
A Probing Method for Computing

the Diagonal of the Matrix Inverse ∗

Jok Tang † and Yousef Saad †

April 3, 2010

Abstract

The computation of some entries of a matrix inverse arises in several important applications in prac-

tice. This paper presents a probing method for determining the diagonal of the inverse of a sparse matrix

in the common situation when its inverse exhibits a decay property, i.e., when many of the entries of the

inverse are small. A few simple properties of the inverse suggest a way to determine effective probing

vectors based on standard graph theory results. An iterative method is then applied to solve the result-

ing sequence of linear systems, from which the diagonal of the matrix inverse is extracted. Results of

numerical experiments are provided to demonstrate the effectiveness of the probing method.

Keywords: Matrix diagonal extraction, probing, sparse approximate inverses, graph theory, Krylov-

subspace methods, Green’s functions, covariance matrices.

1 Introduction

Extracting diagonal entries of a matrix inverse is important in many practical applications. Examples include
examining inverse covariance matrix as in uncertainty quantification [2], finding a rational approximation
for the Fermi-Dirac functions in the density functional theory [38], and evaluating Green’s functions in the
dynamic mean field theory [17]. The main purpose of this paper is to present an efficient method, called a
probing method, for computing the diagonal entries of a matrix inverse.

We consider a large and sparse matrix, A ∈ C
n×n, that is assumed to be nonsingular and complex-

symmetric. Its matrix inverse is denoted by B := A−1, and is assumed to exhibit a certain decay property.
In this paper, we are particularly interested in D(B), which is a diagonal matrix whose diagonal entries are
the same as those of B.

Extracting D(B) is considered a challenging task, in part because the problem cannot be easily expressed
in the form of a system of equations. The problem is usually harder to solve than a linear system with the
same matrix A. So far, not much literature has been devoted to this topic, whereas the related problem of
estimating the trace of B received much more attention, see, e.g., [20, 21,24,34].

The paper is organized as follows. Section 2 is devoted to present a concise overview of the available
literature on the topic of computing D(B). The main idea of the probing method is given in Section 3.
Section 4 is devoted to the analysis of the pattern of B, which is required to make the proposed method
efficient. Subsequently, the components of the method are examined in Section 5 and 6. We provide details
on the algorithm and other considerations in Section 7. The probing method is illustrated in the numerical
experiments of Section 8. Finally, concluding remarks are presented in Section 9.

2 Literature Overview

A straightforward way to determine D(B) is to compute B explicitly, and extract its diagonal. Using a
straightforward approach, the complexity of the method is O(n3) if sparsity is not exploited. Exploiting

∗Work supported in part by DOE under grant DE-FG 08ER 25841, by NSF under grant OCI-0904587, and by the Minnesota
Supercomputer Institute.

†Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E, Minneapolis, MN 55455.
Email: {jtang, saad}@cs.umn.edu.

1

sparsity and clever reordering techniques would yield a much more favorable complexity. This approach can
be quite expensive for large matrices or matrices arising from a 3-D mesh problem. While the approach can
still be attractive for 2-D problems, several alternatives have been developed in the past few decades, which
are briefly outlined below.

A direct method based on the LDU decomposition of A can be used to find D(B), see, e.g., Duff, Erisman,
and Reid [15, p. 273]. The sparsity patterns of the unit lower-triangular matrix, L, the diagonal matrix, D,
and the unit upper-triangular matrix, U , can be exploited to obtain D(B) in an economic way. For this, the
following expressions due to Takahashi, Fagan, and Chin [41] are exploited:

B = U−1D−1 + B(I − L); B = D−1L−1 + (I − U)B.

These relations enable us to obtain entries of B belonging to the sparsity pattern of L and U without
computing any other entries outside this pattern. The approach can be very economical for situations in
which the LDU factorization is not costly, as is the case for example for certain matrices arising from 2-D
meshes. The method can be demanding in terms of storage and computation for certain types of problems,
e.g., those issued from 3-D meshes.

For tridiagonal and banded matrices, many efficient direct algorithms and explicit expressions of the
entries of B have been found in the last decades, see the recent paper of Ran and Huang [32] and the
references therein. In that paper, an inversion algorithm for a banded matrix is proposed by employing so-
called twisted decompositions of matrices. This method is twice as fast as a standard direct method based
on the LU decomposition, but both methods need extra fill-in and have a complexity of O(pn2), where p
denotes the bandwidth of A.

Lower and upper bounds on selected entries of B, and D(B) in particular, can be found by Gauss-type
quadrature formulas. This approach is developed and applied by Golub and collaborators, see, e.g., [1,4,20].
The bounds can be used to construct effective preconditioners for iterative methods.

Several known methods were proposed for approximating matrix inverses, such as those based on the
so-called minimum residual iterations (see, e.g., Chow and Saad [10]) and Newton-Schulz iterations method
(see, e.g., Householder’s book [22]). Both methods converge quadratically for an appropriate initial guess.
The oldest method is the Newton-Schulz method, which is based on the iteration

Bj+1 := Bj (2I −ABj) , j = 0, 1, 2,

This method is also referred to as the Hotelling-Bodewig algorithm, and became a popular approach in the
1980s with the rise of parallel processing, see, e.g., [31]. In the general case, it is known to converge when
B0 := αAT where 0 < α < 2/ρ(AT A). This approach was used more recently for extracting D(B), see [6,26].
In addition, the paper [26] mentions that Newton-Schulz iterations can also be combined with wavelets or
hierarchical matrices to compute D(B). Note that a numerical dropping is usually applied to Bj+1 to keep
the approximated inverse sparse, which may affect the convergence and stability of the method.

The diagonal of a matrix can also be estimated by applying a number of matrix-vector products with the
matrix B, using random test vectors [3]. This is a stochastic method, which can be viewed as a Monte Carlo
approach. A high accuracy of the solution can only be obtained if a sufficiently large number of vectors is
taken, so the method can be expensive for the situation when a high accuracy is required.

Recently, the stochastic estimator [3] was put to work to solve an important problem in uncertainty
quantification [2]. Many systems must be solved with the same matrix, A, which can be exploited by iterative
solution methods. The paper [2] proposes a number of strategies, including block methods, massively parallel
computing, and mixed precision arithmetic. We will not consider stochastic estimators in this paper, because
the main applications of interest to us require a high accuracy of D(B). However, some of the underlying
ideas will be exploited to construct a more effective method .

In [3], another approach was proposed to find D(B), which utilized Hadamard vectors. This approach
can be viewed as a variant of probing for banded approximate inverses, but the probing vectors are dense
and do not exploit sparsity pattern (apart from bandedness).

Lin et al. [27] proposed a direct method for computing D(B) in a problem arising from electronic structure
calculations. Their method adopts a hierarchical decomposition of the computational domain. It first
constructs hierarchical Schur complements of the interior points for the blocks of the domain in a bottom-
up pass, and then extracts the diagonal entries of D(B) efficiently in a top-down pass by exploiting the
hierarchical local dependence of inverse matrices. Although the practical implementation of the method is

2

not straightforward, the method can be efficient as it has a complexity of O(n3/2) and O(n2) in typical 2-D
and 3-D problems, respectively.

Another recent approach is to extract D(B) using the Lanczos algorithm, see [38]. The Lanczos algorithm
can be recast as a simple three-term recurrence,

βj+1qj+1 = Aqj − αjqj − βjqj−1, β0q0 = 0, j = 1, . . . , n− 1,

where the parameters αj and βj are selected such that the Lanczos vector, qj+1, has a unit norm and is
orthogonal to its previous two vectors, qj and qj−1. Then, D(B) can be updated elegantly by incorporating
a few extra steps in the Lanczos algorithm. The overall method is quite similar to the conjugate gradient
algorithm, and can be implemented with relative ease. Two drawbacks of the method are that n iterations
are usually required to obtain an accurate approximation of D(B), and the Lanczos algorithm suffers from
instability due to a loss of orthogonality among the Lanczos vectors after a certain number of iterations. The
reorthogonalization becomes expensive and dominates the overall calculation, when the number of required
Lanczos vectors is relatively large.

3 Idea of the Method

In the paper by Hutchinson [24], an unbiased stochastic estimator is described for the trace of a matrix
M ∈ C

n×n. Later, Bekas, Kokiopoulou, and Saad [3] extended this idea to develop an unbiased stochastic
estimator for δ(M) ∈ C

n, which denotes the diagonal of D(M). Let {vj} be a sequence of s random vectors.
Then, δ(M) can be estimated by the following vector sequence (see [3, Eq. (3)]):

δ(M) ≈





s∑

j=1

vj ⊙Mvj



⊘





s∑

j=1

vj ⊙ vj



 , s ∈ N, (1)

where ⊙ and ⊘ represent the element-wise multiplication and division operators of vectors, respectively. The
convergence of the stochastic estimator (1) is often very slow.

We now consider an alternative way of expressing (1). Using Vs := [v1, v2, . . . , vs], we obtain

s∑

j=1

vj ⊙ vj = δ
(
VsV

T
s

)
; (2)

s∑

j=1

vj ⊙Mvj = δ
(
MVsV

T
s

)
. (3)

Combining (1), (2), and (3) yields

δ(M) ≈ δ
(
MVsV

T
s

)
⊘ δ

(
VsV

T
s

)
, (4)

or, equivalently,
D(M) ≈ D(MVsV

T
s)D−1(VsV

T
s), (5)

where D−1(VsV
T
s) denotes the inverse of D(VsV

T
s). As an example, it can be easily seen from Eq. (5) that in

the special case when s = n and Vn is a unitary matrix (i.e., V T
n Vn = I), the approximation would be exact.

In fact, general conditions for exactness of the diagonal estimator (1) were shown in [3], and are restated in
the following proposition.

Proposition 3.1. Let M = [mjk] ∈ C
n×n and Vs ∈ R

n×s be of full rank with s ≤ n. Then,

D(M) = D(MVsV
T
s)D−1(VsV

T
s) (6)

holds if each j-th row of Vs is orthogonal to all those rows k of Vs for which mjk 6= 0.

3

Eq. (6) can be interpreted as a nonstochastic variant of Eq. (1), in which a specific selection of the
sequence {vj} yields a better approximation. Note that columns of Vs that satisfy Proposition 3.1 are not
necessarily orthogonal. Furthermore, it is interesting to reprove Proposition 3.1 in light of Eq. (4). Let the
k-th row of Vn be denoted by wk := V T

n ek. Then,

eT
j MVnV T

n ej

eT
j VnV T

n ej
=

∑

k:mjk 6=0

mjk(wk, wj)

(wk, wj)
,

which is equal to mjj under the stated condition that (wk, wj) = 0 for all k 6= j such that mjk 6= 0. Since
this is valid for all j, we obtain Eq. (6).

When we take M := B, Proposition 3.1 suggests that if the sparsity pattern of B is known, then we are
able to select the s columns of Vs in such a way that D(B) has no contributions from off-diagonal entries
of B. This is clearly not possible when B is dense, unless one uses a full unitary matrix Vn. However, B
is often well-approximated by a sparse matrix (Section 4), and, in this case, we can seek Vs with a smallest
possible s such that the approximation is exact for the so-called sparsified B (Section 5). When Vs is found,
we form BVs ∈ C

n×s by solving a sequence of linear systems (Section 6). Finally, D(B) can be obtained via
Eq. (6).

4 Pattern of the Sparsified Inverse

Although the matrix A is sparse, its inverse, B, is usually dense. Fortunately, B often has many small entries
which can be neglected. If we define E := D(A) − A and F := D−1(A) − A by assuming that the diagonal
of A is full, then we have

A = D(A)(I − F),

from which we obtain the Neumann expansion

B ≈
(
I + F + F 2 + · · ·+ F p

)
D−1(A)

︸ ︷︷ ︸

=:B(p)

. (7)

If A is diagonally dominant, ‖F k‖ decreases rapidly for a larger k. In this case, B is well-approximated by
B(p) for a relatively small p. If the number of nonzeros of each row of A is bounded by a small constant, Ap

and F p are sparse, and, hence, B(p) is sparse as well. These ideas were indeed exploited in the development
of approximate inverse preconditioners, see, e.g., Chow [8, 9] and Huckle [23]. In [8, 9], approximate inverse
preconditioners were proposed based on the pattern of Ap for a small p and dropping small entries of this
matrix. The resulting procedure was shown to be efficient and quite attractive for some problems.

Diagonal dominance of A is a sufficient but not a necessary condition for B(p) to be a good approximation
of B. It is known that for a Laplacian matrix A, the entries of B decay away from the diagonal, whereas
Laplacian matrices are weakly diagonally dominant. Demko, Moss, and Smith [14] showed that the same
result is true for any banded positive-definite matrix A. In that paper, it is proved that

|bjk| ≤ γλ|j−k|, with γ > 0, 0 < λ < 1, and 1 ≤ j, k ≤ n. (8)

In (8), the parameters γ and λ usually depend on the bandwidth and extreme eigenvalues of A, with a decay
being faster when the bandwidth is small and the matrix is well-conditioned. Such an exponential decay
rate of entries of the inverse, as given in (8), can also be observed for several other types of matrices. More
details and analysis on this topic can be found in, e.g., [4, 5, 16,29,30,42] and the references therein.

As noted in, e.g., [42], the theoretical upper bound of |bjk|, as given in (8), is not always sharp. In the
extreme case, (8) holds where γ is relatively large, while no actual decay trend can be observed along the
diagonals of B. In addition, entries of some matrix inverses decay in an oscillatory pattern. This can also be
described by (8) by replacing the distance |j − k| by the physical distance d(i, j), where d(i, j) is defined as
the length of the shortest path connecting vertex i with j based on the underlying graph associated with A.
The actual decay property of the entries of B is often better observed with respect to d(i, j). In this case,
the sparsity pattern of B can still be approximated by that of Ap for a certain p, since the underlying graph
associated with Ap shows the paths of length at most p of the original graph of A, and, hence, preserve the
physical distances between vertices.

4

The above discussion can be further formalized as follows. Consider for ǫ > 0 the sparsified matrix
Bǫ ∈ C

n×n, defined by

(Bǫ)ij =

{
bij , if |bij | ≥ ǫ;
0, otherwise.

(9)

Then, the sparsity pattern of Bǫ, denoted by S(Bǫ), can often be approximated by the sparsity pattern of a
power of A, S(Ap). When the entries of B show a strong decay property, then p could be small and B ≈ Bǫ

holds.
Although the exact p depends on the specific A, it is generally complicated to relate p solely to the

structure of A. Some additional information of B is usually required to find an appropriate approximation
of p. As (8) suggests that the decay rate of entries of B is quite similar for each column, it often suffices to
examine the pattern of one column of B. This column, say xj , can be retrieved by solving the linear system

Axj = ej , 1 ≤ j ≤ n. (10)

The decay property of the vector xj can then be analyzed to determine a good value for p.

Example 4.1. A typical sparsity pattern of a symmetric and positive-definite matrix A and its approximated
inverse, Bǫ, is presented in Figure 3. Here, the parameter p can be estimated by

p = min{l : |x(l)
1 | < ǫ} − 2,

where x
(l)
1 is the l-th entry of the first column of B. For p = 3, we obtain that S(Bǫ) is approximated by

S
(
A3

)
. Moreover, the decay behavior of the entries of B can be illustrated by representing the entries of

some of its columns in 3-D plots, see Figure 2. From this figure, we can observe a similar decay behavior for
different columns.

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 2121

(a) S (A).

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

nz = 9869

(b) S(Bǫ) ≈ S
`

A3
´

.

Figure 1: A typical sparsity structure of a matrix A and its approximated inverse Bǫ for a small ǫ.

5 Probing

Once the pattern of the sparsified inverse, Bǫ, is determined, we need to find a matrix Vs of probing
vectors which satisfy Proposition 3.1. A first approach that comes to mind is to exploit ideas related to
standard probing techniques, which are based on graph coloring. A form of graph coloring has been originally
exploited to evaluate sparse Jacobian and Hessian matrices, see, e.g., [11–13]. Probing techniques were also
applied for constructing effective interface preconditioners in domain decomposition algorithms [7], and for
approximating Schur complements for saddle-point problems [39]. These approaches seek to approximate a
specific target matrix by means of relatively small set of so-called probing vectors. Multiplying this matrix
by each probing vector allows to compute a large number of columns of the matrix simultaneously. In the
end, the whole target matrix can be obtained by performing matrix-vector products with all probing vectors.

5

5

10

15

20

5
10

15
20

10
−20

10
−10

x−axis

y−axis

va
lu

e

(a) Row 1 of B.

5

10

15

20

5
10

15
20

10
−20

10
−10

x−axis

y−axis

va
lu

e

(b) Row n

3
of B.

5
10

15
20

5
10

15
20

10
−20

10
−10

x−axis
y−axis

va
lu

e

(c) Row 2n

3
of B.

5
10

15
20

5 10 15 20

10
−20

10
−10

x−axis
y−axis

va
lu

e

(d) Row n of B.

Figure 2: 3-D representation of some columns of the matrix inverse, B, based on a typical diagonally
dominant A.

Our situation is somewhat different from the original problems in which probing is used, because we are
not interested in evaluating all entries of the target matrix, Bǫ in our case, but only those in its diagonal.
With this in mind, the probing method used in this paper is different from standard probing. As it turns out,
to find a suitable set of probing vectors, we only need to color the adjacency graph associated with Bǫ with a
standard graph coloring, which requires that no two adjacent vertices have the same color. Ideally, we want
to color the graph with the smallest number of colors, but this is known to be an NP-hard problem [28]. As is
done in common practice, we rely on heuristics to find a coloring with a small number of colors. Algorithm 1
presents a well-known greedy algorithm for this task. The quality of the resulting coloring depends on the
chosen ordering. More details and analysis on graph coloring algorithms can be found in [19,25,35].

Algorithm 1: Greedy Multicoloring Algorithm

input : Adjacency graph corresponding to an n× n matrix
output: Colors of the vertices of the graph

1 for j ← 1 to n do

2 Set Color(j) = 0

3 for j ← 1 to n do

4 Set Color(j) = min{k > 0 | k 6= Color(l) ∀l ∈ Adjacent(j)}

After coloring the vertices of the adjacency graph associated with Bǫ, the probing matrix, Vs can be
constructed as follows:

(Vs)jk =

{
1, Color(j) = k;
0, otherwise.

(11)

As a consequence, s = max{k} and each row of Vs based on (11) consists of exactly one nonzero entry,
yielding D(VsV

T
s) = D−1(VsV

T
s) = I. In addition, this choice of Vs satisfies the conditions of Proposition 3.1

6

as is stated next.

Proposition 5.1. Suppose that the vertices of the adjacency graph corresponding to Bǫ = [bjk] are colored
by Algorithm 1. Let Vs be constructed by Eq. (11). Then, each j-th row of Vs is orthogonal to all those rows
k of Vs for which bjk 6= 0.

Proof. by definition, Color(j) 6= Color(k) for each bjk 6= 0. Moreover, the j-th and k-th rows of Vs consist
of zeros except for the Color(j)-th and Color(k)-th entry, respectively. Consequently, the two rows are
orthogonal, and the theorem follows immediately.

From Proposition 5.1, we conclude that Vs based on (11), where the colors are associated with a vertex
coloring of the adjacency graph, can be applied to compute D(Bǫ). This is further illustrated in Example 5.1.

Example 5.1. Let A ∈ R
16×16 be the discretized matrix of a 2-D Laplacian on a uniform Cartesian grid in

which the entries are ordered lexicographically. Suppose that coloring of the vertices of the adjacency graph
corresponding to S(Bǫ) = S(A) and S(Bǫ) = S(A2) is performed by Algorithm 1. Then, the results are
presented in Figure 3. Note that we do not form the adjacency graph of A2 explicitly, as it is equivalent to
the graph whose edges represent paths of length at most 2 in the original graph.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) p = 1 (two colors). �
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(b) p = 2 (six colors).

Figure 3: Coloring the vertices of the adjacency graph of Ap for n = 42.

Using Eq. (11), the probing matrices are given by

V2 =












1 0
0 1
1 0
0 1
...

...
0 1












, V6 =












1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
1 0 0 · · · 0
...

...
...

1 0 0 · · · 0












.

Note that D(VsV
T
s) = D−1(VsV

T
s) = I holds for both s = 2, 6. For S(Bǫ) = S(A) or S(Bǫ) = S(A2), we

obtain

BǫV2 =












b11 ∗
∗ b22

b33 ∗
∗ b44

...
...

bnn ∗












, BǫV6 =












b11 ∗ ∗ · · · ∗
∗ b22 ∗ · · · ∗
∗ ∗ b33 · · · ∗

b44 ∗ ∗ · · · ∗
...

...
...

bnn ∗ ∗ · · · ∗












,

respectively, where * denotes an irrelevant entry. Consequently, for the specific s, D(Bǫ) = D(BǫVsV
T
s)

follows from Proposition 3.1.

7

As was already noted, we stress that the probing technique presented here differs from the standard
probing technique known in the literature. In the standard probing technique, vertices j and k are allowed
to have the same color if the j-th and k-th columns of Bǫ are structurally orthogonal, i.e., they do not have
nonzero entries in the same row positions. This corresponds to coloring the adjacency graph associated with
B2

ǫ instead of Bǫ, which may require significantly more colors. When the probing matrix is then formed by
(11), it is clear that this matrix also satisfies the requirement of Proposition 3.1. In fact, the corresponding
probing vectors can be used to determine all nonzero entries of Bǫ, not just its diagonal entries. As we
are only interested in D(Bǫ), the standard probing technique would yield many more probing vectors than
required.

6 Sequence of Linear Systems

The previous section described a procedure for finding the probing matrix, Vs, corresponding to a given A.
Based on this Vs, we can now compute Xs := BǫVs. If Xs := [x1, x2, . . . , xs] and Vs := [v1, v2, . . . , vs], the
columns of Xs can be obtained by solving the linear systems

Axj = vj , j = 1, 2, . . . , s. (12)

By assuming that D−1(VsV
T
s) = I, Proposition 3.1 yields D(Bǫ) := D(XsV

T
s). When s≪ n, solving Eq. (12)

is obviously much less expensive than solving the full sequence of n linear systems to obtain the inverse by
a straightforward use of equations.

A sequence of linear systems, such as (12), can be solved by a direct or iterative method. For large dimen-
sions of A, Krylov-subspace methods are among the most popular methods in use. We apply GMRES [36]
to solve Eq. (12) in our experiments, but any other Krylov-subspace methods could be used instead, such as
QMR [18], BiCGSTAB [43], IDR(s) [40], or one of their variants. The method of choice usually depends on
the dimensions and the condition of the matrix and the available memory storage, among others.

If A is not (nearly) diagonally dominant, the convergence of Krylov-subspace methods may deteriorate.
To remedy this, it is common practice to incorporate a preconditioner into the method, i.e., we solve

M−1Axj = M−1vj , j = 1, 2, . . . , s, (13)

instead of Eq. (12), where M ∈ C
n×n denotes a preconditioner, see, e.g., [35] for details. The preconditioner

of choice depends on the dimensions and the condition of the matrix and the available memory storage, but
it is also influenced by the number of probing vectors, s, and the parallel implementation.

7 Implementation and Further Considerations

In the previous sections, the components of the probing method are discussed with the aim of computing
D(B). The resulting algorithm of the method is presented in Algorithm 2.

The bulk of the computations in Algorithm 2 usually involves solving the linear systems in Lines 2
and 7. The exact complexity of each solve depends on the choice of the Krylov-subspace method and its
preconditioner, the sparsity pattern of A, and the number of required iterations for convergence, among
other things. In the best case, solving each linear system has a complexity of O(γn), where γ > 0 is related
to the number of required iterations. The whole sequence of linear systems in Line 7 can then be solved with
O(γns) flops.

The pattern S (Ap) depends on the decay property of B, and can be determined efficiently. If m denotes
the maximum degree of each vertex of the underlying graph associated with A, then computing S (Ap)
requires at most mpn operations. Therefore, the cost is linear in n with a prefactor mp that can be large.

Moreover, it is not necessary to store the full matrix Xs explicitly, as Xs is only used to construct
D

(
XsV

T
s

)
. As Vs consists of just n nonzero entries, D

(
XsV

T
s

)
can be determined efficiently as it were an

inner product of two vectors, requiring O(n) flops.
Algorithm 2 has low memory requirements. In addition to the required memory storage for the specific

Krylov-subspace method and its preconditioner, we only have to store the colors of the n vertices, the n
nonzero entries of Vs, and the entries of Xs involved in the computation of D

(
XsV

T
s

)
.

8

Algorithm 2: Probing Method for Computing D(B)

input : A ∈ C
n×n that is sparse, nonsingular, and complex-symmetric

output: D(B) ∈ C
n×n

1 Select ǫ
2 Solve Axj = ej for a given j by a preconditioned Krylov-subspace method
3 Determine p from xj

4 Color the vertices in the adjacency graph associated with S (Ap)
5 Construct Vs := [v1, v2, . . . , vs] from Eq. (11)
6 for j ← 1 to s do

7 Solve Axj = vj by a preconditioned Krylov-subspace method

8 Construct Xs := [x1, x2, . . . , xs]

9 Compute D (Bǫ) := D
(
XsV

T
s

)

10 Set D(B) := D (Bǫ)

The probing method can be parallelized in several ways. The most obvious way is to solve the linear
systems in the sequence (Line 6–7) in parallel, where each processor solves one or more linear systems.
This would significantly reduce the computing time of the probing method, as solving the sequence of
linear systems is computationally most demanding in the algorithm. Another option is to split each matrix
and vector across the available processors, so that each matrix or vector operation can be performed by
distributing the work over the processors. Based on this architecture, solving a linear system can be readily
parallelized (see, e.g., [35]), S(Ap) can be computed efficiently, parallel graph coloring algorithms can be
found in [19], and the construction of and computations with Vs can be easily parallelized.

We note that decreasing ǫ in Bǫ generally leads to a larger p for S(Ap), more required colors for the
graph coloring, and a larger s in Vs. It will also result in a better approximation for D(B). However, it is
usually not possible to verify if D (Bǫ) for a given ǫ is a sufficiently accurate approximation of D(B). Ideally,
we want to evaluate ||I − BǫA||, but this is obviously not practical, as most off-diagonal entries of Bǫ are
not involved in Algorithm 2. This is, however, not a drawback that is unique to the probing method, as this
issue appears in other methods for computing D(B). If accuracy plays a critical role, a (rather expensive)
way to evaluate the accuracy of D (Bǫ) is by applying Algorithm 2 twice, where in the second run Lines 1–3
could be replaced by the line ‘Take p from the first run, and set p := p + 1’.

8 Numerical Experiments

To illustrate the probing method for computing D(B), we perform numerical experiments for two different
applications: covariance matrices used for uncertainty quantification and imaginary Green’s functions used
in the dynamic mean field theory. The code is written in Fortran 90, and the computations are performed
on a sequential LINUX machine (Dual-Core 2.6 GHz AMD Opteron processor with 8GB of memory).

The performance of the probing method is compared to a Krylov-subspace method that solves the full
sequence of n linear systems. The latter method is denoted by Full Krylov. In both approaches, the
Krylov-subspace method is GMRES [36] with a diagonal scaling as preconditioner. We choose the relative
termination tolerance of GMRES as 10−8. For the probing method, we take ǫ = 10−10. Moreover, the
quantities that are measured in the experiments are given in Table 1.

8.1 Uncertainty Quantification: Covariance Matrices

Uncertainty quantification (UQ) in risk analysis has become a key issue in, e.g., geology, signal processing,
and portfolio management. In this setting, inverse covariance matrices hold a central role. A crucial question
in data analysis for risk management is the degree of confidence that we can have in the quality of data. A
highly useful measure of this quality is provided by the diagonal entries of the inverse covariance matrix, see
also [2] and the references therein.

In this subsection, A = [aij] denotes a covariance matrix with entries computed via a decaying covariance
function, see [37, Eq. (28)] and [33, Chapter 4.2]. This positive-definite function is based on a uniform 2-D

9

Quantity Explanation
CPU Computing time in seconds
Iter Average number of required GMRES iterations for each solve
p Approximate matrix power satisfying S (Bǫ) ≈ S (Ap)
s Number of probing vectors
Error Difference of D(B) between full Krylov and probing method
RDD Percentage of rows that are diagonally dominant
NNZ Number of nonzero entries in A

Table 1: Quantities used in the numerical experiments.

grid with
√

n grid points in each direction, the Euclidean distance between grid points i and j (denoted by
d(i, j)), the compact threshold α > 0, and the function smoothness β > 0, i.e.,

ai,j :=

{ (

1− d(i,j)
α

)β

, if d(i, j) ≤ α;

0, otherwise.

The resulting matrix A is sparse, as the covariance between points is zero when their distance exceeds α.
Typical sparsity patterns of A can be found in Figure 4. We aim at computing D(B) based on A for

various values of n, α, and β.

(a) α = 2 (NNZ = 9,801). (b) α = 3 (NNZ = 62,001). (c) α = 4 (NNZ = 159,201).

Figure 4: Typical sparsity patterns of A for n = 512.

8.1.1 Results for various values of n

We first start with fixing the parameter set (α, β) = (3, 5), and varying the grid size, n. The results of this
experiment can be found in Table 2.

Increasing n hardly changes the condition of matrix A and the structure of B, so that the number of
iterations and probing vectors is the same for all n. Therefore, for larger n, the probing method obviously
becomes superior to the full Krylov method by considering the computational cost. Moreover, we observe
from Table 2 that the solutions are sufficiently accurate.

8.1.2 Results for various values of α and β

In the next test run, we fix the grid to n = 512, and vary (α, β). The results can be found in Table 3.
From Table 3, we notice that the probing method requires significantly less computing time compared

with the full Krylov method. The difference in performance becomes larger when GMRES requires more
iterations to converge. Note that the probing method also works appropriately for problems in which A is
not diagonally dominant, although the number of probing vectors can be large for these cases.

10

Method Quantity
n

212 512 812

Full Krylov
CPU 2 77 518
Iter 13 13 13

Probing

CPU 3 12 29
Iter 13 13 13
p 7 7 7
s 289 289 289

Error 5.1E-9 1.2E-8 1.7E-8
RDD 100% 100% 100%
NNZ 9,801 62,001 159,201

Table 2: Results of the UQ experiment for (α, β) = (3, 5) and various grid size.

Method Quantity
(α, β)

(2, 4) (3, 5) (3, 3) (4, 5) (3, 4)

Full Krylov
CPU 29 77 174 187 108
Iter 9 13 24 20 17

Probing

CPU 2 12 34 81 19
Iter 9 13 24 20 17
p 5 7 9 9 8
s 49 289 441 999 361

Error 7.2E-7 1.2E-8 1.8E-8 1.4E-8 1.8E-8
RDD 100% 100% 15% 15% 7.6%
NNZ 22,801 62,001 62,001 109,809 62,001

Table 3: Results of the UQ experiment for n = 512 and various values of α and β.

8.2 Dynamic Mean Field Theory: Imaginary Time Green’s Function

Dynamic mean field theory (DMFT) has recently emerged as a very powerful and reliable tool in physics for
the investigation of lattice models of correlated electrons in a quantum many-body system, see [17] and the
references therein. For the inhomogeneous DMFT method, the computation of the diagonal of the inverse
of a large collection of sparse matrices is required. These inverses correspond to problems corresponding
to the real and imaginary time Green’s functions, respectively. Both problems are related by the chemical
potential, µ, and are solved for different frequencies, ω. A typical form of a matrix A is

A := H + D, H ∈ {0, 1}n×n, D ∈ C
n×n. (14)

The matrix H is known as a 2-D hopping matrix, which has a similar sparsity pattern as a standard 2-D
Laplacian matrix. The entries of the main diagonal of H are zero, and the entries of the four nonzero
off-diagonals are equal to one. The matrix D is a sum of various diagonal matrices, and varies for each
frequency. In the specific case of the imaginary time Green’s function, we have

D = (µ + iω)I − V − Σ, µ, ω ∈ R, V ∈ R
n×n, Σ ∈ C

n×n. (15)

where V and Σ represent the trap potential and local self-energy, respectively. The form of matrix D
associated with the real time Green’s function is different, and is not further considered here. A detailed
explanation and analysis can be found in [17].

In this subsection, we perform experiments for a fixed set of parameters (Bose level is 19.36 eV and
temperature is T = 10 K) and a fixed frequency ω = πT . The exact expression of µ, V and Σ follows from
the underlying DMFT theory and simulation, and the resulting diagonal of D, and, therefore, the resulting
diagonal of A is presented in Figure 5 for various values of n. Hence, the matrix A associated with the
imaginary time Green’s function is complex-symmetric and diagonally dominant.

11

(a) n = 212. (b) n = 512. (c) n = 812.

Figure 5: The real and imaginary parts of D(A) in the DMFT experiment for various values of n.

8.2.1 Results for various values of n

In the first test run, we compute D(B) for the matrix A based on Figure 5. The results of this experiment
can be found in Table 4.

Increasing n does not significantly change the condition of matrix A and the structure of B, implying
that the number of iterations and probing vectors does not vary much for different n. Consequently, the
probing method outperforms the full Krylov method in terms of computing time, as the number of linear
systems to be solved for the Full Krylov method obviously grows for increasing n, whereas s does not differ
much for various values of n.

Method Quantity
n

212 512 812

Full Krylov
CPU 0.6 20 130
Iter 7 7 6

Probing

CPU 1 1 1
Iter 7 7 7
p 4 4 3
s 24 24 18

Error 2.3E-8 5.5E-8 6.3E-7
RDD 100% 100% 100%
NNZ 2,121 12,801 32,481

Table 4: Results of the DMFT experiment for various values of n.

8.2.2 Results for various scalings of D(A)

In the next test run, we take the same setting as above, but we now fix the grid to n = 512 and scale D(A)
with a parameter 0.1 ≤ σ ≤ 1. We note that choosing σ < 0.1 leads to an indefinite matrix A for which the
maximum number of probing vectors (i.e., s = n) would be required. A scaling of D(A) can be associated
with a different DMFT setting in which the condition of the resulting matrix A is varied. The results of the
experiment can be found in Table 5.

As can be observed in Table 5, choosing a smaller σ leads to an increased number of both the probing
vectors and the GMRES iterations, while the accuracy of the solution becomes worse. The accuracy could be
increased by choosing a more stringent ǫ, but this seems to be only required for an A that is not diagonally
dominant. For a diagonally dominant A, the probing method is superior to the full Krylov method, while
the accuracy is comparable.

12

Method Quantity
σ

1 0.5 0.1

Full Krylov
CPU 20 27 132
Iter 7 9 27

Probing

CPU 1 2 11
Iter 7 9 27
p 4 5 13
s 24 32 133

Error 5.5E-8 3.4E-7 4.7E-5
RDD 100% 100% 7.7%
NNZ 12,801 12,801 12,801

Table 5: Results of the DMFT experiment for n = 512 and various scalings of the main diagonal of A.

9 Conclusions and Future Work

A probing method is presented to extract the diagonal entries of the inverse of a matrix. Appropriate probing
vectors are constructed by exploiting the pattern of a sparsified matrix inverse and coloring the underlying
adjacency graph. A preconditioned Krylov-subspace method is applied to solve the resulting sequence of
linear systems efficiently, and the diagonal of the matrix inverse can then be readily extracted. We have
shown that the resulting method is a simple and powerful approach from both a theoretical and numerical
point of view.

Future research should explore ideas to improve the construction of probing vectors and preconditioners
for the Krylov-subspace method. For example, we alluded earlier to the problem of updating the probing
matrix, when it turns out that the pattern of sparsified inverse has been miscalculated and must be updated
(e.g., taking one more power of A to approximate the inverse). Finally, the problem of extracting diagonals
of inverses of indefinite matrices is much harder, because of the absence of any decay of the entries of the
inverse. Alternative methods are needed for this case.

Acknowledgments

The authors are indebted to Jie Chen for providing us with the covariance matrix generator, and to Pierre
Carrier for many fruitful discussions and his help with the DMFT code.

References

[1] Z. Bai, M. Fahey, and G. Golub, Some large-scale matrix computation problems, J. Comput. Appl.
Math., 74 (1996), pp. 71–89.

[2] C. Bekas, A. Curioni, and I. Fedulova, Low cost high performance uncertainty quantification, in
WHPCF ’09: Proc. of the 2nd Workshop on High Performance Computational Finance, New York, NY,
USA, 2009, ACM, pp. 1–8.

[3] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Appl. Numer.
Math., 57 (2007), pp. 1214–1229.

[4] M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with applications to precon-
ditioning, BIT Numer. Math., 39 (1999), pp. 417–438.

[5] M. Benzi and N. Razouk, Decay bounds and O(n) algorithms for approximating functions of sparse
matrices, Elec. Trans. Numer. Anal., 28 (2007), pp. 16–39.

[6] M. Ceriotti, T. D. Kühne, and M. Parrinello, An efficient and accurate decomposition of the
Fermi operator, J. Chem. Phys., 129 (2008), p. 024707.

13

[7] T. F. Chan and T. P. Mathew, The interface probing technique in domain decomposition, SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 212–238.

[8] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM
Journal on Scientific Computing, 21 (2000), pp. 1804–1822.

[9] , Parallel implementation and practical use of sparse approximate inverse preconditioners with a
priori sparsity patterns, Int. J. High Perf. Comput. Apps., 15 (2001), p. 56.

[10] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM J.
Sci. Comput., 19 (1998), pp. 995–1023.

[11] T. F. Coleman, B. S. Garbow, and J. J. More, Fortran subroutines for estimating sparse Jacobian
matrices, ACM Trans. Math. Software, 10 (1984), pp. 346–347.

[12] T. F. Coleman and J. J. More, Estimation of sparse Jacobian matrices and graph coloring problems,
SIAM J. Numer. Anal., 20 (1983), pp. 187–209.

[13] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse Jacobian matrices,
J. Inst. Math. Appl., 13 (1974), pp. 117–119.

[14] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices, Math. Comp.,
43 (1984), pp. 491–499.

[15] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University
Press, 1986.

[16] V. Eijkhout and B. Polman, Decay rates of inverses of banded M -matrices that are near to Toeplitz
matrices, Lin. Alg. Appl., 109 (1988), pp. 247–277.

[17] J. Freericks, Transport in Multilayered Nanostructures. The Dynamical Mean-Field Theory Approach,
Imperial College, London, 2006.

[18] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian
linear systems, Numer. Math., 60 (1991), pp. 315–339.

[19] A. H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? graph coloring for
computing derivatives, SIAM Rev., 47 (2005), pp. 629–705.

[20] G. Golub and Z. Strakos, Estimates in quadratic formulas, Numer. Algor., 8 (1994), pp. 241–268.

[21] G. H. Golub and G. Meurant, Matrices, moments, and quadrature, in Numerical Analysis 1993,
D. F. Griffiths and G. A. Watson, eds., vol. 303, Pitman, Research Notes in Mathematics, 1994, pp. 105–
1–6.

[22] A. S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell Pub. Co., Johnson, CO,
1964.

[23] T. Huckle, Approximate sparsity patterns for the inverse of a matrix and preconditioning, Appl.
Numer. Math., 30 (1999), pp. 291–303.

[24] M. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines, Commun. Stat. Simul. Comput., 19 (1990), pp. 433–450.

[25] M. Kubale, Graph Colorings, American Mathematical Society, Providence, Rhode Island, 2004.

[26] L. Lin, J. Lu, R. Car, and W. E, Multipole representation of the Fermi operator with application
to the electronic structure analysis of metallic systems, Phys. Rev. B (Condensed Matter and Materials
Physics), 79 (2009), pp. 115–133.

14

[27] L. Lin, J. Lu, L. Ying, R. Car, and W. E, Fast algorithm for extracting the diagonal of the inverse
matrix with application to the electronic structure analysis of metallic systems, Commun. Math. Sci., 7
(2009), pp. 755–777.

[28] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput., 15
(1986), pp. 1036–1055.

[29] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 707–728.

[30] R. Nabben, Decay rates of the inverse of nonsymmetric tridiagonal and band matrices, SIAM J. Matrix
Anal. Appl., 20 (1999), pp. 820–837.

[31] V. Pan and J. Reif, Efficient parallel solution of linear systems, in Proc. 17th ACM STOC, 1985,
pp. 143–152.

[32] R.-S. Ran and T.-Z. Huang, An inversion algorithm for a banded matrix, Comp. Math. Appl., 58
(2009), pp. 1699–1710.

[33] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge,
MA, 2006.

[34] H. Roder, R. Silver, D. Drabold, and J. Dong, The kernel polynomial method for non-orthogonal
electronic structure calculation of amorphous diamond, Phys. Rev. B, 55 (1997), pp. 15382–15385.

[35] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, USA, 2003. Second
edition.

[36] Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsym-
metric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.

[37] K. Schmitt, M. Anitescu, and D. Negrut, Efficient sampling for spatial uncertainty quantification
in multibody system dynamics applications, Int. J. Numer. Meth. Eng., 80 (2009), pp. 537–564.

[38] R. B. Sidje and Y. Saad, Rational approximation to the Fermi-Dirac function with applications in
density functional theory, Tech. Rep. umsi-2008-279, Minnesota Supercomputer Institute, University of
Minnesota, 2008.

[39] C. Siefert and E. de Sturler, Probing methods for saddle-point problems, Elec. Trans. Numer.
Anal., 22 (2006), pp. 163–183.

[40] P. Sonneveld and M. B. van Gijzen, IDR(s): a family of simple and fast algorithms for solving
large nonsymmetric linear systems, SIAM J. Sci. Comput., 31 (2008), pp. 1035–1062.

[41] K. Takahashi, J. Fagan, and M.-S. Chin, Formation of a sparse bus impedance matrix and its
application to short circuit study, in Proc. of the Eighth Inst. PICA Conf., Minneapolis, MN, IEEE
Power Engineering Society, 1973, pp. 63–69.

[42] W.-P. Tang, Toward an effective sparse approximate inverse preconditioner, SIAM J. Matrix Anal.
Appl., 20 (1999), pp. 970–986.

[43] H. A. van der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution
of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 631–644.

15

