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Abstract. Standard (single-level) incomplete factorization preconditioners are known to success-
fully accelerate Krylov subspace iterations for many linear systems. The classical Modified Incomplete
LU (MILU) factorization approach improves the acceleration given by (standard) ILU approaches,
by modifying the non-unit diagonal in the factorization to match the action of the system matrix
on a given vector, typically the constant vector. Here, we examine the role of similar modifications
within the dual-threshold ILUT algorithm. We introduce column and row variants of the modified
ILUT algorithm and discuss optimal ways of modifying the columns or rows of the computed factors
to improve their accuracy and stability. Modifications are considered for both the diagonal and off-
diagonal entries of the factors, based on one or many vectors, chosen a priori or through an Arnoldi
iteration. Numerical results are presented to support our findings.

Key words. Incomplete factorization preconditioners, algebraic preconditioners, ILUT, modi-
fied ILU

1. Introduction. As physical models become ever more complex, they often re-
sult in the need to solve linear systems that are not only much larger than in the past,
but also intrinsically more difficult. Due to their larger sizes, these systems cannot
practically be solved by direct methods, and this increases the demand for reliable
forms of iterative methods that can be substituted for direct solvers. Iterative tech-
niques based on a combination of a preconditioner and a Krylov subspace accelerator
are the most common alternatives to direct methods, as they offer a good compromise
between cost and robustness. Much of the recent research effort on solving sparse lin-
ear systems by iterative techniques has been devoted to the development of effective
preconditioners that scale well, while offering good reliability.

In this regard, multilevel methods that rely on incomplete LU (ILU) factorizations
have been advocated by many authors in recent years [1, 5–7, 20, 22, 24–26, 34, 36].
While multigrid techniques [12, 38] and their algebraic counterparts (AMG) [31, 41]
are known to be optimally efficient for solving some classes of discretized partial
differential equations on regular meshes, they may become ineffective when faced with
more general types of sparse linear systems. However, the ‘multilevel’ or ‘multistage’
ingredient of multigrid can be easily married with general-purpose qualities of ILU
preconditioners to yield efficient, yet more general-purpose, solvers.

This paper does not aim at exploring new methods within the multilevel ILU
class of techniques. It focuses instead on improving the basic component of ILU-based
preconditioners, namely the ILU factorization itself. Among the various options of
ILU considered in the literature is the Modified ILU factorization (MILU) proposed by
Gustafsson [19] for the symmetric case (Modified Incomplete Cholesky or MIC). Note
that for 5-point matrices, MIC(0), where the nonzero pattern of the resulting factors is
restricted to match that of the original matrix, is equivalent to the method proposed
in 1968 by Dupont, Kendall, and Rachford [16]. The modification in the MIC(0)
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technique consists of, for every row, tracking the entries dropped in the factorization
and adding their sum to the diagonal entry of that same row. This has the same effect
as adding to the diagonal entry before computing the factorization, a process known
as shifted incomplete LU (or shifted incomplete Cholesky) factorization [23,27].

The result of the modified ILU process is that the product of the factors, LU ,
and the original matrix, A, give the exact same result when applied to a vector
with constant entries. This rationale is derived from a continuity argument: the
matrix, LU , that approximates A should be exact on constants in the domain when
A corresponds to the discretization of an elliptic PDE. It can be observed that for
matrices arising from such PDEs, MILU may be vastly superior to a standard ILU, and
this improvement comes at virtually no extra cost. The method has been extensively
analyzed and has given rise to a few variants; see, for example, [13, 15, 19, 29, 39].
However, most of the work on these so-called ‘diagonal compensation’ techniques, to
which MILU belongs, has been devoted to matrices arising from PDEs, as the analysis
for the case of general sparse matrices is difficult. For the same reason, the use of
these techniques for the threshold-based factorization, ILUT, has been avoided.

The focus of this paper is on combining modification strategies with threshold-
based factorization, leading to new modified ILUT (MILUT) algorithms. Standard
threshold-based incomplete LU (ILUT) factorization algorithms (both row-based and
column-based) are reviewed in Section 2. Section 3 presents three approaches that
can be used to improve standard modification procedures. First, in Section 3.1, we
examine the question of relaxed compensation, where the modification process is
tempered with the goal of improving the stability of the resulting LU factors. Here,
we propose a strategy that aims to balance the accuracy of the MILUT factors with
their stability. Secondly, Section 3.2 extends this approach using complex-valued
modifications, particularly in the context of indefinite operators; such approaches
have been examined in many recent papers aimed at the numerical solution of the
Helmholtz Equation (see, for example, [4, 18, 30, 40]). Finally, Section 3.3 examines
the question of which vector, or vectors, should be used to guide the modification
procedure, and how classical diagonal compensation strategies can be extended for
matching multiple vectors. Here, a new “adaptive” modification scheme is proposed,
where the modification vectors are chosen based on an Arnoldi iteration, rather than
being pre-specified as in typical MILU strategies; this is analogous to the family
of adaptive algebraic multigrid methods that have been recently established in the
literature [8–11, 37]. Numerical results for these methods are given in Section 4.
Section 5 presents some concluding remarks.

Throughout the paper, superscript H is used to denote the Hermitian transpose,
as we consider matrices and vectors that may be complex-values. In the case of real
arithmetic, superscript T is used instead.

2. Incomplete LU factorization with thresholds. A common way to define
a preconditioner is through an incomplete LU factorization obtained from an approxi-
mate Gaussian elimination process. When Gaussian elimination is applied to a sparse
matrix, A, a large number of nonzero elements in the factors, L and U , may appear in
locations occupied by zero elements in A. These ‘fill-ins’ often have small values and,
therefore, they can be dropped to obtain a sparse approximate LU factorization, re-
ferred to as an incomplete LU (ILU) factorization. The simplest of these procedures,
ILU(0) is obtained by performing the standard LU factorization of A and dropping
all fill-in elements generated during the process. Thus, the factors, L and U , have the
same pattern as the lower and upper triangular parts of A (respectively).
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In the early work on ILU preconditioners, it was understood that ILU(0) could be
ineffective and that more accurate factorizations could be needed. Such factorizations,
denoted by ILU(k) and IC(k) (for incomplete Cholesky in the symmetric case), were
initially derived by adopting a strategy to drop fill-ins according to their so-called
‘levels-of-fill’, first defined in the reservoir simulation literature [42]. Level-1 fill-ins,
for example, are generated by products of level-zero fill-ins (at most); ILU(1), then,
arises by keeping all fill-ins that have level zero or one and dropping any fill-in whose
level is higher.

Because the level-of-fill concept was founded on properties of M -matrices, alter-
native techniques were soon after developed for general sparse matrices. One of the
first contributions along these lines is by Munksgaard [28], who defined an ILU fac-
torization that uses a drop tolerance. Another method in the same class is ILU with
Threshold (ILUT) [33]. ILUT is a procedure based on a form of Gaussian elimination
in which the rows of L and U are generated one by one. This row-wise algorithm is
based on the so-called IKJ (or delayed update) Gaussian elimination process, whereby
the i-th step computes the i-th rows of L and U :

Algorithm 1: IKJ-ordered Gaussian Elimination.
0. For i = 1 : n, do:
1. w = Ai,1:n

2. For k = 1 : i− 1, do:
3. wk := wk/uk,k

4. wk+1:n := wk+1:n − wk · Uk,k+1:n

5. Enddo
6. For j = 1, . . . , i− 1, li,j = wj (li,i = 1)
7. For j = i, . . . , n, ui,j = wj

8. Enddo
Here, and in all following discussion, ai,k, li,k, and ui,k represent the scalar entries

at the i-th row and k-th column of the matrices A, L, and U , respectively, Ai,1:n

denotes the complete i-th row of A (transposed as a column vector) while A1:n,j

denotes the j-th column of A, wk+1:n denotes the last n− k entries in the vector w,
Uk,k+1:n denotes the last n− k entries in the k-th row of U (transposed as a column
vector), Li,1:i−1 denotes the first i − 1 entries in the i-th row of L (transposed as a
column vector), and so forth. Of note in Algorithm 1 is that at the i-th step, the i-th
row of A is modified by previously computed rows of U , while the later rows of A and
U are not accessed. The incomplete version of this algorithm is based on exploiting
sparsity in the elimination and dropping small values according to a certain ‘dropping
rule’.

The dropping strategy in [33], which we follow in this paper, uses two parameters.
The first parameter is a drop tolerance, τ , which is used mainly to avoid doing an
elimination if the pivot, wk, is too small. The second parameter is an integer, p, which
controls the number of entries that are kept in the i-th rows of L and U . Details can
be found in [33,35]. An illustration of the elimination process is shown in Figure 2.1a,
and a sketch of the general structure of the algorithm is given next as Algorithm 2.

Algorithm 2: IKJ-ordered ILUT.
0. For i = 1 : n, do:
1. w = Ai,1:n

2. For k = 1 : i− 1 and if wk 6= 0, do:
3. wk = wk/uk,k

4. Apply first dropping rule to wk
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(b) Column-based ILUT

Fig. 2.1: Illustration of the row-based (at left) and column-based (at right) ILUT
algorithms

5. If wk is not dropped, wk+1:n = wk+1:n − wk · Uk,k+1:n

6. Enddo
7. For j = 1, . . . , i− 1, li,j = wj (li,i = 1)
8. Apply second dropping rule to Li,1:i−1

9. For j = i, . . . , n, ui,j = wj

10. Apply second dropping rule to Ui,i+1:n

11. Enddo
As shown in Figure 2.1a, and in Lines 3 and 4 of Algorithm 2, the pivot, wk, is

computed and compared with the dropping parameter, τ , and dropped if it is smaller
relative to some scaling parameter. Otherwise, operations of the form w = w−wkuk

are performed to eliminate the entry associated with the pivot entry wk. In Lines
8 and 10, the threshold, τ , is invoked again to drop small terms, then the largest p
entries in the resulting i-th rows of L and U are kept, and the others are dropped.

The above algorithm is row-based; for column-oriented programming paradigms
(such as within Matlab), however, a column-based approach is more efficient. Further-
more, the triangular solves involving the L and U factors can be efficiently computed
using a column-oriented data structure. For the column version of ILUT, at a given
step j, the initial j-th column of A, aj , is transformed by zeroing out entries above
the diagonal element. As in the row version, operations of the form w := w − wklk
are performed to eliminate entries of w from top to bottom, until all entries strictly
above the diagonal are zeroed out. In the incomplete LU case, only a few of these
eliminations are performed. An illustration is shown in Figure 2.1b, and the complete
algorithm is given in Algorithm 3. The elimination steps can be written in equation
form as

aj − w1l1 − w2l2 · · · − wj−1lj−1 = ŵ + εU + εL, (2.1)

where lk is a column of L with k < j, and wk is the coefficient used for the elimination
of pivot akj . In order to avoid confusion in the notation, we introduce ŵ as the version
of the transformed w with zero entries in positions 1, · · · , j− 1. Furthermore, for the
sake of simplifying notation, we write Equation (2.1) for dense columns, so the scalars
wk are understood to be zero except for a few. The column εU contains the terms,
wk, which were dropped by first dropping rule. The column εL contains the entries
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dropped by the post-dropping on w, which is achieved by the second dropping rule.
The resulting column, ŵ, which now has zeros above position j, is divided by its
diagonal entry and becomes the j-th column of L, while the scalars wk, representing
the eliminated pivot akj , will constitute the j-th column of U . Dropping in Lines 3,
7, and 9 of Algorithm 3 may be handled in the same way as the row variant described
previously (in Algorithm 2).

Algorithm 3: Left-looking or JKI ordered ILUT.
0. For j = 1 : n, do:
1. w = A1:n,j

2. For k = 1 : j − 1 and if wk 6= 0, do:
3. Apply first dropping rule to wk

4. If wk is not dropped, wk+1:n = wk+1:n − wk · Lk+1:n,k

5. Enddo
6. For i = j + 1, . . . , n, li,j = wi/wj (lj,j = 1)
7. Apply second dropping rule to Lj+1:n,j

8. For i = 1, . . . , j, ui,j = wi

9. Apply second dropping rule to U1:j−1,j

10. Enddo

3. Modifying ILUT. Two important considerations must be addressed when
constructing an incomplete factorization (or, indeed, any other) preconditioner. Of
primary importance from a theoretical point of view is the accuracy of the precondi-
tioner. This is typically expressed in terms of the spectral equivalence of the precon-
ditioner, B, to the system matrix, A, expressed by conditions such as

αxT Bx ≤ xT Ax ≤ βxT Bx ∀x, (3.1)

when A and B are both symmetric and positive definite. Here, the performance of the
Krylov accelerator may be bounded in terms of the spectral equivalence bound, β

α ,
and this bound may be sharp, if the spectrum of B−1A is roughly evenly distributed
between α and β. If, however, the spectrum is significantly clustered, this bound may
be insufficient, since only an upper bound is guaranteed by the theory. On the other
hand, of significant importance from a practical (or computational) point of view is
the stability of the preconditioner. For incomplete factorization preconditioners, this
was first observed by Elman [17], who defined the term and showed that disastrous
situations can arise wherein the norm of U−1L−1 can be huge, even though A is
(relatively) well-behaved. Later, Bollhöfer [3] defined rigorous dropping strategies
with a goal of specifically making the inverse factors, L−1 and U−1, not too large.

The argument behind these robust ILUs is based on writing the matrix, A, as a
sum of the preconditioner plus an error term, A = B + E, and, then, considering the
resulting preconditioned matrix, B−1A = I +B−1E. When an iterative method is ap-
plied to this preconditioned system, what matters is how well I +B−1E approximates
the identity matrix. In exact arithmetic, all that matters is the spectral equivalence
condition in Equation (3.1); however, for practical computation, the boundedness in
norm of B−1A (or, equivalently, of B−1E) is also important. In many ways, the sta-
bility of a preconditioner is measured directly by ‖B−1E‖ in the L1 or L∞ norm. For
many practical cases, this norm can be much larger than the spectral radius of the
preconditioned system, and this mismatch leads to significant differences between the
theoretical and actual performance of the preconditioned Krylov iteration. Indeed,
ILUT is quite prone to this type of instability for indefinite problems; it is possible to
construct examples where ‖B−1‖1 is arbitrarily large for simple matrices, A.
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Here, we aim to look at the role of modification of the triangular factors within
threshold-based incomplete factorizations from the point of view of both stability and
accuracy. In particular, we consider three questions:

1. Can we extend the classical modified ILU idea, based on diagonal compensation
techniques, to safeguard the stability of the modified ILUT factorization?

2. For indefinite problems, can we use the ideas of complex-valued (and purely
imaginary) perturbations to improve stability of the modified ILUT preconditioners.

3. Can we improve the modified ILUT schemes by adaptively choosing an ap-
propriate vector (or set of vectors) to be used to satisfy the matching constraint?
Furthermore, what modification condition(s) should be imposed when building the
ILUT factorization?
Choosing a vector or set of vectors to match may be motivated primarily by accu-
racy considerations, which constrain the spectral properties of the preconditioners.
Choosing the conditions to impose on the factorization, on the other hand, amounts
to selecting coefficients so that LU matches A in some optimal way. In all cases,
this is done primarily from the perspective of maintaining stability; a modification
strategy that leads to small diagonal or large off-diagonal coefficients is expected to
harm stability, while one that improves the relative conditioning of coefficients within
a row or column will improve stability.

3.1. Optimal spreading for modified ILUT. In this subsection, we discuss
an extension to the classical modified ILU idea by considering an optimal way of
distributing the compensation term among the non-unit diagonal as well as the L
part of the factorization. Here and in Section 3.2, we focus on the column version of
ILUT given as Algorithm 3, while Section 3.3 follows the row version of ILUT given
as Algorithm 2.

Recall that from Equation (2.1), ŵ is the vector that results from eliminating
nonzeros in positions 1 through j − 1 in the j-th column of A, aj . In the modified
version of ILUT, this column undergoes another modification before it is stored as a
column of L. Specifically, we write the modification as the addition of a column s,
giving

aj − w1l1 − w2l2 · · · − wj−1lj−1 − (ŵ + s) = εU + εL − s. (3.2)

We then obtain the diagonal entry of U by setting uj,j = ŵj +sj and the j-th column
of L as lj = (ŵ + s)/wj .

Before discussing the choices of s, we note an important practical consequence of
the effect of post-dropping in the U part of w. By this, we mean dropping further
entries among w1, ...., wj−1, after elimination step j is complete (i.e., after Line 5 of
Algorithm 3). If, at this stage, any entry, wk for 1 ≤ k ≤ j − 1, is dropped (i.e.,
assigned a value of 0), then the resulting correction to Equation (2.1) becomes more
complicated, as it is not just wk, but the column wklk, that must be account for in
Equation (3.2). This means ε = εU +εL will be modified by the addition of wklk, which
can lead to significant additional fill-in elements. This suggests that it is reasonable
to avoid post-dropping in U when we base our analysis on (3.2) and, so, we adopt
this strategy here. An analogous strategy is possible for the lower-triangular factor
in the row-based algorithm; however, since we do not make use of Equation (3.2) in
Section 3.3, we do not investigate this possibility for the row based scheme.
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Following (3.2), we consider the modified vector,

ŵ + s =

0
η
l

+

0
σ
z

 , (3.3)

where, as discussed above, we choose s to only affect the lower-triangular part of the
factorization. In Equation (3.3), η represents the diagonal entry of the column after
elimination (but before scaling), σ is a perturbation to this diagonal entry, the column
vector, l, represents the strict lower part of the corresponding (unmodified) column
in L, and z is the perturbation to l.

In the classical modified ILU factorization, we simply take z to be the zero vector
and ask that the inner product of the error vector, ε−s, and a given vector, t, be zero.
In the most common case, t = 1 ≡ (1, 1, · · · , 1)T , giving 1T (ε−σej) = 0 (where ej is
the j-th column of the identity), or σ = 1T ε, i.e., the sum of the dropped entries. We
refer to this approach as modified ILU with exact diagonal compensation, since the
exact sum of the dropped entries is added back onto the diagonal. We shall denote
this optimal (exact) compensation, that satisfies the matching constraint with respect
to the vector t, as σ∗. The more general scenario, where t is an arbitrary vector with
no zero elements, leads to

tH(ε− σej) = 0 → σ = σ∗
tHε

tHej
. (3.4)

3.1.1. Relaxed compensation. As mentioned earlier, ILUT behaves quite dif-
ferently from the usual ILU(k) strategies and, in particular, exact diagonal compen-
sation may affect the factors in a negative manner when the modified diagonal term,
η+σ, is closer to zero than η, decreasing the diagonal dominance of the row or column
under consideration.

To motivate our proposed strategy, we begin by examining Equation (3.2). Con-
sider the general situation where the ‘compensation column’, s, is any column which
has at most the same sparsity pattern as ŵ. Note that ε (the vector of dropped
entries) and ŵ are structurally orthogonal and, therefore, so are s and ε. Thus,
‖ε − s‖22 = ‖ε‖22 + ‖s‖22, which suggests that, from the point of view of accuracy, we
should keep ‖s‖2 small. Regarding Equation (3.3), however, we would like to add a
portion of the dropped entries to ŵ, with the goal of making the scaled column of L
as ‘stable’ as possible. This means that, from the point of view of stability, we want
to modify the diagonal entry of ŵ + s (i.e., the diagonal entry of U) and, possibly,
the lower part as well so that (cf. (3.3)),

A. |η + σ| is not small
B. ‖l + z‖2 is as small as possible
Considering (A) alone, we must balance the contrasting requirements of accuracy

and stability. Although it is desirable to make the modified diagonal entry |η+σ| large
relative to other entries, one should note that choosing σ to be arbitrarily large would
result in a factorization that poorly approximates the original matrix, A. Thus, it is
necessary to control the size of σ. However, simply applying the exact compensation,
by choosing σ = σ∗ as prescribed in (3.4) can adversely affect stability by taking the
diagonal term closer to zero when η and σ have opposite signs. Hence, considering
(A), one option is to add a fraction, α > 0, of σ∗, so that σ = ασ∗.

Considering (B), we aim to choose z, a sparse column with the same sparsity
pattern as l, to simultaneously minimize ‖z‖2 (the additional discarded fill-in) and
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‖l+ z‖2, relative to η + σ (the resulting column of L). However, it is difficult to solve
this optimization problem, particularly where both unknowns (σ and z) are considered
at the same time. Thus, we formulate an optimization strategy that handles conditions
(A) and (B) above with z as the only unknown; subsequently, we exploit the solution
of this optimization problem as a guide for choosing σ.

So, fixing σ, we pose the optimization problem of

min
z

‖l + z‖22
|η + σ|2

subject to the constraint |σ|2 + ‖z‖22 ≤ γ2

where the constraint, |σ|2 + ‖z‖22 ≤ γ2 (for γ > 0), is used to safeguard the accuracy
of the factorization as an approximation to the original matrix, A. We introduce the
penalty term, µ ≥ 0, and solve instead the penalized problem,

min
z

(
1

|η + σ|2
(lH l + 2zH l + zHz) + µ

(
|σ|2 + zHz− γ2

))
,

whose minimum is reached when

z =
−1

(1 + µ|η + σ|2)
l. (3.5)

From the KKT conditions, complementary slackness implies that µ(|σ|2 + zHz−
γ2) = 0. Recall that µ ≥ 0, and notice that, if µ = 0, then the constraint is inactive.
Hence, for µ > 0, we have

zHz = γ2 − |σ|2,

which gives (by substitution of z from Equation (3.5)):

|η + σ|4µ2 + 2|η + σ|2µ +
(

1− lH l
γ2 − |σ|2

)
= 0.

We can then solve for µ as:

µ =
1

|η + σ|2

(
−1 +

√
lH l

γ2 − |σ|2

)
. (3.6)

To obtain a valid solution for µ, two conditions need to be satisfied. First, we need
µ > 0, implying that

lH l
γ2 − |σ|2

> 1 ⇒ |σ|2 > γ2 − lH l.

Notice that, since |σ|2 > 0 and γ2 may be less than lH l, we can express the above
inequality, without loss of generality, as

|σ| >
√

max(γ2 − lH l, 0),

where max(a, b) simply returns the maximum of a and b. While this gives a lower
bound for σ, we also need to ensure that σ is not too large, so that µ remains real-
valued. Further requiring that

lH l
γ2 − |σ|2

> 0 ⇒ |σ| < γ.
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Putting these two inequalities together, we get that√
max(γ2 − lH l, 0) < |σ| < γ.

In real arithmetic, this reduces to

−γ < σ < −
√

max(γ2 − lT l, 0) or
√

max(γ2 − lT l, 0) < σ < γ. (3.7)

3.1.2. Choice of σ. The parameter γ controls the size of the modifications,
‖s‖22 = |σ|2 + ‖z‖22, and, hence, must be carefully chosen. Choosing γ = |σ∗|, the
exact diagonal compensation factor from Equation (3.4), naturally lends itself to the
modified ILUT scheme, since it guarantees that σ will be a fraction of the weighted
sum of the dropped terms. For the special case of σ∗ = 0 (when there are no dropped
terms or, more generally, when tHε = 0), the choice of γ > 0 can be based on a
default value, such as the drop tolerance, τ , used in ILUT. When γ > 0, the sign of
σ is chosen to match that of the exact diagonal compensation factor. Thus, in real
arithmetic, if σ∗ < 0, then σ is chosen to satisfy −γ < σ < −

√
max(γ2 − lT l, 0),

otherwise,
√

max(γ2 − lT l, 0) < σ < γ.
It remains to pick the size of σ within the interval (

√
max(γ2 − lH l, 0), γ), given

that the optimization problem provides no further guidance. We propose a criterion
based on choosing σ within its allowable interval in order to address the stability of
the resulting factors. Thus, our choice is guided by the size and sign of the resulting
perturbations. For simplicity, we assume real arithmetic in our analysis, and provide
a generalization to complex arithmetic afterwards.

First note that when l = 0, the optimization problem clearly attains a minimum
with z = 0. Furthermore, extending the inequalities in Equation (3.7) gives |σ| = γ.
Thus, we must consider the choice of σ only when l 6= 0. In this case, we have a
nontrivial range of possible values of σ, and must choose whether |σ| should be closer
to γ or

√
max(γ2 − lT l, 0). To make this decision, we return to criterion (A), which

states that |η + σ| should not be “small”. Thus, if η and σ are of different signs, it is
sensible to select |σ| to be close to the lower bound

√
max(γ2 − lT l, 0), so that |η +σ|

is not made smaller than necessary. Assuming this choice of σ is small enough, then
from Equation (3.6), we see that µ is not too large (since γ2−σ2 is larger) and, hence,
z is a significant modification on l. In other words, adding σ to the diagonal improves
the matching condition, whereas z serves to stabilize the column (balancing out the
negative effect of σ). However, if η and σ are of the same sign, then it makes sense
to choose |σ| to be close to the upper bound, γ, to benefit from both improving the
matching condition as well as stabilizing the column. Notice that this choice of |σ|
increases the magnitude of µ, and hence, decreases the norm of z.

The choice for σ is, then, formally defined as:

σ =


0 if lT l = 0,

sgn(σ∗)× (
√

max(γ2 − lT l, 0) + β × ρ) if sgn(η) = sgn(σ∗),
sgn(σ∗)× (

√
max(γ2 − lT l, 0) + ε× ρ) otherwise,

(3.8)

where sgn(.) is the signum function, ρ = γ −
√

max(γ2 − lT l, 0) is the width of
the interval for choosing σ, ε ∈ (0, 1) is small, and β ∈ (0, 1) is not small. For
general sparse matrices, we propose setting ε to be equal to the drop tolerance, τ ,
of the ILUT factorization and β to be equal to the “diagonal dominance ratio” of
the column, given by β = |aj,j |/‖aj‖1. If the j-th column of the original matrix, A,
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is diagonally dominant, then β is closer to one, making σ large. As a result, µ is
also large, which makes the modification with z small. Since the column is already
diagonally dominant, the modification with z need not be significant. On the other
hand, if the j-th column of A is not diagonally dominant, then β is small, and the
resulting modification with z is not too small.

For matrices with complex coefficients, Equation (3.8) takes the more general
form:

σ =


0 if lH l = 0,

sgn(σ∗)× (
√

max(γ2 − lH l, 0) + β × ρ) if
sgn(Re(η)) = sgn(Re(σ∗)) and
sgn(Im(η)) = sgn(Im(σ∗)),

sgn(σ∗)× (
√

max(γ2 − lH l, 0) + ε× ρ) otherwise.

The main difference between this form and Equation (3.8) is that the sign comparison
between η and σ∗ takes into account both the real and imaginary parts of the complex
term. Also, note that since the sgn(σ∗) = σ∗/|σ∗| is complex, σ will take on a complex
value as well.

3.2. Complex modification. While the above modification strategy offers an
improvement on unmodified ILUT, even for some very poorly conditioned systems (see
Section 4.1), we still observe poor performance when the original system matrix is
very indefinite. This is not altogether surprising, as indefinite linear systems generally
require a more accurate factorization or complicated preconditioning approach, such
as those in [4, 18, 40]. However, simply improving the accuracy of the factorization
(by decreasing the drop tolerance) can yield factors that are even more unstable than
the original system matrix, making the factorization ineffective as a preconditioner.
Diagonal compensation techniques have been proposed to handle this issue [4,23,30].
However, real-valued perturbations to the diagonal have been found to be not very
effective, and most of the successful methods have relied on the use of complex (or
imaginary) perturbations instead.

Previous work, such as in [18, 23, 30, 40], has shown that purely imaginary shifts
of symmetric and indefinite problems have the effect of clustering eigenvalues on a
circle in the right half-plane, with an accumulation point near one. This results in a
more stable factorization, which leads to a more effective ILU-based preconditioner.
The approach in these papers is based on shifting the diagonal entries, by an appro-
priate perturbation, prior to performing the ILU factorization (Shifted ILU). This
is somewhat different from the classical modified ILU approach, which is based on
matching the effect of the preconditioning matrix and the original matrix on some
vector. Nonetheless, ideas from the former approach can be incorporated into the
modified ILU scheme.

If a uniform perturbation, σ, is used to modify the diagonal in the modified ILUT
scheme and is known prior to the factorization, then the resulting factorization has
the same effect as the shifted ILU scheme. Thus, to motivate the use of a complex σ,
we consider the following simplified analysis. Let A be a Hermitian matrix,

B = A + σIn,

σ = ν + iθ for some real numbers ν, θ ≥ 0. Suppose that we use the exact LU
factorization of B as the preconditioner, M = LU(B). Then, the eigenvalues of the
preconditioned matrix M−1A satisfy

µj =
λj

(λj + ν) + iθ
=

λj(λj + ν)
(λj + ν)2 + θ2

− i
λjθ

(λj + ν)2 + θ2
, (3.9)
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Fig. 3.1: Spectrum of the preconditioned matrix, M−1A where M = LU(B) for
B = A + σIn and σ = ν + 0.25i.

where the λj are the eigenvalues of A, and the µj are the eigenvalues of the precon-
ditioned matrix, M−1A. From the above equation and the identity λj = 1

2 (λj + ν +
iθ + λj − ν − iθ), we obtain∣∣∣∣µj −

1
2

∣∣∣∣ = 1
2
|(λj − ν)− iθ)|
|(λj + ν) + iθ)|

. (3.10)

We observe from Equation (3.10) that, for ν = 0, all eigenvalues, µj , of the
preconditioned system lie on the circle centered at 1/2 + 0i with radius 1/2. This,
however, is not true for ν > 0, where a (real) positive λj will be mapped to a complex
number within a distance of 1/2 from the center of this circle; whereas a negative
λj will be mapped to a complex number beyond a distance of 1/2 from the center.
Figure 3.1 shows the spectrum of the preconditioned matrix, M−1A, using the exact
LU factors of B = A + σIn, where A is obtained from shifting the matrix for the
finite-difference discretization of the Laplace operator, −∆, on a 25 × 25 grid. The
discretization assumes a scaling based on the mesh size parameter, h, so that the
resulting matrix initially has 4 on the diagonal, and four off-diagonal entries of −1
each. The matrix is then shifted by adding a negative shift of −1.0 to the diagonal,
to make it indefinite. Note that (because of the scaling by h2), this shift is quite
severe and makes it a challenge to iterative methods to solve a linear system involving
this matrix. The resulting matrix has size n = 625, with 49 negative eigenvalues
(smallest is λ1 = −0.9708 and largest is λ625 = 6.9708). The figure shows plots of the
preconditioned spectrum with σ = ν + 0.25i, for different values of ν. We observe a
better clustering of the eigenvalues for smaller values of ν. Note, however, that the
resulting preconditioner based on A + σIn will be both indefinite and non-Hermitian;
hence, MINRES is no longer usable as the Krylov solver, and GMRES or BiCGStab
must be used instead.

3.2.1. Imaginary perturbations for modified ILUT. While the shifted ILU
(and also shifted multigrid) approaches have been shown to improve on unshifted
preconditioners for indefinite, Helmholtz-type problems, modified approaches based
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on similar reasoning offer better control of the perturbation and, so, more accurate
preconditioners for these problems. In what follows, we present an approach for
using imaginary perturbations similar to the compensation strategy described above
to improve the quality of the modified ILUT factorization. To do so, the above
optimization problem is solved replacing σ by iσ (where σ ∈ R). In other words, we
rewrite the problem as

min
z

(
1

|η + iσ|2
(lH l + 2zH l + zHz) + µ( |σ|2 + zHz− γ2)

)
.

Following the same approach as before yields

z =
−1

(1 + µ|η + iσ|2)
l.

Note that the penalty term, µ, remains essentially the same as in Equation (3.6),
giving the optimal ranges for σ as

−γ < σ < −
√

max(γ2 − lH l, 0) or
√

max(γ2 − lH l, 0) < σ < γ.

In this approach, the sign of σ is chosen to match the sign of the imaginary part
of the diagonal term, η (if η is complex; if η is real, the sign can be chosen arbitrarily).
This improves |η + iσ|, making the factorization more diagonally dominant. We then
need to decide whether to take σ to be close to its lower or upper bound within this
interval. As before, choosing |σ| to be close to the lower bound leads to smaller values
of µ and, thus, a larger correction in z. Choosing a larger |σ| (close to the upper
bound), on the other hand, gives a smaller correction in z. This latter option is more
appealing, since the increase in the diagonal entries from the imaginary perturbation
is offset by the more accurate (less perturbed) modification of the rest of ŵ. This
gives

σ = s×
(√

max(γ2 − lH l, 0) + β × ρ

)
,

where ρ is the size of the interval as before, β is close to 1 (e.g., β = 1 − τ , where τ
is the ILUT drop tolerance), and the sign, s, is defined as:

s =
{

1 if Im(η) > 0,
−1 otherwise.

3.2.2. The modified ILUT algorithm with relaxed compensation. Algo-
rithm 4 formally describes the column version of the modified ILUT scheme discussed
above.

Algorithm 4: Left-looking or JKI ordered MILUT.
0. Select a vector, t, for matching
1. For j = 1 : n, do:
2. w = A1:n,j

3. Initialize γ = 0
4. For k = 1 : j − 1 and if wk 6= 0, do:
5. Apply first dropping rule to wk

6. If wk is not dropped, wk+1:n = wk+1:n − wk · Lk+1:n,k

7. Else, γ = γ + wk · tj
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8. Enddo
9. Apply second dropping rule to wj+1:n

10. For k = j + 1, . . . , n, if wk is dropped, update γ = γ + wk · tj
11. Do relaxed compensation on wj and wj+1:n with parameter γ
12. For i = j + 1, . . . , n, li,j = wi/wj (lj,j = 1)
13. For i = 1, . . . , j, ui,j = wi

14. Enddo
The above algorithm extends Algorithm 3, by tracking the dropped terms to

satisfy the matching condition. At Line 9 of the above algorithm, we prune the L
part of w, by applying the second dropping rule, prior to performing the modification.
This is necessary because we need to scale the resulting (modified) column of L by
the (modified) diagonal. Furthermore, notice that we avoid post-dropping in U . The
only dropping in U is handled by the first dropping rule (at Line 5 of the algorithm).

Note the updates to the size parameter, γ, accumulate terms of the form wktj
and not, as is usually done in a row-based calculation, wktk. Although we calculate
the ILU factorization in a column-wise manner, the matching condition is always a
row-wise condition, that (At)i = (LUt)i. Accumulating γ, however, is a column-wise
calculation. Thus, we use row-wise values of wk, the dropped fill-in entries, but fix tj
based on the column that we are considering.

3.3. Row-based modification. Finally, we turn our attention to the choice
of t and a generalization where multiple vectors are chosen. Because of the natural
disconnect between row-based matching criteria and column-based factorizations, this
subsection follows a row-based ILUT approach, as given in Algorithm 2.

3.3.1. Choice of vectors. The original modified incomplete Cholesky algo-
rithm [16, 19] may be seen as a modification of the standard incomplete Cholesky
factorization by adjusting the diagonal coefficient to match the constant vector. For
the discretizations of elliptic PDEs considered there, the constant vector is a reason-
able choice from an accuracy point of view as it yields small Rayleigh quotients for
these matrices and, as such, can easily lead to large spectral equivalence ratios, β

α , if
1T B1 is much larger than 1T A1. If A is a symmetric and positive-definite M-matrix,
then the theory of modified incomplete factorizations may be extended based on M-
matrix properties and matching (or nearly matching) a given positive vector (such as
the eigenvector of the M-matrix, A, corresponding to its smallest eigenvalue) [2].

The attraction of modifying the preconditioner, B, to match the action of A
on a space associated with the eigenvectors corresponding to its small eigenvalues is
a natural one from the perspective of accuracy. Consider the spectral equivalence
bound,

αxT Bx ≤ xT Ax ≤ βxT Bx,

for a unit-length vector, x, that yields a (relatively) small Rayleigh quotient, xT Ax
xT x

=
xT Ax ≈ λmin(A). If the action of B on x is far from that of A, it may lead to
either a very small lower equivalence bound, α, (if xT Bx � xT Ax) or a large upper
equivalence bound, β. Because α and β are relative quantities (the extrema of the
generalized Rayleigh quotient, xT Ax

xT Bx
), they are strongly influenced by inaccuracies

when the numerator is either very small or very large. In particular, a fixed (absolute)
error in xT (B − A)x will most strongly affect the bound for small values of the
numerator; thus, the classical modifications applied for M-matrices make intuitive
sense from the accuracy viewpoint.
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Motivated by accuracy, then, the question of which vector (or set of vectors) to
choose for the modification is answered by considering the spectral properties of A.
In the case where A comes from the discretization of a differential equation, these
vectors may be chosen based on the known properties of the differential operator.
For second-order scalar elliptic differential equations, for example, the constant and
linear functions are in the null-space of the dominant differential operator and, so,
are good candidates for vectors to be matched. For the equations of linear elasticity,
the so-called rigid body modes of translation and rotation in two or three dimensions
would make good candidates for modification (just as they make good candidates on
which to base the prolongation operator within smoothed-aggregation type multigrid
methods [41]).

If the origins of the matrix, A, are not as well known, either due to an unknown
discretization process or incomplete knowledge of the original problem, then choos-
ing such vectors a priori may be difficult or impossible. Instead, an estimate of the
extreme eigenvectors of A may be made to use in constraining the preconditioner (sim-
ilar to the use of prototypical error vectors in adaptive multigrid algorithms [9–11]).
Using a limited number of steps of the Arnoldi algorithm, for example, can give good
approximations to the extremal eigenvalues of A, along with the associated Ritz vec-
tors. Analogously to the classical modified incomplete factorization approach, an
estimate of the smallest eigenvalue of a symmetric and positive-definite matrix, A,
can be made, and the preconditioner modified to match the associated approximate
eigenvector. More generally, however, for a fixed (and small) Krylov subspace, esti-
mates of the eigenvalues of A closest to zero may be obtained, and the corresponding
approximate eigenvectors used in the modification.

3.3.2. Choice of coefficients. To apply modification to Algorithm 2, after each
row of L and U is computed (including all dropping steps), the computed coefficients
must be modified to match the chosen vector or vectors. When only a single vector, x,
is chosen to be matched, an obvious choice is to modify the non-unit diagonal (of U)
so that LUx = Ax, as in the column-based approach discussed above, so long as this
does not make the diagonal entry unduly small. As above, modifying more coefficients
may, however, lead to better stability. When several vectors have been chosen to be
matched, however, only a poor overall matching is possible when modifying only a
single coefficient. In this case, modifying several coefficients allows a better (and,
possibly, perfect) match of a set of vectors and may also be used to improve stability.

The choice of which coefficients to modify, however, may greatly affect both the
accuracy and stability of the factorization. If the chosen set forces some large co-
efficients to become small, or small off-diagonal coefficients in L and U to become
large, then the accuracy of the overall preconditioner may suffer. If, in particular, the
non-unit diagonal entry in row i of U is forced to become quite small in comparison
to the off-diagonals in row i, then stability of the computation will be negatively af-
fected, as discussed above. A simpler strategy than that proposed above for choosing
which coefficients to modify is to choose a subset of the largest coefficients of the
L and U factors. If the misfit for each vector, x, to be matched is relatively small
(((A− LU)x)i is small compared to xj for j such that li,j and ui,j will be modified),
then small modifications (relative to the size of li,j and ui,j) will be sufficient to match
the vectors. Thus, the stability of the factorization will not be negatively impacted
by the modifications, and the accuracy is not expected to suffer significantly either.
Alternately, modification could be used on indices where entries in L and U are ex-
pected to be large based on the pattern of the matrix A. For example, modification
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of li,j or ui,j if ai,j 6= 0, or if |j − i| is not too large.
Let nv be the number of (linearly independent) vectors to be matched, and nc

be the number of coefficients to be modified. Given li,? and ui,?, the ith rows of L
and U computed within ILUT, we look to modify these rows so that the resulting
factorization satisfies (L̃Ũx(k))i = (Ax(k))i for k = 1, . . . , nv. Writing l̃i,j = li,j + δi,j

and ũi,j = ui,j + δi,j , the matching condition for vector x(k) can be rewritten as∑
j<i

(li,j + δi,j)(Ux(k))j +
∑
j≥i

(ui,j + δi,j)x
(k)
j = (Ax(k))i,

or
∑
j<i

(Ux(k))jδi,j +
∑
j≥i

x
(k)
j δi,j = ((A− LU)x(k))i.

So, the updates to the coefficients in row i of L and U can be found by solving
the linear system Xδ = r, where each row in the system matrix, X, corresponds to
a given vector, x(k), with the first i − 1 columns taking values of (Ux(k))j and the
last n − i + 1 columns taking values of x

(k)
j , and each entry in the residual, r, given

by the misfit, rk = ((A − LU)x(k))i. As only a subset of the entries in row i of L
and U will be considered for modification, X can be restricted from n columns to nc

columns, corresponding only to those weights selected for modification. As the rank
of X is at most nv, it is possible for this system to be overdetermined, have a unique
solution, or be underdetermined. In the overdetermined case, a least-squares solution
is considered, minimizing ‖Xδ− r‖. In the underdetermined case, the solution which
results in the smallest changes, δ, to the coefficients in L and U is chosen.

3.3.3. The generalized modified ILUT algorithm. Algorithm 5 gives the
overall algorithm for computing the modified ILUT factorization of a given matrix,
A, using the scheme proposed in this section.

Algorithm 5: IKJ-ordered Modified ILUT algorithm.
0. Select nv vectors for matching, x(k), k = 1, . . . , nv

1. For i = 1, . . . , n, do
2. w = Ai,1:n

3. For k = 1, . . . , i− 1 and if wk 6= 0,
4. wk = wk/ukk

5. Apply a dropping rule to wk

6. If wk is not dropped, wk+1:n = wk+1:n − wk · Uk,k+1:n

7. Enddo
8. For k = i + 1, . . . , n, apply a dropping rule to wk

9. For j = 1, . . . , i− 1, li,j = wj

10. Apply a dropping rule to li,?
11. For j = i, . . . , n, ui,j = wj

12. Apply a dropping rule to ui,?

13. For k = 1, . . . , nv, compute rk = ((A− LU)x(k))i

14. For k = 1, . . . , nv, do
15. For mj < i, Xk,mj

= (Ux(k))mj

16. For mj ≥ i, Xk,mj = x
(k)
mj

17. Enddo
18. Solve Xδ = r
19. For mj < i, li,mj

= li,mj
+ δi,j

20. For mj ≥ i, ui,mj = ui,mj + δi,j

21. Enddo
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The added computational cost for the modification algorithm need not be signif-
icant. Considering only the costs within the factorization, added steps include the
computation of the residuals, rk, computation of the entries in X, solving the sys-
tem for δ, and updating the weights. Computing the residuals and matrix X may
be accelerated by computing the products Ax(k) in Line 0, when the vectors x(k)

are chosen, and by computing (and storing) the partial vectors, Ux(k) as each row
in U is finalized. Note that no extra storage is needed to store the partial prod-
ucts, Ux(k), as the entries, x

(k)
j for j < i are not needed at stage i of the algorithm,

and so, may be overwritten. Thus, matrix X may be assembled at no cost (other
than nc × nv memory accesses). To compute the residuals, the partial matrix-vector
product,

∑
j<i li,j(Ux(k))j +

∑
j≥i ui,jx

(k)
j must be evaluated. However, in the ILUT

algorithm, dropping in Lines 10 and 12 is typically done so that each row of L and U
is allowed no more than a fixed factor times the average number of nonzeros in each
row of A. Thus, the total cost of all of these computations is no more than that factor
times the total number of nonzeros in each row of A. Solving the system at Line 18
may be efficiently done using either the LQ or QR factorization of X.

4. Numerical Results. In what follows, we present some numerical results
of the modified ILUT schemes described in the previous section. These results are
obtained from applications governed by the standard 2D finite-difference Laplacian,
some shifted and scaled problems, and the Helmholtz Equation.

4.1. Results for modified ILUT with Relaxed Compensation. We present
some numerical results for the relaxed compensation strategy for modified ILUT,
obtained from the solution to the minimization problem described in Section 3.1.1.
The tests shown here are run with the column version of the modified ILUT algorithm,
programmed in C, on a dual-core AMD Opteron 1GHz machine with 4GB of RAM.

In the first set of examples, we test the relaxed compensation strategy on systems
that are symmetric and positive definite, but poorly conditioned. The base problem
is a 2D finite-difference discretization of the Laplace operator, −∆, on a uniform grid
using centered differences. As before, the discretization assumes a scaling based on
the mesh size parameter, h, so that the resulting matrix initially has 4 on the diagonal,
and four off-diagonal entries of −1. This is then shifted by a small negative term,
%, to make it indefinite. We then construct the normal matrix A = LT L, from the
resulting indefinite matrix, L. Note that although A is now symmetric and positive
definite, solving a linear system involving A can still be quite challenging, due to its
large condition number. Furthermore, shifting L to make it indefinite can result in a
cluster of eigenvalues close to zero for the normal matrix, A, which makes it a more
challenging problem for solution by Krylov methods. The right-hand side vectors, b,
are constructed by choosing the entries of the solution vector, x, from the uniform
distribution on [0, 1] and computing b = Ax. Since these vectors are chosen randomly,
the results displayed in the tables below are obtained from averaging several runs of
the same problem for each test case. The condition numbers of the resulting matrices
range from 3 × 108 to 1011, but do not correlate strongly with problem size or shift,
due to the formation of the normal equations.

In what follows, we compare the performance of the relaxed compensation scheme
proposed in this paper against that of shifted ILU(0) on solving the system Ax = b.
For the shifted ILU(0) preconditioner, the diagonal of matrix A is perturbed by a
small shift before performing the incomplete factorization. This shift serves to improve
the quality of the ILU(0) factorization, and makes it a more effective preconditioner
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% grid nnz cF #iters time ||(LU)−11||2 ||A− LU ||F

−0.05

100× 100 128004 1.0 99 0.92s 4.77e + 03 137.94
150× 150 289504 1.0 107 2.23s 7.55e + 03 208.48
200× 200 516004 1.0 113 3.95s 1.03e + 04 279.00
300× 300 1164004 1.0 97 7.60s 1.59e + 04 420.00

−0.1

100× 100 128004 1.0 109 0.99s 1.08e + 03 128.65
150× 150 289504 1.0 98 2.02s 1.65e + 03 194.16
200× 200 516004 1.0 127 4.36s 2.22e + 03 259.66
300× 300 1164004 1.0 109 8.18s 3.37e + 03 390.68

−0.5

100× 100 128004 1.0 169 1.44s 4.48e + 02 142.44
150× 150 289504 1.0 156 3.20s 6.77e + 02 215.17
200× 200 516004 1.0 150 5.44s 9.06e + 02 287.89
300× 300 1164004 1.0 144 10.47s 1.36e + 03 433.34

Table 4.1: Results for shifted ILU(0) on preconditioning the system Ax = b, where
A = LT L and L is a shifted Laplace matrix with the shift % = −0.05,−0.1,−0.5.

[14, 27, 35]. Finding the optimal shift is not trivial; hence, for our tests, we run the
same problem for several different diagonal shifts within the interval [0, 1], using an
increment of 0.1, and select the shift yielding the best result for shifted ILU(0).

Table 4.1 details the numerical results for this shifted ILU(0) strategy. Here, and
in all the tests in this subsection, we use restarted GMRES with a restart dimension of
100, and an initial guess x(0) = 0. The maximum number of outer GMRES iterations
for these tests is fixed at 500. We assume convergence of the iteration when the `2-
norm of the residual is reduced by a relative factor of 107. We introduce the quantity,
||(LU)−11||2, which represents a lower bound estimate of the conditioning of the
inverse LU factors, as a measure of the stability of the factorization. We also introduce
the quantity, ||A−LU ||F , as a measure of the accuracy of LU as an approximation to
A. To measure the cost of the storage and computation of matrix-vector products with
the preconditioner, we define the fill-factor as cF = (nnzL+nnzU−n)/nnz, where n is
the dimension of the problem, nnz is the number of nonzeros of the original matrix B,
and nnzL and nnzU are the number of nonzeros in the L and U matrices, respectively.
Since the unit diagonal of L is not stored, it is compensated for by subtracting n in
the equation. We also report the total time needed for the computation of the factors
and solution of the linear system. For this set of examples, we fix the matching vector,
t, used to constrain the modified ILUT method, to be the vector of all ones.

Table 4.2 shows results for the modified ILUT method with relaxed compensation
on this example. The results from these tables indicate superior performance for the
modified ILUT method over the shifted ILU(0) method. We observe that the modified
ILUT method yields factors that are often more stable and always more accurate, and
that the iteration based on modified ILUT converges in fewer iterations for all the
test cases.

The memory efficiency of ILU(0) is difficult to beat, particularly since threshold-
based ILU strategies generally require some fill-in (beyond the zero level-of-fill) in
order to get a good approximation by the preconditioner. Nonetheless, the resulting
added computational cost in the modified ILUT factorization (due to fill-in), is made
up for by the good iteration counts. As shown in Tables 4.1 and 4.2, the iteration count
for the modified ILUT method is, on average, about 1.5 times better than that of the
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% grid nnz cF #iters time ||(LU)−11||2 ||A− LU ||F

−0.05

100× 100 128004 1.82 59 0.74s 1.67e + 03 25.49
150× 150 289504 1.83 65 2.05s 2.52e + 03 38.15
200× 200 516004 1.83 77 3.93s 3.78e + 03 50.88
300× 300 1164004 1.84 69 7.46s 5.09e + 03 76.42

−0.1

100× 100 128004 1.82 62 0.79s 1.52e + 03 25.91
150× 150 289504 1.83 60 1.68s 2.28e + 03 38.11
200× 200 516004 1.83 67 3.25s 3.03e + 03 51.79
300× 300 1164004 1.84 63 6.78s 4.54e + 03 77.82

−0.5

100× 100 128004 1.61 83 1.05s 4.24e + 02 25.47
150× 150 289504 1.61 83 2.30s 6.10e + 02 38.08
200× 200 516004 1.61 81 3.61s 7.96e + 02 50.73
300× 300 1164004 1.61 82 8.09s 1.17e + 03 76.15

Table 4.2: Results for modified ILUT with relaxed compensation on preconditioning
the system Ax = b, where A = LT L and L is a shifted Laplace matrix with the shift
% = −0.05,−0.1,−0.5.

shifted ILU(0) method. This savings in iterations is multiplied because we are using
GMRES. Since GMRES converges faster with the modified ILUT preconditioner,
fewer Arnoldi vectors need to be stored and orthogonalized, resulting in even more
savings than just by the simple ratio of iterations.

Standard ILUT, using the same dropping criteria as the modified ILUT method
with relaxed compensation, yields poor and unstable factors for these problems. This
leads to convergence failure of the restarted GMRES iterations. However, adjusting
the dropping rule so that it is based on comparing the size of the fill-in entry or
column update (wk · Lj,k, j = k + 1, ..., n in Line 3 of Algorithm 3), to some scaling
parameter related to the drop tolerance, yields factors that were “good enough” to
handle the problem. Notice that this dropping rule differs from the approach discussed
in Section 2 (see Algorithms 2 and 3), where the comparison is directly between the
pivot element, wk, and the scaling parameter. Results for this approach are shown
in Table 4.3. For a fair comparison with the results in Table 4.2, we aim to attain
similar fill-factors for both the standard ILUT method and the modified ILUT method.
Comparing the results in Tables 4.2 and 4.3, we see that the modified ILUT method
shows better performance than the standard ILUT method, particularly in terms of
the iteration counts, computational times, and accuracy. Nonetheless, we observe
that the standard ILUT method shows better stability measures than the modified
ILUT method. This may be attributed to the new dropping rule imposed to help the
convergence of the standard ILUT method.

One interesting observation is that as more fill-in is allowed in the factorization,
the performance of the standard ILUT method deteriorates. We further observe that
small decrements in the drop tolerance, τ , often result in sudden (significant) jumps
in the fill-factor, cF (sometimes by an order of magnitude). From the standard ILUT
algorithm (Algorithm 2 or 3), we see that the method can be prone to generating
dense columns during the factorization. For instance, if the dropping rule is such that
very few or no fill-in is dropped during the elimination of a particular column, then
the L and U parts of the column may become dense. This is undesirable because the
dense column can very easily be propagated across the remaining columns yet to be
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% grid nnz cF #iters time ||(LU)−11||2 ||A− LU ||F

−0.05

100× 100 128004 1.75 183 2.22s 2.26e + 02 38.15
150× 150 289504 1.76 186 5.03s 3.38e + 02 57.47
200× 200 516004 1.76 212 9.94s 4.50e + 02 76.78
300× 300 1164004 1.76 198 21.70s 6.72e + 02 115.40

−0.1

100× 100 128004 1.75 157 1.87s 2.17e + 02 39.66
150× 150 289504 1.76 149 3.96s 3.23e + 02 59.88
200× 200 516004 1.76 186 8.71s 4.29e + 02 80.09
300× 300 1164004 1.76 177 20.32s 6.41e + 02 120.52

−0.5

100× 100 128004 1.60 130 1.86s 1.26e + 02 62.91
150× 150 289504 1.60 154 3.88s 1.86e + 02 94.90
200× 200 516004 1.61 141 6.23s 2.46e + 02 127.04
300× 300 1164004 1.61 138 15.30s 3.66e + 02 190.94

Table 4.3: Results for standard ILUT (although with a modified dropping rule) on
preconditioning the system Ax = b, where A = LT L and L is a shifted Laplace
matrix with the shift % = −0.05,−0.1,−0.5.

eliminated, making them dense as well (leading to large fill-factors). Further, suppose
that during the elimination of a subsequent column, a pivot entry is judged small
enough and, hence. discarded by the dropping rule. Then the resulting error in the
column (and, hence, in the factorization) is a factor of the dense column, which can
be significant. As such, the resulting L and U factors could be of poor quality, even
though they may be dense (fill-factor may be large).

Modified ILUT with relaxed compensation, on the other hand, is less susceptible
to these problems. Adding the compensation, σ, to the diagonal promotes dropping
in L, making it less likely to be dense. Furthermore, recall that from Section 3.1.1, the
choice of the modification, z, is based on stability considerations. However, it turns
out that it may also have some implications on the accuracy of the factorization,
particularly when z is small. The error in the column, induced by dropping the pivot
entry, may be reduced by adding the column z to l, leading to a more accurate factor
for the L part of the factorization.

4.2. Results for Imaginary Compensation. In what follows, we present
some numerical results on an acoustic wave diffraction problem, governed by the
Helmholtz equation. We compare the performance of standard ILUT with that of
modified ILUT, where the modification is by an imaginary term as discussed earlier
in Section 3.2.

The physical problem models a plane wave propagating along the x-axis, and
incident on a bounded obstacle in the form of a disk of radius 0.5m. The computational
domain is discretized by the Galerkin least-squares finite-element method, using an
isoparametric discretization over quadrilateral elements, on a 161 × 361 grid. An
artificial boundary condition is imposed at a distance 1.5m from the obstacle, using the
Dirichlet-to-Neumann technique, to satisfy the Sommerfeld radiation condition [21].
The resulting system has size n = 57960, with 516600 nonzero entries and is complex,
symmetric (but not Hermitian), and indefinite. We use restarted GMRES with a
restart dimension of 100, and an initial guess x(0) = 0. The maximum number of
GMRES iterations is fixed at 500, and we assume convergence when the `2-norm of
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k cF #iters total time ||(LU)−11||2 ||(A − LU)1||2

ILUT

2π 2.67 135 23.54s 1.92e + 03 10.38
4π 2.68 156 31.93s 2.06e + 03 10.53
8π 2.74 198 32.37s 2.94e + 03 11.25
16π 2.42 > 500 75.90s 1.88e + 04 21.30
32π ∗ ∗ ∗ ∗ ∗

MILUT

2π 2.61 114 21.15s 2.38e + 03 18.82
4π 2.65 121 22.56s 2.61e + 03 18.90
8π 2.64 134 20.40s 3.32e + 03 22.05
16π 2.48 206 31.68s 2.44e + 03 37.26
32π 3.86 182 34.01s 3.03e + 02 36.02

Table 4.4: Results for ILUT and modified ILUT with imaginary modification on the
Helmholtz problem with different values of the wavenumber k.

the residual is reduced by a relative factor of 107. The right-hand side is artificially
created by assuming the entries of the solution vector are chosen from the uniform
distribution on [0, 1]. We solve the system for increasing values of the wavenumber k;
because we consider a fixed grid, this makes the overall mesh resolution (measured in
number of points per wavelength, ppw) decreasing as we increase k (from the highest
of 160ppw for k = 2π to a low of 10ppw for k = 32π), leading to more indefinite and
challenging problems. For each value of k, we run the problem several times, and the
results shown are averaged over the runs.

The fill level parameter for the factorization, p, is fixed at 1000 for both standard
ILUT and modified ILUT, and the drop tolerance, τ , is adjusted so that the fill-
factor is similar for both methods. As before, the dropping rule for standard ILUT
is adjusted so that it is based on the size of the fill-in (update) entry rather than on
the pivot entry, in order to yield “good” factors.

From Table 4.4, we observe a remarkable performance for the modified ILUT
scheme, compared to standard ILUT. For high values of the wavenumber, the standard
ILUT factorization can become unstable. For this set of examples, ILUT requires less
fill-in in order to produce stable factors. However, this implies that the preconditioner
is poorly approximated, which makes it difficult for the solver to converge. This is
evident for the example with wavenumber, k = 16π, where the solver fails to converge
within the required number of iterations with ILUT as preconditioner. If more fill-in
is allowed, the resulting factors become unstable, with values of ||(LU)−11||2 on the
order of 10100 or larger. This renders the factors useless as preconditioners for any
iterative method. Comparing the results for ILUT with those of modified ILUT, we
see that modified ILUT is more efficient and robust on the Helmholtz problem. By
using imaginary perturbations to modify the diagonal, the resulting factors from the
modified ILUT scheme are quite stable and yield good results for the problem, even
at high wavenumbers.

For the test problem with wavenumber k = 32π, ILUT shows no signs of con-
vergence. Even when fill-in is reduced so that the fill-factor, cF , is ≈ 1.0, the value
of ||(LU)−11||2 for the resulting LU factors is of the order of 10144. Modified ILUT,
however, produces stable factors and was successful in solving the problem. These
results agree quite well with the results in [30], where imaginary perturbations were
used to construct a shifted ILUT preconditioner for the Helmholtz problem. Numer-
ical results showed that the resulting preconditioner was effective on the Helmholtz
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Grid n nnz cF tsetup tsolve # iters.
65× 65 3969 19593 2.88 0.005 0.03 17

129× 129 16129 80137 2.94 0.02 0.18 29
257× 257 65025 324105 2.97 0.07 1.33 47
513× 513 261121 1303561 2.99 0.30 12.15 74

Table 4.5: Performance of ILUT on 2D finite-difference Laplacian with drop tolerance
of 0.01.

problem at relatively high wavenumbers and low mesh resolutions. It is worth noting
that the approach used in [30] differs from the optimal strategy discussed in this pa-
per. The focus of [30] is on improving the quality of the preconditioner by improving
the diagonal dominance of the rows of the matrix, prior to performing the ILUT fac-
torization. The compensation strategy that defines the imaginary shift relies on two
heuristics, both aimed at improving diagonal dominance entirely through diagonal
compensation. Here, we use a different approach to define the imaginary shift, by
solving an optimization problem with stability and accuracy constraints, during the
ILUT factorization. The resulting compensation is not only active on the diagonal
entry, but also on the entries in the L-part of the corresponding column.

4.3. Results for the row-based MILUT scheme. In what follows, we present
some numerical results for the row-based modified ILUT scheme. In these results, we
have implemented Algorithm 5 as a modification of the ILUT routine from SPARSKIT
[32], a Fortran-77 toolkit for working with sparse matrices. The implementation
includes an Arnoldi algorithm for computing the matching vectors, based on a given
size of the Krylov subspace. Both the Arnoldi algorithm and modified ILUT algorithm
are tightly coupled to the LAPACK and BLAS packages. All results are computed
on a dual-processor 3.0GHz Xeon machine, with 2GB of RAM. For all results in this
subsection with ILUT and MILUT, the maximum fill-in is limited by allowing up to
20 non-zero elements in each row of L and U (not counting the unit diagonal).

4.3.1. 2D Laplacian. First, we consider the (unshifted) 2D finite-difference
Laplacian with Dirichlet boundary conditions on a uniform grid of the unit square. As
the dropping strategy within the incomplete factorization preconditioners considered
here is not symmetric, we consider the performance of these strategies as precondi-
tioners for GMRES. The system matrix is created in the standard way, then a random
vector, x, (with each entry, xi, independently chosen from a uniform distribution on
[0, 1]) is chosen as the solution, and the right-hand side, b = Ax, is computed. We
choose a random solution as, for this problem, we expect the matching vector chosen
in the modification process to have significant structure (e.g., the constant vector) and
do not want this structure to impact the performance of the Krylov space method.

As a baseline for comparison, we consider the performance of the standard ILUT
algorithm [33] as a preconditioner for GMRES. Fixing the drop tolerance as 0.01 yields
the results reported in Table 4.5. Setup and solve times, tsetup and tsolve (resp.), are
also reported (rounded to the nearest hundredth of a second unless less than 0.01), as
are the number of iterations needed to reduce the `2-norm of the residual by a relative
factor of 107.

Performance can also be compared to a level-of-fill based strategy, ILU(k) [35,
§10.3.3]. Because the control over the complexity of the resulting preconditioner is
less precise (as only integer levels of fill may be chosen), it is not possible to closely
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Grid n nnz k cF tsetup tsolve # iters.
65× 65 3969 19593 3 2.54 0.004 0.03 18

129× 129 16129 80137 3 2.57 0.02 0.18 31
257× 257 65025 324105 3 2.59 0.07 1.28 46
513× 513 261121 1303561 3 2.59 0.29 12.49 78
65× 65 3969 19593 4 3.30 0.006 0.03 15

129× 129 16129 80137 4 3.35 0.03 0.17 25
257× 257 65025 324105 4 3.37 0.11 1.05 37
513× 513 261121 1303561 4 3.39 0.43 8.98 61

Table 4.6: Performance of ILU(k) on 2D finite-difference Laplacian with levels of fill,
k = 3, and k = 4.

Grid n nnz τ cF tsetup tsolve # iters.
65× 65 3969 19593 0.010 3.15 0.01 0.03 16

129× 129 16129 80137 0.010 3.35 0.06 0.17 26
257× 257 65025 324105 0.010 3.47 0.22 1.25 43
513× 513 261121 1303561 0.010 3.54 0.92 12.39 75
65× 65 3969 19593 0.016 2.78 0.01 0.03 14

129× 129 16129 80137 0.016 2.89 0.05 0.13 19
257× 257 65025 324105 0.017 2.92 0.20 0.72 26
513× 513 261121 1303561 0.017 2.96 0.78 4.62 38

Table 4.7: Performance of mILUT based on the constant vector on 2D finite-difference
Laplacian.

match the preconditioner complexities of Table 4.5. Thus, in Table 4.6, we give
results for levels of fill (k) of three and four, with slightly smaller and slightly larger
overall complexities. Here, as expected, performance is slightly worse than that of
ILUT when the preconditioner complexity is smaller, and somewhat better when the
preconditioner complexity is larger. If memory requirements do not pose a constraint,
we see that ILU(4) outperforms both ILUT and ILU(3) in terms of iteration counts
and solution time on all grids.

We begin testing the modified ILUT algorithm in the setting of classical modified
ILU; i.e., with the diagonal entries of the U factor modified so that LU1 = A1, where
1 is the vector of all ones. Table 4.7 shows the results of these tests, first for the same
drop tolerance, τ = 0.01, as was used for ILUT in Table 4.5 and, then, with the drop
tolerance adjusted so that the preconditioner complexities, cF , nearly match those of
ILUT.

The results in Table 4.7 are somewhat surprising. As expected, we see some im-
provement in the performance of MILUT over that of ILUT for the same, fixed, drop
tolerance. In part, this is expected because of the well-known theoretical analysis of
modified incomplete factorizations, but it is also to be expected because the precon-
ditioner complexities are somewhat larger than those for ILUT. What is surprising is
that when the drop tolerance is raised (so that fewer nonzero entries are kept in the
preconditioner), the performance of the modified preconditioners uniformly improve.
While unexpected, this is not impossible, as the modification of the diagonal entries in
early rows of the matrix (which, of course, depends on the drop tolerance) has a sign-
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Fig. 4.1: Number of iterations of the resulting modified ILUT-preconditioned GMRES
required to reduce residual by a relative factor of 107 for increasing dimension of
Arnoldi process (left) and Rayleigh quotient of the vector associated with the smallest
Ritz value used in this modification (right).

ficant effect on the construction of the preconditioner for the later rows of A. Thus,
extra dropping may result in a better spectral equivalence between the preconditioner
and A, even though they are further apart in an element-wise sense.

If a good vector for use in the modification process is not known beforehand, then
it is possible to expose a good candidate through an Arnoldi process. On the left of
Figure 4.1, the number of iterations required to reduce the residual by a relative factor
of 107 using the resulting modified ILUT-preconditioned GMRES algorithm based on
the vector corresponding to the smallest Ritz value is shown. Here, the drop tolerance
was fixed at 0.01. For both the 1282 and 2562 grids, we see significant variation in
the number of iterations required for convergence, until the size of the Arnoldi space
approaches the number of cells in one direction of the mesh. The Arnoldi iterations
were started with a vector whose entries were chosen using a pseudo-random number
generator with a uniform distribution on [0, 1] (and the same vector was used as the
starting vector for Arnoldi for all tests on a given grid). On the right of Figure 4.1,
we see that even though there is signficant variation in the performance of the re-
sulting preconditioners, the Rayleigh quotient of the selected vectors is monotonically
decreasing towards the smallest eigenvalue of the matrix (as expected).

As seen in Figure 4.1 for the finite-difference Poisson matrix, the number of steps
of the Arnoldi process needed to guarantee good solver performance is, unfortunately,
proportional to (the square root of) the matrix dimension. Thus, for fixed size of the
Arnoldi subspace, we expect the performance of preconditioners defined in this way
to degrade as problem size increases. In Table 4.8, 30 steps of the (unpreconditioned)
Arnoldi iteration on A are performed, with the vector corresponding to the smallest
Ritz value used in the modification. Results are given for both a fixed drop tolerance,
τ , and with drop tolerances adjusted so that the preconditioner complexities are
close to those of Table 4.5. In both cases, we see preconditioner performance that
degrades with problem size (as expected). For fixed τ = 0.01, performance is similar
to that of unmodified ILUT or ILU(k), in terms of both number of iterations and
total time to solution and, for variable τ , performance is closer to that achieved by
MILUT based on the constant vector. However, in comparison to the results in Table
4.7, we see that the setup times alone for computing the Arnoldi vectors and the
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Grid n nnz τ cF tsetup tsolve # iters.
65× 65 3969 19593 0.010 3.14 0.04 0.03 14

129× 129 16129 80137 0.010 3.34 0.16 0.18 27
257× 257 65025 324105 0.010 3.46 0.86 1.25 43
513× 513 261121 1303561 0.010 3.53 4.30 15.38 78
65× 65 3969 19593 0.016 2.81 0.04 0.03 15

129× 129 16129 80137 0.017 2.85 0.15 0.15 24
257× 257 65025 324105 0.017 2.92 0.83 0.89 33
513× 513 261121 1303561 0.017 2.96 4.20 7.14 53

Table 4.8: Performance of MILUT based on the vector associated with the smallest
Ritz value after 30 steps of the Arnoldi iteration on 2D finite-difference Laplacian.

modified ILUT factorization are comparable to the minimum total times required for
ILUT with modification based on the constant vector. Thus, even though improved
preconditioner performance may be realized, it is difficult to justify the added expense
of computing the large Krylov subspaces necessary to gain better spectral accuracy
starting from a random initial guess.

The potential to achieve better performance, however, suggests that the MILUT
approach coupled with Arnoldi iteration may be viable for determining a better pre-
conditioner than arises from classical MILU approaches. For the Poisson problem, it
is known that the constant vector is “close to” the eigenvector belonging to the small-
est eigenvalue of A (where closeness is measured in terms of the Rayleigh Quotient).
This is, in fact, often the case, where some properties of the discrete operator are
known a priori. Figure 4.2 shows how the number of iterations required of GMRES
to reduce the residual by a relative factor of 107 varies with the number of Arnoldi
steps, and how the Rayleigh quotient of the vector associated with the smallest Ritz
value changes when starting from the vector of all ones. Again, we see that while the
Rayleigh quotient of this vector steadily decreases, there is some signficant variation
in the GMRES iteration count, although it is not as significant as in the case of a
random starting vector for the Arnoldi iteration (shown in Figure 4.1).

4.3.2. 2D Helmholtz. Here, we consider the same Helmholtz matrices as were
considered in Section 4.2; however, because we use only the row-based modifica-
tion strategy without imaginary compensation, we consider only the two smallest
wavenumber problems, k = 2π and k = 4π. The factorization and compensation
strategy used here are very different from those discussed in Section 3.2; thus, these
represent two very challenging test problems without those approaches, and the results
we report here are generally worse than those obtained using imaginary compensation,
or even using the column-based factorization and dropping strategy used in Section
4.2. Thus, for reference, Tables 4.9 and 4.10 provide preconditioned GMRES iteration
counts for solution (reducing the residual by a relative factor of 107) and precondi-
tioner complexity, cF , for the Helmholtz problem with wavenumber k = 2π. In both
cases, we see the expected behaviour; as more fill-in is allowed within the ILU factors,
the precondioners improve (when measured purely in terms of the GMRES iteration
counts).

Figure 4.3 presents the results for a range of tests of the MILUT strategy applied
to the problem with wavenumber k = 2π, where the vectors are selected by taking
those with Ritz values closest to zero (in modulus) after applying 40 Arnoldi steps to
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Fig. 4.2: Number of iterations of the resulting modified ILUT-preconditioned GMRES
required to reduce residual by a relative factor of 107 for increasing dimension of
Arnoldi process started using the constant vector (left) and Rayleigh quotient of the
vector associated with the smallest Ritz value used in this modification (right).

ILUT(0.001) ILUT(0.002) ILUT(0.003) ILUT(0.004) ILUT(0.005)
Iters. 178 194 213 227 260
cF 4.38 4.08 3.78 3.36 3.10

Table 4.9: GMRES iteration counts and preconditioner complexities for row-based
ILUT with specified dropping tolerance, τ , (ILUT(τ)) applied to the Helmholtz prob-
lem with wavenumber k = 2π.

a random initial guess. The plot of GMRES iteration counts shows several interesting
results. First, as is expected, a smaller dropping tolerance, τ , often (but not always)
leads to a lower iteration count and always leads to a larger preconditioner complex-
ity (although not by uniform increments). For a fixed number of modifications per
row, using more vectors (looking from left-to-right within each group of results) is
sometimes useful, but not always. Indeed, there seems to be no large-scale trend in
the effect of using more vectors; when 4 modifications per row are used, matching 4
vectors (so that the modification is uniquely determined) is never successful, but when
using only 2 modifications per row, using 4 vectors is always best, and 3 vectors is
always better than using only 1 or 2. In many, but not all, cases, iteration counts im-
prove when modifying more coefficients with a fixed number of vectors and dropping
tolerance; however, the effects are not uniform. When matching only a single vector,
the best results are achieved when modifying 4, 5, or 6 coefficients per row, depend-
ing on the dropping tolerance used. The best preconditioner from this set of tests
is achieved with a single vector, modifying four coefficients, with τ = 0.008, taking
175 iterations. This preconditioner has a complexity, cF = 3.48. Achieving compa-
rable iteration counts using either standard ILUT or ILU(k) requires preconditioner
complexities of over 4, showing some notable improvement using this modification
strategy.

The Helmholtz problem with wavenumber k = 4π is significantly more difficult
for this family of preconditioners. Results for classical ILUT and ILU(k) approaches
are shown in Tables 4.11 and 4.12. We note that for drop tolerances τ > 0.05 and
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ILU(3) ILU(4) ILU(5) ILU(6) ILU(7)
Iters. 281 241 215 191 173
cF 2.33 2.77 3.21 3.65 4.09

Table 4.10: GMRES iteration counts and preconditioner complexities for row-based
level-of-fill ILU (ILU(k)) applied to the Helmholtz problem with wavenumber k = 2π.

(a) GMRES iteration counts (b) Preconditioner complexities

Fig. 4.3: GMRES iteration counts and preconditioner complexities for row-based
modified ILUT applied to the Helmholtz problem with wavenumber k = 2π. In both
plots, the data are organized by the number of coefficients modified in each row, from
1 (the non-unit diagonal) through 6. For each group, the four columns show results for
using one through four vectors to guide the modification, from left to right and also
highlighted by color (green for one vector, blue for two, red for three, and magenta for
four). Within each column, results for four different dropping tolerances are shown,
× for τ = 0.005, 5 for τ = 0.006, © for τ = 0.008, and � for τ = 0.01. Failure to
converge is denoted by 500 iterations.

levels of fill k < 5, we see uniformly poor convergence, without reaching the relative
residual tolerance within 500 GMRES iterations. Plots for the MILUT strategy are
shown in Figure 4.4, where we now vary both the drop tolerance and the size of the
Arnoldi space. Here, we see that many of the attempted sets of parameters lead to
failure of GMRES to converge within 500 iterations. In one case, with τ = 0.008 and
80 Arnoldi steps, the problem using 2 vectors to modify 2 coefficients leads to a failure
in solving for the modification in one row of the factorization due to the linear system
for the modification being of less than full rank; in practice, this could be addressed
by recognizing this upon failure of the LAPACK routine dgels and retrying with a
smaller, but full rank, system, but we do not follow this approach here as such failures
are, in our experience, very rare.

From Figure 4.4, it appears that using only a single modification per row is the
most robust strategy, although it does not lead to the most efficient preconditioner by
a substantial margin. When modifying only the non-unit diagonal, the best results
were achieved using 3 vectors to over-determine the modification, with τ = 0.005 and
using 120 Arnoldi steps. Here, we also see the important differences between using
40, 80, or 120 Arnoldi steps to determine the modification vectors. Only when using a
single vector to make the diagonal modification is using 40 steps more successful than
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ILUT(0.001) ILUT(0.002) ILUT(0.003) ILUT(0.004) ILUT(0.005)
Iters. 365 388 424 475 > 500
cF 4.39 4.15 3.86 3.44 3.18

Table 4.11: GMRES iteration counts and preconditioner complexities for row-based
ILUT with specified dropping tolerance, τ , (ILUT(τ)) applied to the Helmholtz prob-
lem with wavenumber k = 4π.

ILU(4) ILU(5) ILU(6) ILU(7) ILU(8)
Iters. > 500 486 430 385 350
cF 2.77 3.21 3.65 4.09 4.53

Table 4.12: GMRES iteration counts and preconditioner complexities for row-based
level-of-fill ILU (ILU(k)) applied to the Helmholtz problem with wavenumber k = 4π.

using fewer; with more vectors, using more steps of Arnoldi to determine the vectors
used to guide the modification seems to be the best practice. The best results overall
from these sets of parameters occur when using two vectors to guide the modification
of six coefficients per row. With τ = 0.005, the system can be solved in 199 iterations
with a preconditioner complexity of 4.05. This is nearly half as many iterations
as the unmodified ILUT or ILU(k) approaches require with similar preconditioner
complexities. This demonstrates the potential usefulness of the generalizations of the
standard, single-vector, single-coefficient modifications of ILU that have been explored
before in the literature, although this introduces the somewhat daunting challenge of
finding the correct combination of parameters needed for a given problem.

5. Conclusions. This paper describes three procedures for defining modifica-
tions of ILU factorizations with threshold-based dropping. The first procedure, based
on the column version of ILUT, extends the standard diagonal compensation idea for
modified ILUT, by spreading the compensation term over the non-unit diagonal, as
well as the nonzero entries in the L part of the column, in an optimal way. The tech-
nique is further extended to exploit the use of imaginary shifts for the compensation
term. Numerical results show that these modified ILUT methods are robust for both
ill-conditioned and indefinite problems. By adding a compensation term to the L part
of the column as well as the non-unit diagonal, it appears that the modified ILUT
method is less susceptible to the problems that cause instabilities and inaccuracies in
the standard ILUT factorization. The third procedure uses an arbitrary set of ‘match-
ing’ vectors for which the product, LU , is constrained to give the same product as the
matrix, A. By modifying multiple coefficients in each row of the ILUT factors based
on a least-squares fitting problem, substantially improved performance is realized.
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