
         

ELECTRONIC STRUCTURE CALCULATIONS IN PLANE-WAVE
CODES WITHOUT DIAGONALIZATION

LAURENT O. JAY∗, HANCHUL KIM † , YOUSEF SAAD ‡ , AND

JAMES R. CHELIKOWSKY §

Abstract. We present an algorithm to reduce the computational complexity for plane-wave
codes used in electronic structure calculations. Our proposed algorithm avoids the diagonalization of
large Hermitian matrices arising in such problems. The computational time for the diagonalization
procedure typically grows as the cube of the number of atoms, or the number of eigenvalues required.
To reduce this computational demand, we approximate directly in a certain subspace the occupation
operator corresponding to the eigenvectors associated with the occupied states, without actually
computing these eigenvectors. A smoothed Chebyshev-Jackson expansion of the Heaviside function
of the Hamiltonian matrix is used to represent the occupation operator. This procedure requires
only matrix-vector products and is intrinsically parallelizable.
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Jackson approximation.
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1. Introduction. Quantum-mechanical calculations have been proven to be ac-
curate and successful in predicting the electronic and structural properties of real
materials [1]. Among various quantum-mechanical methods, ab initio pseudopoten-
tial plane-wave method [2, 3, 4] based on the local density functional theory [5, 6]
has been the most popular choice owing to easy implementation and to the system-
atic control of computational errors. However, the computational demands of this
method prohibits its application to systems containing more than a few hundreds of
atoms. The leading contributions to the computational load are (i) the matrix-vector
multiplications which scales as N2 logN (for plane-wave methods) and (ii) the or-
thogonalization of wavefunctions which scales as N3, where N is the number of atoms
or eigenvalues to be determined.

There have been many efforts to devise linear-scaling (or order-N) algorithms.
These include the density-matrix method [7, 8, 9], the orbital method [10, 11, 12, 13],
and the Fermi-operator method [14, 15]. Most of the proposed order-N methods
are based on a tight-binding approach and many of them do not involve fully self-
consistent calculations [14, 15, 16, 17, 18, 19, 20, 21]. Typically, order-N type algo-
rithms sacrifice some accuracy relative to standard methods in an attempt to achieve
linear-scaling. Here, we center on developing an algorithm which eliminates any N3

operations from the ab initio plane-wave calculations without any loss in the accuracy,
e.g., we wish to retain a fully self-consistent solution.

Our algorithm utilizes the Fermi operator expansion (FOE) method developed
by Goedecker and Teter [15]. The FOE is a candidate linear-scaling algorithm if
used with real-space-localized basis functions. Another important feature of the FOE
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is the intrinsically parallel character of the algorithm. We propose the application
of FOE to ab initio electronic structure calculations using a plane-wave basis with
pseudopotentials.

In §2, we briefly describe the Fermi operator. The Chebyshev–Jackson polyno-
mial expansion of the Fermi operator is formulated in §3. The detailed formulation of
the electronic charge density and the occupation operator are given in §4 and §5, re-
spectively. In §6, we schematically present the algorithm of the computation. Finally,
the numerical examples are described in §7.

2. Fermi operator. The Fermi operator is defined by

F̂ ≡ fEF (Ĥ),

where fEF is the Fermi-Dirac distribution function:

fEF (Ĥ) = lim
T→0

1

1 + exp ((Ĥ − EF )/T )
.

The chemical potential is EF and Ĥ is the Hamiltonian operator. Physically, T can
be interpreted as the temperature. Here we consider the limit of zero temperature,
i.e., the Fermi-Dirac distribution function is treated as a Heaviside function. Within
this definition, the eigenvalue of the Fermi operator for each eigenvector ψi of Ĥ is
the occupation number of the eigenstate

F̂ψi = fEF (εi)ψi

=

{
ψi if occupied (εi < EF ),
0 otherwise (εi > EF ).

Each state ψi is occupied below the Fermi level; each state above is empty.
Many interesting physical quantities can be expressed in terms of the Fermi oper-

ator. For example, the band energy Eband, the total number of electrons Nel, and the
Fourier component of the electronic charge density %(G) (where the charge density is
given by %(r) =

∑
G %(G) exp(iG · r)) can be written as follows:

Eband = Tr(ĤF̂ ),

Nel = 2 Tr(F̂ ),

%(G) = 2
∑

G′

〈G′|F̂ |G′ −G〉

where Tr(·) is the trace.

3. Chebyshev–Jackson polynomial approximation. For a function defined
by h : [−1, 1] 7→ R, its Chebyshev expansion of order M can be expressed as

h(x) ≈ µ0

2
+

M∑

m=1

µmTm(x)

where the coefficients µm are given by

µm =
2

π

∫ 1

−1

h(t)Tm(t)√
1− t2

dt
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and the functions Tm(x) = cos(m arccos(x)) are the Chebyshev polynomials of the first
kind. For the Heaviside function (Fig. 1)

Hγ(x) =

{
1 if x ∈ [−1, γ],
0 else,

the Chebyshev coefficients are fairly easy to compute. Using the definition for Cheby-

6
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1
Hγ(x)

Fig. 1. The Heaviside function Hγ(x) on the interval [−1, 1]

shev polynomials and the change of variable t = cos(u) we obtain

µm(γ) =
2

π

∫ arccos(γ)

−π
cos(mu)du =





2
(

1− arccos(γ)
π

)
for m = 0,

− 2 sin(m arccos(γ))
mπ for m ≥ 1.

(1)

As is well known, least-square, high degree polynomial expansions of the Heaviside
function show Gibbs oscillations around points of discontinuity owing to the trunca-
tion of the expansion at finite order M . To overcome this phenomenon the series can
be smoothed by using appropriate damping factors. A smoothed expansion is given
by the Jackson approximation [22, 23, 24]

h(x) ≈ µ0

2
+

M∑

m=1

gm,MµmTm(x)

where

gm,M =

M−m∑

i=0

ai,Mam+i,M , ai,M =
Ui(λmax,M )√∑M
n=0 U

2
n(λmax,M )

(2)

with

λmax,M = cos(αM ), αM =
π

M + 2
(3)

and the Un(x) are Chebyshev polynomials of the second kind

Un(x) =
T ′n+1(x)

n+ 1
=

sin ((n+ 1) arccos(x))

sin(arccos(x))
.(4)



                 

4 L. O. JAY, H. KIM, Y. SAAD, AND J. R. CHELIKOWSKY

A direct calculation shows that

ai,M =
sin ((i+ 1)αM )√∑M
n=0 sin2 ((n+ 1)αM )

.

A closed expression for the Jackson damping factors gm,M is as follows.
Lemma 3.1. The coefficients gm,M in (2) for m = 1, . . . ,M satisfy

gm,M =

(
1− m

M+2

)
sin(αM ) cos(mαM ) +

(
1

M+2

)
cos(αM ) sin(mαM )

sin(αM )
(5)

where αM is given in (3). The proof is given in the Appendix.
Figure 2 illustrates how the Jackson damping factor works for the Heaviside func-

tion in Fig. 1 with different degrees of the polynomial expansion. The Jackson damp-
ing factor is indispensable for an accurate approximation of the Heaviside function.
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Fig. 2. Approximation of the Heaviside function with (thick line) and without (thin line) the
Jackson damping factor for three different degrees M of the Chebyshev polynomial. Note that we use
different γ’s for different M ’s for the purpose of illustration: γ = −0.5, 0.0, and 0.5 for M = 64, 128,
and 256, respectively.

4. Computation of the charge density. For a given k-point in reciprocal
(Fourier) space, the occupation operator Ôk corresponding to the eigenvectors ψkn of
the Hamiltonian matrix Ĥk associated with the occupied states is given component-
wise by

ÔkGG′ = 2
∑

n

θknψ
k
n(G)ψk

∗
n (G′)(6)

where k is the wave vector, the factor 2 comes from the spin degeneracy and θkn is the
occupation number of the state ψkn

θkn ≡ fEF (εkn) =

{
1 if ψkn is occupied,
0 if ψkn is unoccupied.
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The occupation operator Ô is given by the direct sum of the k-point dependent occu-
pation operators Ôk, and is equal to twice of the Fermi operator:

Ô =
⊕

k

Ôk (= 2F̂ ).(7)

The density matrix is

ρ(r, r′) =
∑

k

∑

GG′

ei(k+G)·rÔkGG′e
−i(k+G′)·r′

and the charge density is simply expressed by

ρ(r) ≡ ρ(r, r) =
∑

k

∑

GG′

ei(G−G
′)·rÔkGG′ .

In reciprocal space the charge density is given as follows

%(G) =
1

L

∑

r

e−iG·rρ(r) =
∑

k

∑

G′G′′

ÔkG′G′′
1

L

∑

r

ei(G
′−G′′−G)·r =

∑

k

∑

G′

ÔkG′,G′−G

(8)
where L is the number of grid points in the unit-cell and the following property is
used

1

L

∑

r

eiG·r = δG,0

where δ denotes the Kronecker symbol. There is no need to apply Fourier transfor-
mations when computing the charge density from the occupation operator as is done
in conventional plane-wave codes.

5. Computation of the occupation operator. The usual way to obtain the
occupation operator (7) is to compute the eigenvectors of each k-th occupation oper-
ator Ôk (6) by resorting to a partial diagonalization of each Hamiltonian matrix Ĥk.
One drawback of such a procedure is its computational cost which grows cubically
with the number of occupied eigenstates. Since the size of the Hamiltonian matrices
Ĥk are proportional to the number N of atoms, this approach is often limited to a few
hundred atoms. To reduce the amount of computation, it has been proposed for Gaus-
sian basis functions to find directly the density matrix by minimization techniques
[14, 15]. For a plane-wave basis set, we propose an alternative approach by directly
approximating the occupation operator using a Chebyshev–Jackson expansion of the
Heaviside function of the Hamiltonian matrices.

We assume for the moment that the Fermi level EF and the extremal eigenvalues
λkmin and λkmax of the Hamiltonian matrices Ĥk are given. We can then approximate
the k-th occupation operator as follows

Ôk ≈ Ôkγk(EF ) := µ0(γk(EF ))I + 2

Mk∑

m=1

gm,Mkµm(γk(EF ))Tm(Ak)(9)

where

Ak = ckI+dkĤk, γk(EF ) = ck+dkEF , ck = −λ
k
max + λkmin

λkmax − λkmin

, dk =
2

λkmax − λkmin

.
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The parameters ck and dk are chosen to rescale the eigenvalues interval [λkmin, λ
k
max]

to [−1, 1]. Since the operator Ôk can be seen as a multiple (by a factor 2) of the
Heaviside function of the Hamiltonian matrix Ĥk, the coefficients µm(γk(EF )) are
those given in (1).

We denote the subspace spanned by the occupied eigenvectors as Ψk. Ψk is in-
variant by application of the k-th occupation operator Ôk. This suggests restricting
the Chebyshev–Jackson expansion to a certain subspace V k which accurately approx-
imates Ψk. We use the following recursions to build the Chebyshev series Tm(Ak)V k.
We start from T0(Ak)V k = V k and T1(Ak)V k = AkV k, we successively form

Tm(Ak)V k = 2AkTm−1(Ak)V k − Tm−2(Ak)V k for m = 2, . . . ,Mk.(10)

Since each column of Tm(Ak)V k is independent, this recursion requires only matrix-
vector products which can be fully parallelized. We approximate the occupation
operator Ô on the subspace V =

⊕
k V

k by

ÔV ≈
⊕

k

Ôkγk(EF )V
k.(11)

In our current implementation of this algorithm, we compute the smallest and the
largest eigenvalues λkmin and λkmax of Ĥk using an iterative Lanczos method. Since
they are the only eigenvalues which are computed by this procedure, this requires only
a few matrix-vector multiplications. To determine the Fermi level EF , we assume

that each V k is represented by an orthogonal matrix, i.e., V k
T
V k = Idim(V k). Since

Tr(Ô) =
∑
k Tr(Ôk) = Nel, we compute EF from the nonlinear scalar equation

φ(EF ) :=
∑

k

Tr
(
V k

T
Ôkγk(EF )V

k
)
−Nel = 0(12)

by means of Newton iteration

EF,i+1 := EF,i −
φ(EF,i)

φ′(EF,i)
.(13)

φ(EF ) and its derivative with respect to EF are given by

φ(EF ) =
∑

k

µ0(γk(EF )) dim(V k) +(14a)

2
∑

k

Mk∑

m=1

gm,Mkµm(γk(EF )) Tr
(
V k

T
Tm(Ak)V k

)
−Nel,

φ′(EF ) =
∑

k

dkµ′0(γk(EF )) dim(V k) +(14b)

2
∑

k

Mk∑

m=1

gm,Mkdkµ′m(γk(EF )) Tr
(
V k

T
Tm(Ak)V k

)
.

Differentiating the coefficients µm(γ) in (1) with respect to γ we get

µ′m(γ) =
2Tm(γ)

π
√

1− γ2
for m = 0, . . . ,M ,(15)

where Tm(γ) is the mth Chebyshev polynomial of the first kind.
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6. Algorithms. The computation of the occupation matrix Ô is performed as
follows.

Algorithm 6.1. Computation of the occupation matrix.
0. For all k-points do:

1. Compute the smallest and the largest eigenvalues λkmin and λkmax of Ĥk.
2. Select a subspace V k.
3. Select a degree Mk for the Chebyshev–Jackson expansion (9).
4. Compute Tm(Ak)V k by the recursion (10) and store for each k.
5. Compute the Jackson coefficients gm,Mk (5).

6. Obtain an estimate to the Fermi level EF .
7. For all k-points compute the Chebyshev coefficients µm(γk(EF )) (1).
8. Compute φ(EF ) by (14a).
9. If |φ(EF )| ≤ TOL where TOL is a given tolerance Then

10. Form the approximation (11) to the occupation operator using (9). Stop.
Else
11. For all k-points compute the Chebyshev coefficients µ′m(γk(EF )) (15).
12. Compute φ′(EF ) by (14b).
13. Apply a Newton correction (13) for EF . Repeat from 7.
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Fig. 3. Convergence of the Hartree and exchange-correlation energies with respect to the degree
M of the Chebyshev polynomial for a crystalline silicon. Solid symbols denote the corresponding
energies obtained by the iterative diagonalization scheme.
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The self consistent iteration procedure is as follows.

Algorithm 6.2. Self consistent iteration.

0. Obtain the initial charge density ρ(r) by superposing the atomic charge
densities.

1. Obtain the potentials Vxc, Vion, and the initial VH .
2. Compute the occupation matrix using Algorithm 6.1.
3. Compute the charge density %(F ) in reciprocal space from (8).
4. Compute the new potentials VH and Vtot.
5. ‘Mix’ the potentials with a Broyden-type quasi-Newton approach.
6. If self-consistency test satisfied Then stop. Else repeat from 2.

7. Numerical results. We have applied the current algorithm to crystalline
silicon. To investigate convergence with respect to the degree of the polynomial
expansion, we have calculated the Hartree and the exchange-correlation energy of
the bulk silicon (diamond structure: two atoms per cell). The kinetic energy cutoff
of 9 Ry is used and a single k-point (Γ) is sampled to perform the Brillouin zone
integrations. The results are plotted in Fig. 3. The energies converge to the correct
values (obtained using iterative diagonalization) when a sufficiently large degree is
used in the Chebyshev expansion. The plots indicate that one should use at least M '
250 to ensure these energies are converged. Unfortunately, a polynomial expansion
with a large value for M produces a large prefactor for the remaining operations.
It is conceivable that different polynomial expansions which might result in faster
convergence with respect to the degree of expansion are required.

For the purpose of assessing the scaling property of this scheme, we have done
self-consistent calculations varying the system size from 2 to 64 atoms. We used a
kinetic energy cutoff of 6.25 Ry and Γ-point sampling. The CPU times are plotted
in Fig. 4 with fits to N2 logN . Our results show that the N3 scaling operations
due to orthogonalization are avoided in the current scheme. Fig. 4 confirms that the
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Fig. 4. Scaling behavior of the CPU time to achieve the self-consistency with respect to the
number N of atoms in the simulation cell: Symbols denote the calculations performed and the lines
are fits to the functional form N2 logN .
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proposed algorithm scales asO(N2 logN). This scaling results from the matrix–vector
multiplication to calculate the Chebyshev polynomial.
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Science Foundation and from the Minnesota Supercomputer Institute.

Appendix. Jackson damping factor.
Proof. [Lemma 3.1] ¿From (2)-(3)-(4) we get

gm,M =
1(∑M

i=0 sin2((i+ 1)αM )
) ·

M−m∑

i=0

sin((i+ 1)αM ) sin((m+ i+ 1)αM ).

Let us compute

M−m∑

i=0

sin((i+ 1)αM ) sin((m+ i+ 1)αM ) =

M−m+1∑

j=0

sin(jαM ) sin((m+ j)αM )(16)

=
1

2

M−m+1∑

j=0

(
cos(mαM )− cos((2j +m)αM )

)

=
1

2


(M −m+ 2)cos(mαM )−

M−m+1∑

j=0

cos((2j +m)αM )


 .

The last sum is given by

M−m+1∑

j=0

cos((2j +m)αM ) = Re

((
eimαM − ei(2M−m+4)αM

1− ei2αM
)
·
(

1− e−i2αM
1− e−i2αM

))

=
1

2(1− cos(2αM ))

(
cos(mαM ) + cos((2M −m+ 2)αM )

− cos((m− 2)αM )− cos((2M −m+ 4)αM )
)

=
1

2(1− cos(2αM ))

(
2 cos((M + 1)αM ) cos((M −m+ 1)αM )

− 2 cos((M + 1)αM ) cos((M −m+ 3)αM )
)

=
cos((M + 1)αM )

1− cos(2αM )
2 sin(αM ) sin((M −m+ 2)αM )

=
cos((M + 1)αM ) sin((M −m+ 2)αM )

sin(αM )
.

Hence, for m = 0 in (16) we get

M∑

i=0

sin2((i+ 1)αM ) =
M + 2

2

leading to

gm,M =
1

M + 2

(
(M −m+ 2)cos(mαM )− cos((M + 1)αM ) sin((M −m+ 2)αM )

sin(αM )

)

which simplifies to (5).
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