2ND INTERNATIONAL
WORKSHOP ON THE
NUMERICAL SOLUTION OF
MARKOV CHAINS

PRECONDITIONED KRYLOV
SUBSPACE METHODS FOR THE
NUMERICAL SOLUTION OF
MARKOV CHAINS

Yousef Saad

Unwversity of Minnesota
Department of Computer Science

Minneapolis, Minnesota

ABSTRACT

In a general projection technique the original matrix problem of size N is approxi-
mated by one of dimension m, typically much smaller than N. A particularly suc-
cessful class of techniques based on this principle is that of Krylov subspace methods
which utilize subspaces of the form span{v, Av,....,A™ 'v}. This general principle
can be used to solve linear systems and eigenvalue problems which arise when com-
puting stationary probability distributions of Markov chains. It can also be used to
approximate the product of the exponential of a matrix by a vector as occurs when
following the solutions of transient models. In this paper we give an overview of these
ideas and discuss preconditioning techniques which constitute an essential ingredient
in the success of Krylov subspace methods.

1 INTRODUCTION

Direct methods have often been preferred to iterative methods when solving
sparse linear systems of equations such as those that arise when computing
the stationary probability distribution of Markov chains. The main reason for
this is that direct methods have the advantage of being ‘predictably reliable’.
However, iterative methods are currently gaining ground because of recent im-
provements in their robustness on the one hand, and of the increasing sizes of
the matrices that must be tackled, on the other. Relaxation type techniques,
such as Gauss-Seidel or SSOR, can be quite successful and have been a popular

2 CHAPTER 1

alternative to direct solvers. The performance of these techniques is difficult
to predict and is dependent on an optimal acceleration parameter w, which is
not easy to determine. A class of methods that can be quite efficient is that of
Krylov subspace techniques. This class includes the conjugate gradient method
and the Lanczos algorithm as well as the Bi-CG and related algorithms, many
of which have been developed in the last few years.

An essential ingredient in the success of projection type methods is the precon-
ditioner. Preconditioning amounts to transforming the original linear system
into one which would require fewer steps to converge from the Krylov projection
method. Among the many possible options available to precondition a system,
are to use a standard iterations, e.g., SOR, or one of several known ‘incom-
plete LU’ factorizations of the matrix [15]. In this context, the standard and
inexpensive approaches, such as ILU(0), or SSOR, have a great rate of failure
for the harder, nearly decomposable cases. However, alternatives based on the
more accurate factorizations, such as ILUT [22] yield more robust techniques.
In terms of overall cost, the more accurate ILU factorizations are usually less
expensive. However, they do require more storage, since denser LU factors
must be saved.

Krylov subspace methods can also be used to compute transient solutions of
Markov chain models. The problem here is to solve the simple system of Or-
dinary Differential Equations y' = Qy, whose exact solution y(t) = exp(Qt)yo
can be approximated using a Krylov subspace approach. Thus, the Krylov sub-
spaces are used to approximate the exponential propagator exp(QAt)y directly
[21, 10]. This approach has been shown to be quite successful in a recent paper

[16].

In this paper we will give an overview of preconditioned Krylov subspace meth-
ods. We will emphasize the preconditioning techniques since these are currently
the most critical component of a preconditioned Krylov approach. The ideas
presented herein constitute only a brief introduction in the most part. For de-
tails, the reader is referred to the recent literature, in particular, see e.g., [31],

[25, 23].

Preconditioned Krylov Subspace Methods 3

2 PRECONDITIONED KRYLOV
SUBSPACE METHODS

Iterative techniques based on Krylov subspace projection coupled with suitable
preconditioners are currently considered to be the best compromise between
efficiency and robustness in solving general sparse linear systems. In addition
to their advantage over direct methods, in terms of memory and computational
cost, these methods are also attractive because of the simplicity with which they
can be adapted to high performance computers. There are two ingredients in
the use of a preconditioned Krylov subspace approach namely the accelerator
and the preconditioner.

2.1 Accelerators

What is referred to as an accelerator is typically a projection — type method
on a subspace of dimension > 1. Given two subspaces K,, and L,, of the same
dimension m, a projection method onto K,, and orthogonally to L,, seeks an
approximation to the linear system

Ar=1b (1.1)

in the form = 2o+ where 6 belongs to K, and the following Petrov-Galerkin
condition is satisfied:

(b— Az) L Ly, . (1.2)

Since the two subspaces are of the same dimension there are as many degrees
of freedom as there are constraints and there is, in general, one and only one
approximate solution. In Krylov subspace techniques, the subspace K,, is a
Krylov subspace, i.e., a subspace of the form,

K (A, v) =span{v, Av, ..., A™ 1y} (1.3)

Often the vector v is obtained from scaling the initial residual ro = b — Azg. In
addition, L,, is either another Krylov subspace or a related subspace. Specifi-
cally, the most popular choices of K,,, and L,, are the following.

Orthogonal Projection Methods: L,, = K,,, = K, (A4,rg). This is the
orthogonal projection or Galerkin case. A method in this class is the Full
Orthogonalization Method (FOM) [18] which is closely related to Arnoldi’s
method for solving eigenvalue problems [1]. Also in this class is ORTHORES
[12], a method that is mathematically equivalent to FOM. Axelsson [2] also

4 CHAPTER 1

derived an algorithm of this class for general nonsymmetric matrices. When A
is symmetric positive definite, it can be shown that the approximate solution
Z, minimizes the A-norm of the error vector A~1b—z over all candidate vectors
z in g + K. In this case, FOM is mathematically to the conjugate gradient
method.

Minimum Residual methods: L,, = AK,,; K, = Kp(A,rg). With this
choice of L,,, it can be shown, see e.g., [26] that the approximate solution
Zy, minimizes the residual norm ||b — Az||2 over all candidate vectors in g +
K. In contrast, there is no similar optimality property known for methods
of the first class when A in nonsymmetric. Because of this, many methods
of this type have been derived for the nonsymmetric case [3, 12, 7, 27]. The
Conjugate Residual method [4] is the analogue of conjugate gradient method
that is in this class. The GMRES algorithm [27] and the Generalized Conjugate
Residual algorithms [7] is an extension of the Conjugate Residual method to
nonsymmetric problems.

Bi-conjugate gradient: L,, = K,,(AT ro); Ky, = K (A, rg). Clearly, in the
symmetric case this class of methods reduces to the first one. In the nonsym-
metric case, the biconjugate gradient method (BCG) due to Lanczos [13] and
Fletcher [8] is a good representative of this class. There are various mathemat-
ically equivalent formulations of the biconjugate gradient method [19], some of
which are more numerically viable than others. An efficient variation on this
method, called CGS (Conjugate gradient squared) was proposed by Sonneveld
[29, 17]. More recently, a number of methods based on the CGS principle have
been developed, see for example the TFQMR algorithm [9] and the BICGSTAB
algorithm [32].

CGNR: Ly = Ky = Kn(ATA, ATrg). This is nothing but the conjugate
gradient method applied to the normal equations AT Ax = ATb, often referred
to as CGNR. The condition number of the normal equations is likely to be too
large for most problems to make this approach competitive with the approaches
1 to 3, except possibly for indefinite problems, i.e., problems for which the
symmetric part is not positive definite. LSQR [14] is an implementation that is
somewhat less sensitive to large condition numbers. Moreover, for least squares
problems with non-square matrices, one must either explicitly or implicitly use
an approach based on the normal equations. We put in this category also
conjugate gradient method applied to AATy = b, whose solution y is trivially
related to # by # = ATy. This is often referred to as CGNE, or Craig’s
method. If we express the Galerkin conditions in terms of the y variable, then,
clearly, K,, = K,(AAT ry) and L,, = K,,. Using the relationship z = ATy

Preconditioned Krylov Subspace Methods 5

between the # and y variables, we can translate the Galerkin condition that y
satisfies in terms of the x variable to find that for the variable Craig’s method
corresponds to taking K, = Ky(AT A, ATrg) and Ly, = AT K,,. Moreover,
the main difference between CGNR and CGNE is that the first minimizes the
residual norm over K,, while the second minimizes the error norm over K,,.

2.2 Preconditioners

The second ingredient in a preconditioned Krylov subspace method is the “pre-
conditioner”. Typically, the original linear system (1.1) is preconditioned by,
for example, transforming it into the “right-preconditioned” equivalent system

AM~YMz) =b. (1.4)

where the preconditioned matrix M has the property that it is not too expensive
to compute M ~1v for an arbitrary v. Thus, the system AM ~ly = b is solved
for the unknown y = Mz, and the final z result is obtained through the post-
transformation 2 = M ~1y. One can also use left-preconditioning,

M4z = M~

which requires a pre-transformation of the right-hand-side, or the initial resid-
ual. The main practical difference between these two approaches is that in the
right-preconditioned case, the actual residual norm is available at each step of
the iterative process whereas in the second case only the preconditioned residual
is explicitly available.

Here we will describe a method presented in [24] and known as FGMRES which
can be used when the preconditioning operations varies from step to step, a
property which can be very useful. This variant is derived by observing that in
the last step of the standard GMRES algorithm [27], the approximate solution
T, 1s formed as

m
Tm = &g + Z aiM_lvi

i=1
Here, the v;’s are the Arnoldi vectors, M the preconditioner, zg the initial guess
and m the dimension of the Krylov subspace. This is a linear combination of
the preconditioned vectors z; = M ~'v;,i = 1,...,m. Since these vectors are
all obtained by applying the same preconditioning matrix M ~! to the v’s, we
need not save them. We only need to apply M ! to the linear combination
of the v's. If the preconditioner varies at every step, then we need to save

the ‘preconditioned’ vectors z; = Mi_lvi and use them instead of M ~1v; when

6 CHAPTER 1

computing the above linear linear combination. The resulting ‘flexible’ variant

of GMRES is described below.
ALGORITHM 2.1 Flexible GMRES (FGMRES)

1. Start:
Choose zy and a dimension m of the Krylov subspaces.
Define H,,, = {hz,] = 0}i:1,...,m+1; j:l,...,m}~
2. Arnoldi process:
Compute rg = b— Azg, § = ||ro|l2 and v1 = ro/S.
Forj=1,..,mdo
Compute z; := Mj_lvj
Compute w := Az;
Fori=1,...,j, do: Compute h; j := (w,v;) and w := w — h; jv;
Compute hji1; = ||w]|2 and vj41 = w/hj415.
Enddo
Define Z, := [21, vy Zm]-
3. Form the approximate solution:
Compute x,, = ®g + ZmYm wWhere
Ym = argmin, ||fer — Hpyll2 and e; = [1,0, .. 07T,
4. Restart:
If satisfied stop, else set ¢y — x,, and goto 2.

The Arnoldi loop simply constructs an orthogonal basis of the preconditioned
subspace Span{vy, AM{ vy, ..., AM " v,_1} by a modified Gram-Schmidt
process, in which the new vector to be orthogonalized is defined from the pre-
vious vector in the process.

Note that if M; = M for j = 1,..., m then the method is equivalent to the
standard GMRES algorithm, right-preconditioned with M. The approximate
solution z,, obtained from this modified algorithm minimizes the residual norm
[|b — Azml|2 over zg + Span{Z,,}, [24]. In addition, if at a given step k, we
have Azp = v (i.e., if the preconditioning is ‘exact’ at step k) and if the k x &
Hessenberg matrix Hy = {hyj }ij=1, . is nonsingular then the approximation
2z 1s exact.

There are many possible applications of the added flexibility provided by FGM-
RES. In our context, we would like to be able to use any subsidiary iterative
procedure such as SOR as a preconditioner. In fact the inner iteration can be
any iteration, including a subsidiary GMRES or FOM iteration, for example.

Preconditioned Krylov Subspace Methods 7

It can also be a multilevel type approach or an iteration on a Gauss-Seidel iter-
ation on a small part of the adjacency graph. One idea which we will test in the
numerical experiments section is to use an Arnoldi process for preconditioning.

3 PRECONDITIONING TECHNIQUES

As was stated before a critical component in the success of iterative methods
is the preconditioner. For a linear system that is poorly preconditioned the
iterative process may require too many steps to converge and a direct solver
may then be a better approach. Preconditioning a linear system is typically
a difficult task, except in the traditional elliptic-dominated, one variable-per
mesh point cases. Unfortunately, the best known preconditioning techniques
have been developed mainly with these problems in mind. In this section we
give an overview of standard preconditioners and present some alternatives
based on Gaussian Elimination with drop-tolerance.

3.1 Relaxation based preconditioners

The simplest way of preconditioning a system is to take M to be simply the
diagonal or block diagonal of A. This is referred to as Jacobi (or diagonal), or
block Jacobi (block diagonal) preconditioning and is effective only in special
cases, e.g., for transient solutions.

Consider the standard splitting of A into,
A=D-FE—-F

in which D is the diagonal of A, —FE its strict lower part, and —F its strict
upper part. The SOR preconditioning matrix is defined by

M, =(D—-wE)".

This corresponds to performing a forward SOR sweep starting with the initial
guess 9 = 0. One can also use several steps of SOR as a preconditioning
operation. Thus, for a general iteration of the form

Zpy1 = Gep + f
the preconditioning matrix will take the form,

Mk = Gk_lf;

8 CHAPTER 1

which again corresponds to performing k steps of the iteration starting with
zg = 0. For example, the k-step SOR preconditioner is defined by

My =[(D—-wE)'FI* YD -wE)™!

which corresponds to taking &k steps of SOR with the initial vector g = 0.

In many cases, the SSOR iteration, which consists of a forward SOR sweep
followed by a backward SOR, sweep, is actually more popular than SOR as a
preconditioner. The main reason is that SSOR tends to preserve symmetry.
The SSOR preconditioning matrix is given by,

M, = (D —-wE)D YD —wF) .

In the late 60’s and early 70’s the idea came about to use an M which has the
same form as above with w = 1 but with a D that is defined recursively to
ensure that the diagonal elements of M and A are the same. This lead to the
ILU(0) preconditioner in the special case of 5-point matrices.

3.2 ILU(0)

The idea of ILU(0) which was initially derived for special finite difference ma-
trices, was later extended by taking the viewpoint of a Gaussian elimination
in which fill-ins during the process are dropped. A fill-in element refers to
a nonzero element introduced in the matrix which holds the LU factors, in a
location where there was initially a zero element in the matrix A. Thus, if we
denote by NZ(A) the nonzero structure of A, i.e., the set of all pairs (¢, j) such
that a;; # 0 then ILU(0) can be described as follows.

ArGcoriTHM 3.1 ILU(0
Fori=1,...,N Do:

Fork=1,...,i—1and if (i,k) € NZ(A) Do:
Compute a; ‘= a;1/ar;
Forj=k+1,...and if (i,j) € NZ(A), Do:

compute a;; 1= ;5 — AjpQg ;.
EndDo
EndDo
EndDo

From an implementation viewpoint, this is an (%, k, j) version of Gaussian elimi-
nation [11] which is restricted to the NZ(A) part of the matrix. This algorithm

Preconditioned Krylov Subspace Methods 9

can be generalized to any preset nonzero pattern. In particular, one can classify
the fill-ins by assigning them a level which is defined from the parents which
generated the element in the elimination [33]. For diagonally dominant matri-
ces, the higher the level-of-fill the smaller the element. Once the level of fill of
each element is defined we can execute an algorithm similar to the one above,
in which NZ(A) is replaced by NZ,(A) which is the set of all elements whose
level-of-fill does not exceed p. This defines the ILU(p) factorization.

3.3 ILUT

The elements that are dropped in the ILU(p) factorization technique outlined
above depend only on the pattern of A and not on the values. The property
exploited here is that the larger the level of fill, the smaller the elements,
which results in the dropping of smaller elements in the ILU(p) factorization.
However, this property is no longer true for non-diagonally dominant matrices.
Another strategy altogether is to use the same general structure of the ILU
factorization, namely the ¢, &, j variant of Gaussian Elimination, and to drop
elements according to their magnitude. One such strategy defined in [22], was
referred to as ILUT (ILU with threshold).

ALGorITEM 3.2 ILUT(p,¢€)

Fori=1,...,N Do:
Compute €; := €|a; .||
Fork=1,...,i—1andifa; # 0 Do:
Compute a; := a;1/ar;
If |a;| > €; Then
Forj=k+1,... Do:
compute a;j 1= a;; — A;pAg ;-
If |a;j| < € then a;; :=0
EndDo
EndIf
Keep p largest elements in L-part of a; .
and p largest elements in U-part of a; .;
EndDo
EndDo

An advantage of this algorithm is that the amount of fill-in that it gebnerates
is controlled. When ¢ = 0, then the higher the parameter p, the more accurate
the factorization. Reordering for reducing fill-in can help improve the quality of

10 CHAPTER 1

the factorization, and we refer to [5] and [6] for similar experiments performed
with the ILU(0) factorization.

4 EXPERIMENTS

We compared a few preconditioned Krylov subspace techniques on four test
matrices generated by the software package MARCA [30]. These examples are
variants of the ones used in the numerical experiments of [15]. All experiments
have been performed on a Sparcstation 10 in double precision.

4.1 The test problems

The first example models the behavior of a multiprogrammed, time-shared,
virtual memory computer system consisting of N terminals, a CPU, a secondary
memory, and a filing device. This example was also used in [15]. However, one
difference with the example in [15] is that we increased the number of users
to n = 30 from n = 20. This gives rise to a matrix of size 5,456. Our
second matrix is also taken from [15] and was generated using Marca. This
is a telecommunicatoin model which has been used to to determine the effect
of impatient telephone customers. When a request is made by a customer
for service the customer is prepared to wait for a certain period of time for a
reply. If at the end of this period, the reply has not arrived, the customer may
either give up and leave the network or else wait for some period of time before
trying again. Finally, our third and fourth test matrices arise from yet another
telecommunication example which models a single service center at which two
identical servers provide service to two different classes of customer. Class-one
customers are assumed to have a high priority. Once a server starts providing
service to a class-two customer, it will continue to serve that customer even if
a class-one customers arrives. The service rates may differ for each class but
both are exponentially distributed. The arrival processes of the two classes is
not exponential. In our first matrix we used a buffer size of 20 which yields a
matrix of size N = 3,060 and then we used a buffer size of 30 which yields a
matrix of size n = 6,980. The sizes and number of nonzero elements of all four
matrices are shown in Table 1. For details on these problems and their origins,
see [15] and the references therein.

Preconditioned Krylov Subspace Methods 11

Matrix N Nz
marcl | 5456 | 35,216
marc2 | 2431 | 11,681
marc3 | 3060 | 20,320
marcd | 6980 | 46,620

Table 1 Sizes and number of nonzero elements of the test matrices

4.2 Experiments with accelerators

We start by showing a comparison of a number of ILU(0) preconditioned ac-
celerators. The results are shown in Table 2 for the following accelerators.

m CGNR; Equivalent to Conjugate Gradient applied to AT Az = A?;
m Bi-Conjugate gradient (bcg in the table).

m DBCG. This is a Lanczos implementation of the biCG algorithm in which
partial pivoting is applied when solving the tridiagonal systems, [20].

m BiCGSTAB. This a variant of CGS [29] developed by Van-der Vorst [32].
This is denoted by BCGST in the table.

. TFQMR. This is yet another variant of CGS which use quasi-minimization.
The algorithm was developed by Freund [9].

m Full Orthogonalization Method (FOM), using a Krylov subspace of dimen-
sion 15.

m Generalized Minimum Residual method (GMRES) using a Krylov sub-

space of dimension 15.

®m Direct Quasi-Generalized Minimum Residual method (DQGMRES). This
consists of truncating the Arnoldi sequence during the orthogonalization.
A quasi-minimization is then performed in the spirit of QMR [28]. In our
example, we keep the 15 most recent Arnoldi directions. This is referred
to as dqg in the table.

In Table 2 we show for each matrix the number of matrix—vector products and
the total CPU time required to converge. The convergence criterion used was

12 CHAPTER 1

to reduce the residual norm by a factor of 107°. A maximum of 500 steps
is allowed. Thus any data showing 500 steps means that the method did not
achieve convergence.

As a first observation, we can note that the CGNR and BiCG-type methods
(BCG, and DBCQG) performed rather poorly compared with others. However,
the more stable variants, namely BICGSTAB and TFQMR, performed much
better. Interestingly, in other application areas (e.g., semi-conductor simu-
lation) the converse is sometimes observed. DQGMRES is competive in the
number of matrix-vector products required but, due to a larger number of
inner products required, requires more CPU time. The other four methods,
namely, TFQMR, BiCGSTAB, FOM, and GMRES are rather close to one an-

other overall.

cgn | beg | dbeg | best | tfqmr | fom | gmres | dqg
marcl | 500 357 500 66 70 70 61 66
51.0 | 39.0 73.1 7.6 8.9 | 12.2 10.7 | 23.0
marc2 | 500 501 500 92 62 123 57 70
178 | 19.2 26.8 3.7 2.9 8.2 3.8 10.1
marcd | 500 29 30 28 20 15 15 15
28.4 1.9 2.5 1.9 1.5 1.5 1.5 2.1
marc4d | 500 41 42 32 20 17 16 16
67.7 6.1 8.2 5.0 3.5 4.0 3.9 5.5

Table 2 Iterations and execution times for ILU(0) preconditioned accelera-
tors on four Markov chain matrices

4.3 Experiments with preconditioners

We tested the following preconditioning techniques: SOR, SSOR, ILU(0), and
ILUT(p, €), with p = 2,5,8, on all four test matrices. In all cases we used a
drop-tolerance of ¢ = 0.0001 in ILUT(p,e). The non-preconditioned restarted
GMRES algorithm was also tested (nopre in the table) as well as FGMRES
using FOM as a preconditioner. In the latter case, we used a maximum of two
steps for the inner FOM iteration. We used GMRES (or FGMRES) acceleration
with Krylov subspace of dimension m = 10 in all cases. The convergence
criterion used was to reduce the residual norm by a factor of 107° and as before,
a maximum of 500 steps is allowed. Thus 501 steps indicates convergence has

Preconditioned Krylov Subspace Methods 13

not taken place. The SSOR and SOR preconditioners are always used with the
relaxation parameter w = 1.

nopre | ssor | ilu(0) | ilut ilut | ilut fom | sor

k=1 p= p= p=28 k=1

marcl 501 391 111 54 5 4| 1451 501
49.7 | 56.3 15.9 7.3 14 1.4 109.8 | 75.8

marc2 501 501 256 501 22 5 | 1451 501
18.9 27.0 13.8 26.0 1.7 0.8 40.9 28.7

marc3 176 31 20 23 8 6 283 80
9.4 2.5 1.6 1.8 1.8 3.1 11.5 6.7

marc4 294 39 23 31 8 7 610 99
38.1 7.3 4.4 5.5 4.2 7.5 60.2 19.5

Table 3 Iterations and execution times for preconditioned GMRES(10) for
four Markov chain matrices

The results are shown in Table 3. All the times include the preprocessing to
obtain the ILUT factorization. As can be observed, the best performance was
obtained with ILUT(p,e) with moderate values of the fill-in. As p increases,
the processing time to obtain the L and U factors starts to become high and
dominate the total time.

We also tested a k-step SOR and SSOR preconditioning techniques which we
denote by SOR(k) and SSOR(k) respectively. As can be expected SSOR(k)
is likely to be more reliable than SSOR(1). Indeed, using SSOR(k) is similar
to using more fill-in in an ILUT preconditioning. The advantage of SSOR(k)
over ILUT(p, €), is that there is no additional storage required. On the other
hand, as can be observed, SSOR(k) does not perform as well as ILUT on the
harder examples. In general, however, we note that SSOR(1) rarely yields the
best performance. It is very common that the best performance in terms of
exectution time is obtained for SSOR(k) with a small k, in general less than 6
but larger than 1 or 2, for the examples we have tried. In one exception, namely
marc2, SSOR(k) only converged for the larger values of k, and the overall time
kept improving even all the way to ythe largest value of k used, namely k£ = 16.
We should mension that the results with SOR(k), which are not reported here,
are very similar. In fact each step of SSOR(k) behaves much like two steps of
SOR(k).

14 CHAPTER 1

SSOR(k) Preconditioner

k=2 k=4 k=6 k=8 |k=10 k=12 | k=14 | k=16

marcl 296 241 191 193 182 153 179 164
85.2 | 113.0 | 123.9 | 160.1 183.9 183.5 | 245.8 254.6

marc2 501 501 501 501 223 229 141 116

53.2 85.8 | 118.1 | 150.7 81.5 98.3 69.6 64.5

marc3 18 9 7 6 5 5 5 4
2.8 2.2 2.3 2.4 2.4 2.8 3.2 2.7
marc4 19 11 8 7 6 6 5 5
7.1 6.4 6.2 6.8 6.9 8.1 7.5 8.5

Table 4 Iterations and execution times for k-step SOR preconditioning ap-
plied to GMRES(10) for four Markov chain matrices

As can be observed, for the Marcl and Marc2 matrices, the GMRES iteration
preconditioned with SOR(1) and SOR(2) did not converge in the maximum of
500 steps allowed. However, SOR(k) converges for k > 4 and the convergence
keeps improving. As k increases the cost of each preconditioning step increases
and in the end the overall cost increases again. The optimum number of steps
seems to be about £ = 10 for the first three matrices.

5 CONCLUSION

The techniques described in this paper, as well as other ones developed in the
recent literature, suggest that in many of the problems in Markov chain mod-
els, one can work with a Krylov subspace of small dimension and get good
approximations to the original problem. This principle can be used to solve
matrix eigenvalue problems, linear systems, and systems of Ordinary Differ-
ential Equations. Preconditioning linear systems or the eigenvalue problems
arising from Markov chain problems is not too difficult because of the nature
of the matrices. Some of the best, and most robust, preconditioning techniques
are based on a form of Gaussian elimination with numerical dropping, in which
the small values generated during Gaussian elimination are neglected to main-
tain sparsity. Other preconditioners such as those based on multiple-step SOR
or SSOR can also be effective, and require less memory.

Preconditioned Krylov Subspace Methods 15

REFERENCES

[1] W. E. Arnoldi. The principle of minimized iteration in the solution of the
matrix eigenvalue problem. Quart. Appl. Math., 9:17-29, 1951.

[2] O. Axelsson. Conjugate gradient type-methods for unsymmetric and in-
consistent systems of linear equations. Linear Algebra Appl., 29:1-16, 1980.

[3] O. Axelsson. A generalized conjugate gradient, least squares method. Num.

Math., 51:209-227, 1987.

[4] R. Chandra. Conjugate Gradient Methods for Partial Differential Equa-
tions. PhD thesis, Yale University, Computer Science Dept., New Haven,
CT. 06520, 1978.

[5] I. S. Duff and G. A. Meurant. The effect of reordering on preconditioned
conjugate gradients. BIT, 29:635-657, 1989.

[6] L. C. Dutto. The effect of reordering on the preconditioned GMRES algo-
rithm for solving the compressible Navier-Stokes equations. International
Journal for Numerical Methods in Engineering, 36:457-497, 1993.

[7] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative
methods for nonsymmetric systems of linear equations. SIAM J Num.

Anal., 20:345-357, 1983.

[8] R. Fletcher. Conjugate gradient methods for indefinite systems. In
G. A. Watson, editor, Proceedings of the Dundee Biennal Conference on
Numerical Analysis 1974, pages 73-89, New York, 1975. University of
Dundee,Scotland, Springer Verlag.

[9] Roland W. Freund. A Transpose-Free Quasi-Minimal Residual algorithm
for non-Hermitian linear systems. SIAM J. Sci. Comp., 14(2):470-482,
1993.

[10] E. Gallopoulos and Y. Saad. Efficient solution of parabolic equations by
polynomial approximation methods. STAM J. Sci. Stat. Comput., 13:1236—
1264, 1992.

[11] G. H. Golub and C. Van Loan. Matriz Computations. Academic Press,
New York, 1981.

[12] K. C. Jea and D. M. Young. Generalized conjugate gradient acceleration
of nonsymmetrizable iterative methods. Linear Algebra Appl., 34:159-194,
1980.

16 CHAPTER 1

[13] C. Lanczos. Solution of systems of linear equations by minimized itera-

tions. J. Res. Nat. Bur. Standards, 49:33-53, 1952.

[14] C. C. Paige and M. A. Saunders. An algorithm for sparse linear equations
and sparse least squares. ACM Trans. Math. Software, 8:43-71, 1982.

[15] B. Philippe, Y. Saad, and W. J. Stewart. Numerical methods in Markov
chain modeling. Journal of Operations Research, 40(6):1156-1179, 1992.

[16] B. Philippe and R. B. Sidje. Transient solutions of Markov processes by
Krylov subspaces. Technical Report 736, IRISA, University of Rennes,
Campus de Beaulieu, Rennes, France, 1993.

[17] S. J. Polak, C. Den Heijer, W. H. A. Schilders, and P. Markowich. Semi-
conductor device modelling from the numerical point of view. Internat. J.

Numer. Meth. Eng., 24:763-838, 1987.

[18] Y. Saad. Krylov subspace methods for solving large unsymmetric linear
systems. Mathematics of Computation, 37:105-126, 1981.

[19] Y. Saad. The Lanczos biorthogonalization algorithm and other oblique
projection methods for solving large unsymmetric systems. SIAM J. Nu-

mer. Anal.; 19:470-484, 1982.

[20] Y. Saad. Practical use of some Krylov subspace methods for solving in-
definite and unsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
5:203-228, 1984.

[21] Y. Saad. Analysis of some Krylov subspace approximations to the matrix
exponential operator. SIAM J. Numer. Anal., 29:209-228, 1992.

[22] Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Techni-
cal Report 92-38, Minnesota Supercomputer Institute, University of Min-
nesota, Minneapolis, 1992. to appear.

[23] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halstead
Press, New York, 1992.

[24] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. STAM
J. Sci. Stat. Comput., 14:461-469, 1993.

[25] Y. Saad. [terative methods for sparse linear systems. PWS publishing,
New York, 1995. to appear.

[26] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving
nonsymmetric linear systems. Mathematics of Computation, 44(170):417-
424, 1985.

Preconditioned Krylov Subspace Methods 17

271 Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual al-
g
gorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.

Comput., 7:856-869, 1986.

[28] Y. Saad and K. Wu. DQGMRES: a quasi-minimal residual algorithm
based on incomplete orthogonalization. Technical Report UMSI-93/131,
Minnesota Supercomputing Institute, Minneapolis, MN, 1993. submitted.

[29] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear

systems. SIAM J. Scient. Statist. Comput., 10(1):36-52, 1989.

[30] W. J. Stewart. MARCA: markov chain analyzer, a software package for
markov modeling. In W. J. Stewart, editor, Numerical solution of Markov
chains, pages 37-62, New-York, 1991. Marcel Dekker Inc.

[31] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, New York, 1994.

[32] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci.
Stat. Comput., 12:631-644, 1992.

[33] J. W. Watts-III. A conjugate gradient truncated direct method for the
iterative solution of the reservoir simulation pressure equation. Society of
Petroleum Engineer Journal, 21:345-353, 1981.

