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Abstract

Computing the partial Schur form of a matrix is a common kernel in widely
used software for solving eigenvalues problems. Partial Schur forms and Schur
vectors also arise naturally in deflation techniques. In this paper, error bounds
are proposed which are based on the Schur form of a matrix. We show how the
bounds derived for the general case simplify in special situations such as those of
Hermitian matrices or partially normal or nearly normal matrices. The derived
bounds are similar to well-known bounds such as the Kato-Temple and the Bauer-
Fike inequalities.

1 Introduction

A common issue that arises when computing eigenvalues of matrices is to provide esti-
mates on the errors made when approximating eigenpairs given some computable quan-
tities, such are residual norms. For example, given an approximate eigenvalue \ and
associated approximate eigenvector % such that

A= Mi+r

the question is to provide estimates for |\ — \|, and sin /(u, @), for some exact eigenpair
(A, u) in terms of the residual norm ||r||. In the normal case, there are several useful
results of this type. In the non-normal case, the existing bounds can be too pessimistic
to have any practical value. Though it is not possible to give as accurate bounds in the
non-normal case as in the normal case, it is sometimes possible and useful to provide
tighter bounds that yield partial information. This can be achieved by sacrificing on the
completeness of the desired information. Indeed, the idea is that a sharp bound on, say,
the error |\ — 5\| is impossible to obtain but inequalities involving perhaps an unknown
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condition number could be extracted. If the condition number is estimated by some
heuristic means, estimates of the error could then result. The goal of this paper is to
provide such alternative inequalities by exploiting the Schur canonical form of matrices.

We now give a brief background on the Schur canonical form of general matrices. A
square complex or real matrix A can be factored in the form

A=QRQ" (1)

in which R is an upper triangular matrix and @) is a unitary matrix, i.e., such that
Q"@Q = I. The diagonal elements of R are the eigenvalues of A (repeated with their
multiplicities). An important point exploited in this paper is the fact that these eigen-
values can be put in any order in the diagonal using orthogonal transformations. In
other words the Schur factorization is not unique and a different factorization can be
obtained for each order of the eigenvalues.

Current algorithms for solving Hermitian and non-Hermitian eigenvalue problems
often use the Schur form rather than eigenvectors. Moreover, it is common to use
Schur forms in deflation techniques, as is done, for example, in the following algorithm.

ALGORITHM 1.1 Schur Deflation
Solve Aqi = A1y with ||q1|]2 = 1; set Q1 = [q1]
Doj=2....p:
Compute the eigenpair:
(I — Q; 1Q11)Ag; = Ajg;, with [lgj]l2 = 1
Set Q; = [Qj-1, ¢j]
EndDo

After the algorithm has completed, the partial Schur form
AQ, = Q,R, (2)

can be obtained from simply computing the matrix R, = Qf AQ)p. Here R, is an upper
triangular matrix. Note also that

(I — Q@ )AQy =0

An information that is immediately available from the relation (2) is that the matrix
(), is an orthonormal basis of an invariant subspace of A and that the p eigenvalues
of the matrix R, are also eigenvalues of the matrix A. Moreover, the corresponding
eigenvectors can be easily computed. If (\;, z;) is an eigenpair of the matrix R, then it
can easily be shown that (\;, @Qp;) is an eigenpair of the matrix A.

Consider now a particular group of eigenvalues

Al = {)\1,)\2,...,)\;,,} .
The factorization (1) can be partitioned accordingly as,

A =1[Q1, Q2] (% WI;:I) [Q1, Q)" (3)



with diag(R;) = A;. For example when p = 1, A; consists of one particular eigenvalue
A which is assumed to be simple. Then it is possible to rewrite the Schur factorization
as

A= [q1, Q2] (g 1;){:) [Q1,Q2]H (4)

2 General error bounds for a single eigenvalue

In this section it is assumed that the eigenvalue A is simple. Let \, @ an approximate

eigenpair such that .
(A=XMa=r (5)

It is possible to express the above equality in the () basis, defined by the Schur factor-
ization. This will be referred to as the Schur basis in the sequel. Writing @ and r in the

(@ basis as
a:@(‘;‘) andr=Q(§>

and using relations (4) and (5), we obtain the following set of equations

Y H
("o" mar) (0)=(5)- ®
O Ry — A\ x s
The vector s contains the components of r in the orthogonal to the eigenvector associated
with A. Let P = q;¢ be the orthogonal projector onto the first Schur basis, i.e., the

orthogonal projector onto the eigenvector associated with A\. Then the following can be
stated:

e Pr =eq, i.e., € is the component of r in ¢; in the -basis.

e (I — P)r = @ss, i.e., s is the vector of components of 7 in the basis ¢o, g3, . - ., Gn
of the orthogonal complement of ¢;.

e Ry, — M is the matrix expression of (I — P)(A — M\ )(I — P) in the @, basis.

e w is the matrix expression of PA(I — P), which is an operator from span(Qs) to
span(qy)-

The exact eigenvector associated with the eigenvalue A is the vector ¢;, or the vector e;
in the Schur basis. If @ is the approximate eigenvector, it is interesting to consider the

projection of @ onto the exact eigenvector. If we work in the Schur basis then writing
o

ﬂ:Q((;) andPﬂ:Q(O) yields

(r-Pi=0() (7)

x
Consider now specifically the relation (6). The second part of the relation yields,

(Ry — M)z =s
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from which we obtain,

z=(Ry— M) s

In case \ is an eigenvalue of Ry, then a pseudo-inverse must be used. Observing that
Is|l2 = ||(I — P)r||s and referring to equation (7) shows that

I(Z = P)alla = |lzlla < (Re =AD" Mloll( = P)rl2

The quantity 7 = ||(Rs — M) !||» is an approximation to the condition number y =
|(Re — M) 71|, of the eigenvector associated with A. Using projectors, we can rewrite 7
as ~ ) .

y=1I[I=P)A=ADIT - P)] ||z

which approximates
v= 1T = P) (A=) = P)" 5

This is commonly used as the condition number for the eigenvector associated with A.
Note that when A is normal, R, is diagonal and 7 is then equal to the inverse of the
distance from ) to the eigenvalues of A other than .

Since (I — P)& = sin /(u, @) and ||(I — P)r||2 < ||7||2 the above result leads to the
following bound.

Theorem 2.1 Let @i be the computed eigenvector associated with X and r = (A — X ).
Then,
sin / (u, @) < 7llr|l2

. ~ +
where 5 = || [(T = P)(A— A)(I = P)|" ||2 and P = qq!".

An important observation is that whether in the Hermitian or non-Hermitian case, an
estimate of the angle between exact and approximate eigenvectors is readily available
from the residual norm once an estimate of the condition number is available. In practice,
it is not necessary to obtain rigorous bounds for estimating errors. These are impossible
to obtain at a reasonable cost in the non-normal case. In the normal case an estimate of
the distance between A and the other eigenvalues is usually available from the algorithm
used which typically yields a good estimate or bound for v. Estimating v is clearly harder
in the non-normal case. However, it is important to separate the difficulty inherent in
estimating the condition number from that of estimating errors. Condition numbers can
be estimated by heuristics [1]. A trivial point in case, would be to perturb data slightly
in certain ways and recompute approximate eigenvectors.
Return to relation (6) and consider now the first equation.

aA =) +wfz=e (8)
Assume that o is an approximate left eigenvector of A associated with the eigenvalue A,
" A =" 4 M

Writing ¢ and z in the @) basis as

1=a(5) mas=a()
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the above equation would become,
H

A— w
H o\ = (4H
(M)( %) RQ—)\I> (")
Equating the second columns yields,
Buw + y"(Ry — XI) =7

In a number of algorithms, ¢ is orthogonal to 7. Assume this is the case. This translates
into Be +y%s=0or e = —ys.
From relation (8), we get,

aﬂ()\—j\) = —yfs— Bullz
= — [st + pw (R, — /N\I)_ls]
= — [y (Ra = AT) + pu"] (Ry = X)7's
= —t"(Ry — \)7ls
This leads to the simple equality

B H _7\-!
/\_A:t(RQ )\I) S

af
Recalling that |«| = ||Pi|2 and |3] = ||P?||2 and similarly, ||s||o = ||[(I — P)r||2 and
It]l2 = ||[({ — P)z||2 then we obtain the following error bound.

Theorem 2.2 Let 4, 0 be the computed right and left eigenvectors associated with A,
r=(A—=X)a and 2% =% (A= XI). If & L r then

‘5\_ )\‘ <7 ||(I_P)C||2 ”(IN_ P)Z“Z

[Pl | Poll2

(9)

- < +
where ¥ = || [(I = P)(A= M)(I = P)| " |2 and P = g/
Note that a slightly weaker inequality is

[I7llz ll2Il2

|5\ - )\| <Y =i e
| P2 || Poll

which indicates the well-known fact that when © L r the error is of the order of the
product of the left and right residual norms. The above inequality does not provide
complete information on the errors made on the eigenvalues. There are three missing
quantities: || Pil|z, ||P?||2 and 4. As before 4 can be estimated — e.g., by heuristics. Of
the other two quantities || Pil|2, is normally close to one if the approximation is good
enough. Finally, ||P%]|s is close to the cosine of the angle between the exact left and
right eigenvectors, and can usually be estimated from the computations by the cosine of
the approximate left and right eigenvectors.

In fact, it might be more appropriate to rewrite the above inequality in yet another
form:

IA—A| cos Z(u, ) cos L(u, &) < ||7||2 ||2]|2-



3 General error bounds for a group of eigenvalues

Consider now the situation of a group of eigenvalues. Using the relation (3), rewrite the
relation (5) in the general situation as

3 H
(Mo mmsn) ()= (0): (10
The first part of the equality yields,
(R — S\I)xl =e— WHg,
and from the second we obtain an expression for x5 which is
2y = (Ry — M) 's

Therefore, B 3
(R, — M)z, =e—WH(Ry — XI)7's (11)

In the sequel we will exploit the upper bound

le = W (Ry = A1) sls < 1+ [WH(Ry = AD73 [ (12)

which follows from the Cauchy-Schwarz inequality. It is important to provide an interpre-
tation to this term which is strongly related to left eigenvectors. Consider o = (y{7,y3')
a left eigenvector associated with A, the approximate eigenvalue closest to A\. Then,

(vi", o) (RIO_ ’ RQW:H)\I) =0

Equating the first column of the result to zero indicates, as expected that y; is a left
eigenvector R;. Equating the 2nd column to zero gives,

yIWH +yH(Ry — X)) =0
or
yy = —yi WH(Ry = XI)™!

The matrix —W# (R, — AI)~! multiplies the left eigenvector of R; in order to obtain the
component in the ()o-space of the left eigenvector. It is therefore natural to keep the
term ||[W#(Ry — MI)™!|| together instead of using upper bounds involving the norm of
WH. We will use the notation,

T = W (R — M) 72 - (13)

Define the spectrum of R; by Ay = {A1, Ag,..., Ay} and set T(;\) = min;_y,, |A; — :\|
In the general case, i.e., when R; is an upper triangular matrix, the matrix R; can be
written as Ry = D — N where D is a diagonal matrix with the \;’s on its diagonal and
N is a strictly upper triangular matrix. Then, the relation (11) yields,

TWzille = (B — M)zt + Ny || < VI3 Irll2 + [[N]l2 [Jz1]]2
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which can be written as

- 1 A2
r(3) < YT 1 Vs (14)

< -
1Pall2

This bound can be very pessimistic for highly non-normal matrices because in these
cases, the matrix NV has a very large norm.

An error bound which does not involve the matrix N can be obtained. Taking norms
on both sides of the relation (11) leads to

[(Ry — AD)z1 |2 < |le = WH(Ry — XI) s,

Using the inequality B
(R = AD)z1la > ominl|71]]2

where o, is the smallest singular value of Ry — I, and recalling that || Piil|y = ||z1]]2,
we obtain the following bound.

Proposition 3.1 Let A have the Schur form of equation (3) and let (5\, @) be an approz-
imate eigenpair with residual vector r. Define 7, as in (13). Then the smallest singular
value of Ry — M satisfies the inequality,

Omin < ~rs—— |72 - (15)
1Pal2

In the case when R; is diagonal then clearly o,,, is simply the distance from A to the
spectrum of R;. Note that the above inequality can be interpreted from a pseudospec-
trum viewpoint [7, 3]. It stipulates that the approximate eigenvalue )\ is located inside
the € pseudo-spectrum level-curve of R; defined for € equal to the right-hand side of
(15).

In the inequality (14) we could use the fact that IV is a nilpotent matrix, i.e., there
exists an integer k not exceeding the dimension p of the matrix R; such that N* = 0.
This integer k£ is the maximum index of the eigenvalues in the group {A;,...,A,} and
depends on the canonical Jordan form of the matrix R; and therefore also on the Jordan
form of A. Let A be the diagonal matrix A = D — M. The following relation holds

00 k
(A-N)'= <Z(A1N)i) A= (Z(AIN)’) AT
i=0 i=0
Taking norm and using Lemma 2.3.3 from [4] the following error bound can be derived

() - V1t

|INE-1ly + T(N)||N*2|ly + ...+ 7Nk = [Pl

1712

A similar inequality was pointed out in [2] (Corollary 5.1). Note that if | N||2 tends to
zero, i.e., the matrix R; tends to become diagonal then the left hand side is essentially

equal to 7(\).



4 The Hermitian Case

When the matrix is Hermitian, it is fairly easy to derive residual bounds for approximate
eigenvalues or eigenvectors. Assume that an approximate eigenpair satisfies the relation
(5) where X\ = (A, @)/ (i, @). Then a well-known result [6] stipulates that there is an
exact eigenvalue A such that

7

o

<
NN

A=Al <

where

5 = min |Ai — 5\|
AEA(A), i

Similarly, there is an exact eigenvector v such that

sin /(u, ) < ”TNHQ

These two upper bounds are sharp and extremely useful in practice, in spite of the
fact that they involve the unknown quantity 4. Note that the first result is similar to
the one derived in Theorem 2.2 except for the denominator and the second result is
equivalent to the one derived in Theorem 2.1 because for Hermitian matrices, 7 can be
approximated by the inverse of §. In practice, it is common that approximations to the
neighboring eigenvalues are also available and a simple estimate for 6 is provided by
replacing & = dist(\, A(A) — {\}) by dist()\, A(A) — {\}), in which A(A) represents the
spectrum of A and /~\(A) the approximate spectrum. This provides an estimate, a very
useful one in practice, rather than a rigorous bound.

Rigorous upper bounds can usually be obtained by exploiting alternative inequalities.
For example, assuming eigenvalues are labeled decreasingly and we are seeking \;, the
closest approximation is \; and we obtain

5 =13 = ol > 1 = Aol = [0 — Nal.

Now |A; — Xo| is computable and |A; — Az| can be estimated using a fairly simple bound
such as [\y — Ag| < |72 and the following rigorous and computable upper bound can be
obtained,

73

|5\1 - 5\2| - ||7‘2||2

A=Al <
provided that |A; — Aa| > ||r2]|2. Unfortunately, obtaining such rigorous bounds does

not seem to be possible in the non-normal case. On the other hand it is still possible to
obtain good estimates based on estimating ¥ and other quantities.

5 Partial and Near Normality

First suppose that we are only interested in a single eigenvalue and consider the relation
(8) again. We make the assumption that the vector w is zero. This is a strong assumption



that has implications on the matrix and not only the approximation. In this case, the
relation (8) becomes, 5
aA—=)) =¢

and since o = || P1|2, and € = ||Pr||2 we obtain a remarkably simple inequality,

[Prlla 7]l

A=A <2 < T
|Palla — [|Pillo

A bound of this type was also pointed out in [2] (Corollary 3.2). Except for the denom-
inator term this is very similar to the Bauer-Fike inequality. In fact the denominator
should be close to one if the eigenvector is accurate enough. Another way of rewriting
the inequality is:

A — 5\| cos /(u, @) < [|r]|2

Note that when w = 0, then the left and right eigenvectors associated with A are
identical. This also means that the right and left residuals r and z are identical. If in
addition, it is assumed that r | % then ae + y*s =0 and as a result ¢ = —y"s/a, so

(B2 — AD) Mol (2 — P)rl3
1Pal3

A=Al <

This inequality can be rewritten as
A=Al cos® £(u, @)| < Arl3

and can be viewed as a generalization of the Kato-Temple inequality.
Now, suppose we are interested in a group of eigenvalues. In the case when R; is
simply diagonal, then clearly

TMlzillz < (R = ADl2 leallz < /1 +32 (7]l

- WJ1+72
T(A) < Sz lIrlla

< ~
[Pl

If we also assume that W = 0, the first equation of the relation (10) becomes

which becomes

(R — M)z1 =€

and since R; is a diagonal matrix we obtain the following error bound

Again, this error bound is similar to the Bauer-Fike inequality.



6 Numerical Illustrations

We now illustrate the error bounds derived in the previous sections for the case when the
eigenpair (5\, @) is computed by the power method and the subspace iteration method.
The power method computes the dominant eigenpair of a matrix A and the subspace
iteration method computes a given number, say p, of the dominant eigenpairs of A. The
two algorithms are as follows.

ALGORITHM 6.1 Power Method
Choose @ such that ||u|l2 = 1

1

2. Do until convergence

3. u = Au/||Ad||

4 A =af Au

5 If the stopping criterion is satisfied then exit
6. EndDo

Note that the denominator in Step 3 is often replaced by a signed number whose purpose
is to allow convergence in ‘direction’ for cases of negative (or complex) eigenvalues.

ALGORITHM 6.2 Subspace Iteration Method
Choose a n by p matrix U such that URU =1

1.
2. Do until convergence

3. V=AU

4. Compute the QR factorization of V: V =UR

5 Compute the eigenpairs {\;, ¥; }i=1,, of B = U AU
6. Set {’ELZ == jS}izl:p

7. If the stopping criterion is satisfied then exit

8. EndDo

For the power method, (;\,11) will approximate the dominant eigenpair of A. In the
subspace iteration method the dominant eigenpair of A is approximated by (5\, Uz)
where (/N\, Z) is the dominant eigenpair of the projected matrix B. Note that, if at each
step of the subspace iteration method we compute the Schur factorization of B, i.e.,
BS = ST, then upon termination of the algorithm the matrix @) = US is a basis of an
invariant subspace associated with the p dominant eigenvalues of A and the matrix 7 is
the corresponding partial Schur form. More details for both methods can be found in
4, 6].
The matrices used for the experiments are n by n matrices of the form

1=a(g %)@

The matrix @ is the unitary matrix orthog.m from [5] and the block matrices are given
by

n 0 0
0 n—1 :
Ry =1": : + a1 Ny
: . . 0
o ... ... 0 n—-p+1
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R2 + a2N27

O e eee

and
W = 0430

where N; and N, are strictly upper triangular random matrices of unit norm, C is a
random matrix of unit norm and o;, oy and a3 are real numbers. Note that «; and
o are parameters for the degree of the non-normality of the p by p matrix R; and of
the n — p by n — p matrix Ry. Tuning the values of the a; parameters allows us to
study matrices with different properties. For example, a; = oy = a3 = 0 models the
Hermitian case. Note that the dominant eigenvalues of the matrix A are located in R;
and the exact Schur vectors are given by the matrix ). All the experiments have been
performed for matrices of size n = 10 and the error bounds are given for the dominant
eigenpair (), @). The y-axes in the figures are log-scaled.

First, suppose we are only interested in the dominant eigenpair of A, i.e., A = 10 and
that this eigenpair is computed using the power method, i.e., p = 1. Now, consider the
case when WH# = 0, i.e., the matrix A is partially non-normal, and the power method
is used. Since the left dominant eigenvector is orthogonal to the residual r = A4 — \a,
the previously derived error bound becomes

oy < Al
A - < A2 16
A== g 1o

where 7 is computed as ||(Ry — M)*||; and Pi is given by (¢7#)q;. Figure (1) shows
that the quantity |\ — A| (dashed line) is well approximated by the right hand side of
the Kato-Temple like inequality (16) (solid line).

Now, suppose that we are interested in the group of the 5 dominant eigenvalues of
the matrix A, i.e., p =5 and the target eigenpair (A, @) is computed using the subspace
iteration method. Figures (2) and (3) show the history of the computation for two cases:
(1) when the matrix R; is diagonal, i.e., @; = 0,9 = a3 = 10 and (2) for the general
case, i.e., &1 = ap = ag = 10. For the first case, the analysis given in the previous
section yields an error bound of the form

) < YT th

< S ||7’||2
| P42

whereas for the second case we obtain an error bound such as

oo < VI T (18)
= [P,

For the first case, we can see that the derived Bauer-Fike like upper bound (17) (solid
line in Figures (2)) give a fairly good approximation for the behavior of the quantity
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Figure 1: Error bounds versus the iteration number j of the power method when the
matrix A is partially non-normal (ap = 10,W = 0). The dashed line corresponds to
|A — 10| while the solid line corresponds to ¥||r||3/|| Pl||3-

7(A) (dashed line in Figure (2)). The same conclusion holds for the agreement between
the pseudospectra like bound (18) (solid line in Figure (3)) and the studied quantity
Omin (dashed line in Figure (3)).

7 Conclusion

In this paper we established a number of error bounds for eigenvalue problems which
exploit the Schur canonical form. The information provided by these bounds is often not
as complete as can be obtained in similar results in the normal case. This means that
some of the parameters in the bounds are not available and must be estimated, possibly
by heuristic means. On the other hand these bounds can provide a fairly accurate
representation of the behavior of the approximate eigenpairs.
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Figure 2: Error bounds versus the iteration number j of the subspace iteration method
when the matrix R; is diagonal. The dashed line corresponds to the left-hand side of
(17) and the solid like is its upper bound given by the right-hand side of (17)

5 10 15 20 25 30

Figure 3: Error bounds versus the iteration number j of the subspace iteration method
in the general case for a group of eigenvalues. The dashed line corresponds to the left-
hand side of (18) and the solid like is its upper bound given by the right-hand side of
(18)
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