fmf.uni-lj.si/pub/
networks/data/bio/Yeast/Yeast.
htm

Reuters911 [29] Reuters terror news network.
http://www.cise.ufl.edu/
research/sparse/matrices/Pajek/
Reuters911.html

foldoc ... free on-line dictionary of computing ...
http://www.cise.ufl.edu/
research/sparse/matrices/Pajek/
foldoc.html

hep The citation graph of the hep-th portion of arXiv.
http://www.cs.cornell.edu/
projects/kddcup/datasets.html

epinions [30] Trust network of the users on Epinions.com.
http://www.trustlet.org/wiki/
Downloaded_Epinions_dataset

dictionary28 ... dictionary ...
http://www.cise.ufl.edu/
research/sparse/matrices/Pajek/
dictionary28.html

NDwww[31] Webpages within nd.edu domain.
http://vlado.fmf.uni-lj.si/pub/
networks/data/ND/NDnets.htm

cmuSame[32] The 20 Newsgroups data set (three subsets).
cmuDiff
cmuSim

MovieLens [33] The MovieLens data set.
http://www.grouplens.org/
taxonomy/term/14

newsgroup [34] The 20 Newsgroups data set.
http://people.csail.mit.edu/
jrennie/20Newsgroups/

The running times are shown in Tab. IV. Two aspects of the
experimental design are noted. First, the density threshold dmin is
the least important parameter in this experiment, since it affects
only the extraction time (the last column in the table), which
is almost negligible compared with other times. This meanwhile
indicates that the parameterdmin does not constitute a weakness
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(a) An undirected graph.
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(b) Dense subgraphs of (a).
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(c) A bipartite graph.
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(d) Dense subgraphs of (c).

Fig. 7. The extracted dense subgraphs of two simulated graphs.

of our algorithms—we can always tune the parameter in real time.
We fixed dmin to be 0.1 in this experiment. The second aspect
is the parameterτ , where recall that in Sec. III-B we insertτ ·
nz(A) edges in the incremental connected component process.
This constructs an incomplete, yet probably sufficient, hierarchy
T . The parameterτ directly affects the sorting time and the time
to compute the hierarchy. In most of the casesτ = 1 is sufficient
to yield meaningful dense subgraphs, except that in a few cases
we tune the parameter to an appropriate value such that desirable
subgraphs are extracted. The values ofτ are listed in the table.

From Tab. IV we see that the proposed algorithms are efficient.
A large part of the running time is spent on the matrix-matrix
multiplication (computingM or M̂), which is not difficult to
parallelize. Note that all the graphs are run on a single desktop
machine. In the future we will investigate parallel versions of the
algorithms that can deal with massive graphs, at a minimal run
time.

C. Power Law Distribution of the Dense Subgraph Sizes

To further understand the extraction results, we plot in Fig. 8
the distribution of the dense subgraph sizes. We experimented
with two graphs: a collaboration network (hep ) and a dictio-
nary graph (dictionary28 ), using various density thresholds.
Within each plot, the horizontal axis is the size of a subgraph, and
each plotted point shows the number of dense subgraphs of this
size. Remarkably, all the plots seem to indicate that the subgraph
sizes follow the power law distribution—roughly speaking,the
number P (x) of dense subgraphs is a power function of the
subgraph sizex, in the form P (x) ∝ xγ with γ < 0. This adds
yet one more instance to the family of power laws previously
discovered on social and information networks [35], [36], the
most notable of which is the power law distribution of the vertex
degrees. Each plot of Fig. 8 also shows a line that is the least
squares fit to the plotted data in log-log scale. The slope of the
line, which is essentially the exponentγ, is typically in the range
from −3.5 to −1.5.

It is clear from our algorithms that the extracted dense com-
ponents resulting from a largerdmin are all subgraphs of those
resulting from a smallerdmin. This effectively means that in
the power law expressionP (x) ∝ xγ , the exponentγ tends
to decrease as the thresholddmin increases, since the extracted
subgraphs become smaller and smaller. This can be seen from
Fig. 8, where in general the fitted line becomes steep whendmin

is increasing. Further, the total number of vertices that belong to
the extracted subgraphs will naturally decrease. A plot (Fig. 9)
indicates that this decrease looks linear.
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Fig. 9. Percentage of vertices that belong to the extracted dense subgraphs.

D. A Blog Network Example

In this subsection we analyze the structure of a blog network
polblogs . The data set, a network that connects bloggers of
different political orientations, was originally constructed around
the time of the 2004 U.S. presidential election, to study the
interactions between the two groups: liberal and conservative [27].
The graph contains 1,490 vertices, among which the first 758 are
liberal blogs, and the remaining 732 are conservative. An edge
in the graph indicates the existence of citations between the two
blogs. As can be seen from Figure 10(a), there are much denser
links between blogs that hold the same political orientation than
between those with different leanings.

We ran our algorithm on this graph by using different density
thresholds. A typical result is shown in plot (b), wheredmin = 0.4.
Indeed, for all the thresholds we tried, only two dense subgraphs
(of size larger than4) were identified. These two subgraphs
perfectly correspond to the two politically oriented groups: The
smaller subgraph (except for one vertex in the situation of low
density thresholds) consists of conservative blogs, whereas the
larger subgraph consists of liberal blogs. Hence, these twosubsets
of blogs are truly representative of the two groups.

It is observed that the density of the smaller subgraph is in
general larger than that of the larger subgraph. One conclusion
from this is that conservative blogs tend to make a larger number
of citations to each other than liberal ones. This happens tobe
in agreement with the point made in [27] that “right-leaning
(conservative) blogs have a denser structure of strong connections
than the left (liberal)”, a result of a different analysis using
the number of citations between different blogs. However, since
the size of the liberal subgraph is much larger than that of the
conservative (cf. plot (c)), an alternative conclusion is that more
liberal blogs are willing to cite each other than conservative ones.
This is somehow opposite to the dense citations in conservative
blogs.
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TABLE IV

RUNNING TIMES (UNIT: SECONDS) FOR THE GRAPHS INTABLE III.

Graph Type |V | |E| τ Similaritya Sortingb Hierarchyc Densityd Extractione

polblogs directed 1,490 19,022 1 0.07 0.06 0.00 0.01 0.00
yeast undirected 2,361 6,646 1 0.00 0.03 0.00 0.01 0.00

Reuters911 undirected 13,332 148,038 1 1.58 0.59 0.02 0.05 0.00
foldoc directed 13,356 120,238 1 0.21 0.18 0.01 0.04 0.00

hep directed 27,770 352,768 1 2.10 1.14 0.06 0.15 0.00
epinions directed 49,288 487,182 3 3.86 2.04 0.12 0.17 0.02

dictionary28 undirected 52,652 89,038 1 0.22 0.11 0.04 0.08 0.01
NDwww directed 325,729 1,469,67930 13.98 42.07 2.46 0.67 0.07

Graph Type |V1| |V2| |E| τ Similaritya Sortingb Hierarchyc Densityd Extractione

cmuSame bipartite 3,000 5,932 263,325 1 11.81 0.51 0.01 0.08 0.00
cmuDiff bipartite 3,000 7,666 185,680 1 2.94 0.55 0.02 0.06 0.00
cmuSim bipartite 3,000 10,083 288,989 1 5.46 1.03 0.01 0.10 0.00

MovieLens bipartite 3,706 6,040 1,000,20910 40.26 5.59 0.58 0.28 0.00
newsgroup bipartite 18,774 61,188 2,435,219 1 140.32 11.15 0.21 0.87 0.02
a The time to computeM or M̂ , including the modification ofA in the bipartite graph case (cf. Sec. III-A).
b The time to sortτ · nz(A) nonzeros ofM or M̂ (cf. Sec. III-B).
c The time to construct the hierarchyT (cf. Sec. III-B).
d The time to compute the densities of all the subgraphs in the hierarchy (cf. Sec. III-C).
e The time to extract the dense subgraphs given a density threshold (cf. Sec. III-C).
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Fig. 8. Statistics of the extracted dense subgraphs for different density thresholds. The vertical axis is the number ofsubgraphs, and the horizontal axis is
the subgraph cardinality. The plots are in log-log scale. Each red line is a least squares fit to the data, with its slopeγ indicated at the upper right corner of
each plot.

It is interesting to note here that plot (c) can suggest a way to
select an “optimal” thresholddmin. In this particular case,dmin =

0.4 seems optimal, because beyond this point, the size of one of
the subgraphs starts decreasing significantly, whereas there is no
change whendmin grows from smaller values.

E. A Text Network Example

Words can be organized to form a network, where the structures
of the relations between words can be exploited in order to
analyze word usage and to understand linguistics. The data
set Reuters911 “is based on all stories released during 66

consecutive days by the news agency Reuters concerning the
September 11 attack on the U.S., beginning at 9:00 AM EST
9/11/01.” (See the link in Tab. III for the description.) It consists
of 13,332 words from these news reports, and two words are con-
nected if they appear in the same semantic unit (sentence here).
By our technique (using a density thresholddmin = 0.5), we
extracted words that tend to be used together under such a context,
such as those related to politics:house of reps , senate ,
house , committee , capitol , hill , congressional ,
republican , senator , democrat , those related to Arabic
countries and names:tunisia , yahya , benaissa , ben ,
habib , morocco , riziq , syihab , and those related to the
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(d) Subgraph density.

Fig. 10. Dense subgraph extraction of a political blog network as shown in (a). Only two subgraphs (of size larger than4) are identified for all the density
thresholds experimented with. Plot (b) shows the two subgraphs (usingdmin = 0.4) in red boxes. Plots (c) and (d) show the changes in the sizes and the
densities asdmin varies.

economic impacts:market , stock , exchange , trade , wall
street .

Perhaps the most important group of words (the largest ex-
tracted subgraph) is listed in Tab. V. They can be used as key
words to summarize the 911 tragedy and the stories behind it.

TABLE V

THE LARGEST GROUP OF WORDS THAT TEND TO APPEAR TOGETHER IN

911-RELATED NEWS REPORTS.

attack united states pres bush official people
washington afghanistan taliban country bin laden
afghan american kabul al quaeda force
troop tuesday wednesday military day
week government friday thursday monday
nation support pakistan saudi-born strike
new york city time terrorism terrorist
security report war world sunday
raid network new air alliance
opposition capital america pakistani militant
hijack suicide hijacker aircraft plane
flight authority leader bomb pentagon
kandahar southern stronghold anthrax case
bacterium target airport possible white house
group information campaign operation jet
fbi letter mail test dissident
deadly month part threat federal
tower twin 110-story world trade ctr sept
state saturday islamic muslim 11
man member fighter agency

F. A Bipartite Graph Example

Bipartite graph models are common in text mining, rec-
ommender systems, and other research fields. We show the
newsgroup example where the dense subgraph extraction re-
sults can be interpreted as a partial co-clustering of the terms and
the documents. Unlike existing co-clustering approaches [37]–
[40] that return a complete clustering of the data matrix, our
method returns only a subset of the entities where dense con-
nections exist in each cluster.

The data setnewsgroup (see Tab. III) is organized as a
term-document matrix, where there are approximately 18,774
documents from 20 different newsgroups. The dictionary (number
of terms) has size 61,188. The matrix represents a sparse graph
where connections are drawn between two types of entities:
terms and documents. We extracted dense subgraphs using the
parameterdmin ranging from 0.1 to 0.9, and required that a
subgraph should consist of at least 5 documents and 3 terms.

To measure the clustering quality of the documents, we compute
the entropy and the purity [41] of the document clusters. Fig. 11
shows the plot. It indicates that the document clusters are pure,
especially when the density threshold is high. The plot alsoshows
the total number of clustered documents. It varies from 10% to
30% of the whole document set. From the document clusters, we
inspect the corresponding terms. We use the extraction results of
dmin = 0.9. In Tab. VI, we list the largest four term clusters, and
the newsgroup to which they (or most of them) correspond. It
can be seen that the words are very relevant to the topics of the
newsgroups.
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Fig. 11. Clustering quality of the documents innewsgroup : entropy
and purity. “Clustered documents” is the percentage of documents that are
clustered.

TABLE VI

THE LARGEST TERM CLUSTERS AND THE CORRESPONDING NEWSGROUPS.

talk.politics.mideast talk.politics.guns sci.crypt misc.forsale
injuries overwhelmed transfering cruising
comatose conceded betwen barreling
boyhood crudely keyboards liscence
pranks detractors numlock occurance
devalued outraged micronics reknowned
murderous revocation speedier copious
municipalities mailbombing phantom loper
shaman confidentiality preffered armadillo
...

...
...

...
(368 in total) (29 in total) (28 in total) (28 in total)

V. CONCLUDING REMARKS

We have proposed a method to extract meaningful dense
subgraphs from a given sparse graph (either undirected, directed,
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or bipartite). There are two major distinctions between thepro-
posed method and previous ones that exploit complete clustering
techniques. First, the output subgraphs are guaranteed to have
high densities (above a certain prescribed threshold). Second,
the number of clusters, which is in general difficult to estimate,
is no longer a required parameter. The proposed algorithm is
inspired by a matrix approximate blocking technique which
utilizes the cosine similarity of matrix columns. It effectively
builds a hierarchy for the graph vertices, and computes a partial
clustering for them. The real-life examples of Section IV indicate
that the uses of the algorithm are flexible and the results are
meaningful.

In the proposed algorithm, we introduced a density threshold
parameterdmin to control the density of the output subgraphs.
This parameter provides the flexibility needed to interactively
explore the graph structure and the resulting communities.It can
be tuned in real time, and results are easily visualized. Theblog
example in Sec. IV-D has shown the appeal of exploiting such a
tunable parameter in understanding the extraction results.

The experiment in Sec. IV-C unraveled what appears to be a
new power law for large sparse graphs: the power law distribution
of the dense subgraph sizes. It is still unclear if this interesting
phenomenon is intrinsic to real-life complex systems. Thisnewly
discovered structure may have an influence on understandingthe
sizes of the communities in social networks.

A future avenue of research is to design algorithms to iden-
tify overlapping dense subgraphs. Many social and biological
networks have shown empirically overlapping structures, where
communities do not have a distinct borderline. The identification
of such characters that connect different communities together
may help better understand the network systems. We intend to
explore how the algorithm proposed in this paper can be adapted
for this task.
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