Block LU Preconditioners for Symmetric and Nonsymmetric
Saddle Point Problems*

Leigh Little f Yousef Saad

June 16, 1999

Abstract

In this paper, a block LU preconditioner for saddle point problems is presented.
The main difference between the approach presented here and that of other studies is
that an explicit, accurate approximation of the Schur complement matrix is efficiently
computed. This is used to compute a preconditioner to the Schur complement matrix
that is in turn defines a preconditioner for a global iteration. The results indicate that
this preconditioner is effective on problems arising from CFD applications.

Key words: saddle point problem, preconditioning methods, incomplete LU, block LU
AMS subject classifications: 65F10, 65F50, 65N22

1 Introduction

In many applied problems, it is necessary to solve a saddle point problem of the form

[2)(3)-(5) »

where A and B are matrices of size n4 X n4 and n4 X mp respectively and mp < n4. If in
addition, A is symmetric positive definite (SPD) then the problem is a classical problem.
If on the other hand A is indefinite or nonsymmetric, the problem is termed generalized.

Such systems of equations arise in the solution of the Stokes and Navier-Stokes equa-
tions, linear elasticity theory, and electromagnetics as well as in constrained optimization,
when minimizing a quadratic functional subject to the linear constraints BYu = g. The
discretized equations are frequently large and sparse, making direct solutions infeasible.
The difficulty in obtaining accurate numerical solutions to Equation (1) is that the system
is indefinite, as seen from the LDL” factorization of the global matrix,

A B I 0 A 0 I A'B
Mg:(BT 0>:<BTA_1 I><O —S)(O I) (2)

*Work supported by NSF under grant NSF/CTS 9873236 and by the Minnesota Supercomputer
Institute

"Department of Computer Science and Engineering, University of Minnesota, 55455. e-mail:
{little,saad}@cs.umn.edu

where —S = —BTA~1B is the Schur complement matrix. For the classical problem, M,
has n4 positive and mp negative eigenvalues while for the generalized problem, little can
be said regarding the spectrum of M.

When used without preconditioning, Krylov subspace methods can perform poorly on
such systems, see , e.g., [19], because they are indefinite. Three main solution approaches
to Equation (1) can be distinguished. The first is a condensation approach. The variable
u is eliminated from the second equation, which results in the Schur complement system

Sp =BTu—g. (3)
This can be solved exactly for p and u can then be obtained from the solution of
Au = f — Bp. (4)

This approach which has been examined in [6, 22], for example, tends to be very expensive.
Each multiplication by S requires an exact (or very precise) solve with the matrix A and
matrix-vector products with B and BT. The solves with A can be efficiently performed
using multigrid solvers in the case where A is equivalent to a Laplacian operator, but
more general forms for A may not be as easily tractable. A simplified alternative to direct
condensation is the Uzawa algorithm [1]. In this case, the equation blocks are iteratively
solved in an outer loop using another iterative procedure for the inner loop. If the inner
iterations are nearly exact, then the algorithm is called the exact Uzawa algorithm. It has
been shown ([2]) that accurate inner loop solves are frequently not necessary. This leads
to the so-called inexact algorithm. This was studied in [3] for the symmetric case and in
[4] for the nonsymmetric case.

A third approach, and the one taken here, is to directly attack the global system as
a whole. It is still necessary to utilize the block nature of the matrix to design an effective
preconditioner, but the task is now much simpler since exact solutions with the matrix
A are no longer required. This approach has been examined by many researchers. The
preconditioners investigated are generally block diagonal or block triangular matrices of

A 0 A B
Pn = I Pr = N
=0 8) m=(0 %)

respectively. Rusten and Winther [17] consider a block diagonal preconditioner for sym-

the form

metric positive definite A. Preconditioners used for A include fast Poisson solvers and the
incomplete Cholesky factorization. Preconditioning of the Schur complement is obtained
by taking S =1 in the simplest case, or using the same preconditioners as for A applied
to a simplified Schur complement approximation of the form S = BT B.

Block diagonal preconditioners are investigated in [23] and [21] for the stabilized
Stokes equations, first in the simple case where both preconditioning matrices are diagonal,
then with more general preconditioners such as multigrid V-cycles in the latter reference.

The results in [10] extend those of [22] mentioned above to the general nonsymmetric
case. Here, A is taken to be either A (i.e., an exact preconditioning) or the result of an

iterative solution process using A preconditioned by horizontal- or vertical-line oriented
Gauss-Seidel splittings. The Schur complement preconditioner is taken to be a scalar mul-
tiple of the pressure mass matrix. This matrix, as well as a preconditioning based on a
one-layer overlap Schwartz multiplicative preconditioner are spectrally equivalent to the
matrix %] where d is the problem dimension and A is some measure of a uniform mesh
discretization parameter. This allows simple bounds, independent of the mesh parameter
h, to be obtained for the eigenvalues of the right preconditioned matrix when exact solves
with A are performed. For inexact solves with A, somewhat generous bounds on these
eigenvalues are obtained. In [8], more precise bounds on the eigenvalues for the inexact
solves are found by considering the inexact method to be a perturbation of the exact solu-
tion. The results in [9] consider more general Schur complement approximations, leading
to the BTA™1B (in this notation) preconditioner. It is shown that this preconditioner is
exact in the sense that if all solves with A are exact, then a global iteration will converge
in a single step. The exact solves are replaced by approximate multigrid solves with the
resulting performance being roughly midway between an exact Schur complement precon-
ditioner and a mass matrix preconditioning.

Block diagonal and triangular preconditioners for stabilized saddle point problems in
linear elasticity theory, for which A is SPD are considered in [13, 14]. The preconditioner is
optimal in the sense that the iteration counts are independent of the Lamé constant. Here
again, mass matrix preconditioning is used for the Schur complement to obtain bounds
on the eigenvalues that are independent of the mesh parameter. The solvers are the
preconditioned conjugate residual method, Bicgstab and GMRES(10) with either exact
solves with A and the stabilizing matrix C or two-level multigrid V-cycle preconditioning.

Block preconditioners of the form

D BT

have been investigated by Dyn and Ferguson [6] who consider the case when D is obtained
from a JOR, SOR or SSOR splitting of A. Golub and Wathen [11] take D to be a scaled
identity, diag(A4)~! and the symmetric part of A. This is shown to have the advantage
that all eigenvalues of the preconditioned operator corresponding to the Schur complement
block are zero. Simple convergence criteria based on D and A are given.

The approach taken here is similar to the methods above, however, an accurate
approximation to the Schur complement approximation is computed. This is then further
approximated by standard preconditioners.

The remainder of the paper is as follows. Section 2 presents the proposed block LU
preconditioner as well as some details regarding its efficient implementation. Section 3
presents a series of numerical experiments for matrices arising from various disciplines.
Finally, conclusions are given in Section 4.

2 Block LU Preconditioners

Consider the general situation where the global matrix is nonsymmetric:

M:(é‘Tlg). (5)

The block LU factorization of the above matrix can be written as

-1
we (3 %) (04)

where the matrix —S = —CT A7 B, is the Schur complement associated with the (2,2)
block of My. The decomposition suggests a block LU preconditioner of the form

- A 0 I A'B
w=(e) (6 ")

where A and S represent some approximation to A and S respectively. The action of the
block preconditioner (7) is easily applied provided solutions to systems of the form Az =b
and Sy = ¢ can be inexpensively obtained. The system

can be solved by the algorithm below.
ALGORITHM 2.1 Block LU solution procedure

Solve Az = w

Solve Sy = CTx —
Solve At = By
Compute £ =z — t.

o N

The procedure involves two solves with A and one with S.

A block LU preconditioner based on the approximate factorization (7) of M, requires
two ingredients: (1) an approximation A to A, for which solves are inexpensive; and (2) an
approximation S to S, with which it is again inexpensive to solve linear systems. A variety
of options are available for choosing A because A is usually available, either directly or
as a good approximation. For example, it is easy to approximate A by an incomplete
Cholesky (or ILU) factorization. The more crucial part is selecting an approximation
to S. Once this approximation is found, it should then be approximately factored. An
approximate factorization of S may also be obtained directly, i.e., without forming S first,
as a by-product of some other factorization.

2.1 Approximating the Schur complement

In this section, the problem of obtaining approximations S to the Schur complement is
examined. Forming A~! to compute an approximation to S is impractical because it is
usually a dense matrix. Two common approximations that are readily computable are

S, = CTB,
Sy = CTdiag(A) 'B.

However, these approximations are not always accurate enough. One step towards a
more accurate approximation, developed for the case where C = B, is the BTA™'B
preconditioner of [9] mentioned above. The preconditioner obtained here is similar, but
somewhat more direct. While the multigrid solvers used in [9] can be considered optimal,
the mesh information may not always be available.

For the symmetric saddle point problem where C' = B and A is SPD, a natural
approximation for A is in the form of an incomplete Cholesky (ICT) factorization,

A=LL".

This factorization yields a simple form for the Schur complement approximation by com-
puting

S; = BT(LL")'B
= BT'LTL'B
= XxTx

where X = L~!B. Note that the simpler approximations S; and Sy can be cast into this
form by putting L =T and L = diag(A)% respectively.

For later reference it is important to unravel a relationship between the X and
Y matrices, and the standard LU (or Cholesky) factorization of the global matrix M,.
Consider the LU factorization of M, written here in its general (nonsymmetric) form:

A B _ L 0 U LB (L 0 U X
(CT 0)_<CTU—1 LS><0 Us >:<YT LS><O Us>' (8)

Here L,U is the LU factorization of A, Lg is unit lower triangular and Ug is upper
triangular. When A is SPD and C = B, then U = LT and Y = X. The above relation
shows that the matrix X can be viewed as the (1,2) part of the block form of the U factor.
It is also important to note that the Lg,Ug pair is the LU factorization of the Schur
complement matriz —S of (6).

The application of the preconditioner requires solving systems of the form Az = f
and Sy = g as indicated in Algorithm 2.1. These equations represent approximations used
to define a more global preconditioner, so accurate solves are not needed. The equations
Az = f and Sy = g may be solved iteratively using A as a preconditioner for A and §

as a preconditioner for S. Flexible accelerators (such as FGMRES [19]), which allow for
a variable preconditioner, should be used to solve Equation (1) in this case. However,
solving these systems iteratively may represent an expensive alternative. In the extreme
situation where the incomplete decompositions are performed exactly, then iteration is not
necessary. As is generally observed with similar algorithms, it is sufficient to apply the
preconditioning operation directly to the equations and avoid iterating. This approach
also presents a storage savings because S can be discarded once the preconditioner S has
been computed.

2.2 Computing the X factor

This section addresses the issue of computing an approximation to the matrix X = L' B.
It may be thought at first that the matrix X is dense and therefore, any attempt to
compute an approximation to it may be too expensive. In fact, X is often a fairly sparse
matrix and methods for generating an approximation to it can be inexpensive and effective.

If L and B are stored in a sparse row format, it is natural to derive approximation
methods by including dropping strategies from the following row-oriented algorithm. The
i-th row of X is denoted by X; and similarly for B and L.

ALGORITHM 2.2 Generic row-oriented computation of X

For i =1,n4 Do:
Xi = Bz
For k=1,2,...,i— 1 and if Ly, # 0 Do:
Xi = Xi - Lik *Xk
EndDo
X; = X;/Lj;
EndDo

NS R kN

The ¢-th row of X is obtained by subtracting a linear combination of previous rows and
the resulting row is scaled by L;;. Note that for the standard LU factorization L;; = 1 so
the scaling by L;; is only necessary in this case. This row-oriented process is illustrated in
Figure 1.

Two facts are useful to note at this point. First, according to an earlier remark,
see Equation (8), the above process will compute the (1,2) part of the U factor in the
Gaussian elimination applied to the global matrix M,. Second, the first few rows of X are
sparse and then become denser and denser, as is typical in sparse Gaussian elimination,
so dropping strategies should be added to reduce fill-ins.

A common dropping strategy is one that is based on a threshold technique: any fill-in
introduced at the completion of the loop in lines 3-5 of Algorithm 2.2 is dropped (replaced
by zero) if it is smaller than a certain tolerance, weighted by the initial norm of row B;.
Another popular dropping strategy is one that is based on level-of-fill. A level-of-fill is
assigned to each element during the factorization process of Gaussian elimination, see e.g.,

——— - X X X -
mm T — oo - X X x |----
-
X X X X X X X X

Figure 1: Row-oriented computation of L™ ! B.

[19]. For the sake of completeness we provide here the definition of the level-of-fill of an
element. Initially, the level-of-fill lev(m;;) of an arbitrary element m;; is infinity if m;;
is a zero element and zero otherwise. Every time an element is modified in the Gaussian

elimination process by the formula (for a general matrix M),
Mij = Myj — Mg, X My
its level-of-fill is updated by
lev(m;;) = min{lev(my;), lev(mii) + lev(my;) + 1}. (9)

Here, m;; represents an element of the L matrix if 4 > j and the U matrix for 7+ < j. The
ILU(p) factorization of the matrix consists of performing the usual Gaussian elimination
process but every fill-in element whose level-of-fill exceeds p is dropped.

In the following it is assumed that ILU(p) has been used to obtain L, in incomplete
Cholesky factor for A. As a result each element of L has been assigned a level-of-fill at the
completion of the ILU algorithm. To define a level-of-fill variant of Algorithm 2.2 all that
is required is to add code for updating the fill-level values in the process and dropping
those whose level exceeds p. The result is as follows.

ALGORITHM 2.3 Row-oriented Level-p procedure for computing X

For i = 2,n4 Do:
Xi = Bi; le’U(Xij) = {0 IfB” 75 O;OO IfBZJ = O} fOI‘j =]_,2,... ,MB-
For k=1,2,...,1 and if L;; # 0 Do:
Xi = Xi — Lik *Xk
lev(Xij) = min{lev(X;;),lev(Lix) + lev(Xy;) + 1}, 5 =1,...,1
EndDo

S TR =

7 Drop each X;; such that lev(X;;) >p for j=1,...,mp
9 EndDo

The factorization (8) suggests that the X matrix obtained from the above algorithm
is the same as the one that would be obtained from the (1,2) block of the U factor of an
incomplete LU factorization, using the same level-of-fill. This is clearly true as a simple
comparison with the IKJ version of the Gaussian elimination would show (see Algorithm
10.2, in [19]). If an IKJ version of Gaussian elimination, modified with the level-based
dropping strategy, is applied to M, then the X factor can extracted from the U-part of
the ILU factorization. As was observed before, the Lg,Us parts in (8) constitute the
LU factors of the Schur complement matrix —S. It would be interesting to modify the
Gaussian elimination process in order to obtain the matrix —S directly instead of its
factored form.

Such a modification, called the restricted version of Gaussian elimination was intro-
duced and exploited in [20]. We reproduce it here for the sake of completeness.

ALGORITHM 2.4 Restricted Gaussian Elimination algorithm

1. Fori=1l,ng

2. For k=1min(i —1,n4)

3. My = M /M o

4. For j =k+1,ng Do

5. My = My5 — My * Mk j
6. EndFor(j)

7. EndFor(k)

8. EndFor(i)

In this algorithm, the standard elimination process is carried out for the first n4 rows of
M,. For the remaining rows, the elimination is carried out only to column n4. It is easy
to see from what was stated above (see also [20]) that the (2,2) block in the matrix M
resulting from this factorization is actually the Schur complement matrix associated with
the C block. Thus, sparse Gaussian elimination techniques compute LU factorizations of
these Schur complement matrices.

Assume now that a dropping strategy is used to drop fill-in elements from the blocks
in the above restricted Gaussian elimination procedure. In the following description it
is assumed that a level-of-fill strategy is used. The level-of-fill strategy can be trivially
adapted to Algorithm 2.4. The block ILU factorization resulting from the corresponding
modification of Algorithm 2.4 is

(& 0)=(1) (5 %)+ @

where R represents the matrix of elements that have been dropped. The matrix X is an
approximation to L~'B. Thus, if no elements are dropped X = L™'B, with LLT = A,
and $=S=Y7X.

A trivial observation is that a zero-fill strategy will fail past row n4 due to the large
zero (2,2) block. Every element in this block will have a level-of-fill of 1 or higher during
the elimination. This suggests using a different level-of-fill for the two different parts of
the global matrix: a level-of-fill of p for the (1,1), (1,2), and (2,1) parts and a level-of-fill
of 2p + 1 for the (2,2) part. The simplest of these strategies which corresponds to level-1
Schur complement preconditioner is obtained for p = 0. It results in a matrix X which has
the same sparsity pattern as B. More generally, we can state the following proposition.

Proposition 2.1 Assume that a dropping strategy is applied in Algorithm 2.4 with a level-
of-fill tolerance of p for the (1,1), (1,2), (2,1) blocks and 2p + 1 for the (2,2) block. Then
the resulting matriz -S in (10) is equal to YT X, where X is obtained by Algorithm 2.2
using a level-of-fill of p.

Proof. First we refer to the comment following Algorithm 2.3 which showed that the
(1,2) factor X in (10) is identical with that obtained by Algorithm 2.3 using the same
level-of-fill p. Next, according to the definition of the levels in (9), each element m;; in the
(2,2) block, will have a level-of-fill not exceeding 2p + 1. So if a tolerance level of 2p +1 is
used for this block, all (fill-in) elements introduced by Gaussian elimination in this block
will be kept, i.e., no element is dropped. In this case, the (2,2) block of the matrix R in
(10) is zero and therefore comparing the (2,2) blocks on both sides of (10), we obtain that
YTX — S =0 which is the desired result. n
The proof indicates that no dropping is employed in the (2,2) block, i.e., all fill-ins in this
block are kept. As a result a variant of the assumptions in the proposition is to state
that a dropping strategy is applied in Algorithm 2.4 with a level-of-fill tolerance of p for
the (1,1), (1,2), (2,1) blocks and no dropping in the (2,2) block. Under these alternative
assumptions the conclusion is the same.

An example of this process is given in Figure 2 two different fill-levels. X indicates
that X is computed using Algorithm 2.2 and restricting X to have the same sparsity
structure as B (a zero-fill procedure) while X5 means that X is computed using Algorithm
2.2 and restricting each row to have a maximum of 5 elements. This is slightly different
than the level-of-fill approach given in Algorithm 2.3. In this example, A and B have very
narrow bandwidths as does Xj. As a result, Xg Xy has a small bandwidth and is quite
sparse. For p = 5, a moderate amount of fill-in occurs in X5 while X7 X5 is much more
dense. In contrast, the exact Schur complement matrix for this case is a full matrix with
665856 nonzeros.

2.3 Preconditioning S

The procedure described above can produce as accurate a Schur complement approxima-
tion as desired by increasing p when constructing X. However, to apply the preconditioner,

.
B, X, Xo %o
\\
A
AN S
R
\\\
_\
AN . nnz(2400) nnz(3128)
g

\\\\’\ T T

R X5 X5 Xs
N =
TR, i R
\\\:\‘\ \\“
SN,

Wy)

nnz(10680) e

b

nnz(6158) nnz(17246)

Figure 2: An example of the resulting sparsity pattern of X and X* X when X is computed
using Algorithm 2.2 and restricting X to have the same sparsity structure as B (Xj) and
when X is allowed to have a maximum of 5 elements per row (X5). A is of dimension
1272 and B is of dimension 1272 x 816.

it is still necessary to solve systems with S , or some reasonable approximation.

When C = B and A is SPD, all forms of S given above are SPD (or symmetric positive
semi-definite if B is rank deficient). It is possible to use another ICT preconditioner [12]
for S, or more generally, an incomplete LDL” factorization should S be only symmetric
positive semi-definite. Using an ILUT preconditioner is another alternative though the
ICT forms would be preferable since they exploit symmetry.

The form of S indicates that the Schur complement equation is closely related to the
normal equations. This allows a preconditioner based on incomplete QR (IQR) factoriza-
tions [18]. The idea here is to decompose X so that X =~ QR where R is upper triangular
and @ has nearly orthonormal columns. For sufficiently large fill-in, the approximation
Q7' Q =~ I then holds. This gives

XTX ~ RTQTQR ~ RTR.

This preconditioner also results in a memory storage saving because once R has been
computed, the matrix () is no longer needed and can be discarded.

The overall preconditioner for the case when M, is symmetric and A is SPD can now
be described.

1) Compute A = LL” via incomplete Cholesky factorization.

2) Compute the solution to LX = B using Algorithm 2.3.

10

3) Compute S in the form of an ICT or ILUT of X7 X or an IQR of X.
4) Apply Algorithm 2.1, replacing A and S with A and S respectively.

The modifications for the generalized saddle point problem is straightforward. As an
ICT factorization for A is no longer possible, decompose A as A = LU via an incomplete
LU factorization, then define

S; = cT(LU)™'B
= c'u~'L™'B
= YTX
where X is as before and Y = U~ B. The preconditioning options for S3 are now some-

what restricted. In addition to an ILUT preconditioner, sparse approximate inverse pre-
conditioning can also be used though only ILUT preconditioning is examined here.

3 Numerical Experiments

In this section, a global iteration for Equation (1) using the block LU preconditioner will
be compared with other solution techniques. A total of five test cases will be examined.

3.1 Description of Test Cases

The test cases that will be investigated here are described briefly.

Case 1 This is a symmetric problem that arises from a magnetostatic problem and is
provided by [16].

Case 2 This is a symmetric problem that arises from the Navier-Stokes equations in
the simulation of the free sedimentation of 60 particles in a Newtonian fluid and is
provided by [5].

Case 3 This symmetric problem is from the Stokes equations in the simulation of the
L-shaped driven cavity at Reynolds number 1000.

Case 4 This nonsymmetric problem is from the solution of the Oseen equations in an
L-shaped cavity at Reynolds number 1000 with a circular vortex convective wind.

Case 5 This is the same as Case 4, but the strength of the convective wind has been
increased by a factor of 10. Cases 3-5 are from [15].

The matrix properties are summarized in Table 1.

Condition numbers are obtained from the MATLAB condition number estimator. In
Cases 2-5, the matrix B is nearly rank deficient. The main difference between Case 2 and
Cases 3-5 is that Case 2 uses a P1-iso-P2 finite element formulation while Cases 3-5 use
a P1-bubble-P1 formulation. It should be noted that the implementation of the bubble

11

Case na | nna(A) K(A) | mp | nnz(B) | Symmetry
1 8980 78740 | 2.827(4) | 5900 17570
18844 | 227985 | 2.672(3) | 3284 | 94662
12418 | 86402 | 9.091(0) | 2113 | 41785
(2)
(3)

12418 86402 | 1.833(2) | 2113 | 41785
12418 86402 | 1.467(3) | 2113 | 41785

TR W N
22

Table 1: Matrix properties of test cases.

formulation used here is atypical. As the bubble nodes lead to large diagonal blocks in the
the matrix, these nodes are usually statically condensed at the element level [15]. However,
in the case of Navier-Stokes equations, this leads to a nonstandard form for the saddle
point problem because the off-diagonal blocks are no longer transposes of each other. Also,
a stabilization matrix arises in the Schur complement block. For this reason, the bubble
nodes have been retained in the system matrices.

3.2 Solution Approaches and Experiment Parameters

Three approaches are used to solve Equation (1).

Method M1: Solve Equation (1) iteratively using the block preconditioner (7). For this
case, the solver is chosen to be right preconditioned GMRES(20). For preconditioning
of the A block, both an ICT, with a maximum fill-in level of 10, and simple diagonal
preconditioning are used. The drop tolerance has been set to zero. The Schur complement
is approximated using the two simple approximations Sp and S as well as the more
accurate S3. For preconditioning the Schur complement block, the ICT, ILUT and IQR
preconditioners with a fill-in level of 20 and no drop tolerance are used.

Method M2: Condensation method of [6, 22]. Here, the right preconditioned conjugate
gradient (CG) method is used to solve both the Schur complement block and systems
involving A in the case when A is SPD. When A is nonsymmetric, systems associated
with these blocks are solved by GMRES(20). The same preconditioners for A and S as
above are used here. Note that when solving the Schur complement equation (3), the
exact S must be used for the coefficient matrix.

Method M3: Ignore the block structure of the global system and use right precondi-
tioned GMRES(20) as the solver, combined with an ILUT(20) preconditioner applied to
the global coefficient matrix. The drop tolerance was 1.0E(—4).

For all tests, the convergence criterion is a reduction of the initial residual by a factor
of 1.0E(—8) except for method M2, where in addition the solves with the matrix A have
a reduction of 1.0E(—12). A maximum of 250 iterations is allowed. The matrix X is
computed using the zero-fill approach. The initial guess is taken to be a vector of all zeros

12

and if no right hand side is provided, the right hand side is taken to be a vector of the

. 0
(3) A= is

It should be noted that these parameters are not optimal for all of the test cases. The

form

main goal is in comparing how the S5 preconditioner performs as compared to the simpler
forms S; and S, - so a fixed set of operating parameters that allowed for most of the
combinations to converge was selected.

With the exception of the condition number estimates, all programs were written in
Fortran-90 and executed on an SGI Challenge L with 512 MB of memory and a R-10000,
196 MHz processor.

3.3 Comparison of Solution Techniques

For each of the Cases 1-3, the three Schur complement approximations are tested for the
solution methods M1 and M2 using both diagonal and ICT preconditioning for the matrix
A. The Schur complement equation is preconditioned using ICT. Method M3 is also tested.
This gives a total of 13 tests for each case.

Condition number estimates of the Schur complement matrices for all three approx-
imations and Cases 1-5 are given in Table 2.

Case K(S1) K(S2) K(S3)
1 2.22E(5) | 2.22E(5) | 2.47E(3)
2 || 1.25E(5) | 1.35E(4) | 6.15E(3)
3 || 5.65E(2) | 1.09E(3) | 1.10E(3)
4 | 5.65E(2) | 6.57R(2) | 1.28E(8)
5 || 5.65E(2) | 1.08E(3) | 3.48E(7)

Table 2: Condition numbers of the three different Schur complement approximations for
Cases 1-5.

The performance of the various methods is quite surprising for Case 1. The only
methods that converge within the parameter ranges considered are methods M1 and M2
with diagonal preconditioning for A and the S; Schur complement approximation. This
particular matrix has been scaled so that the diagonal of A is an identity, hence there is
actually no preconditioning for A. The convergence curves are shown in Figure 3. Of the
methods that did converge, M1 is superior. The preconditioning times for methods M1
and M2 are similar, but method M1 converged in about one-sixth the time as method M2.
This is most likely due to the necessity of performing highly accurate solves with A in the
solution of (3), indicated by the fairly large condition number of A (see Table 1).

The interesting observation is that the more accurate ICT factorization for A and
accurate Schur complement approximation Ss perform very poorly for this case despite
the fact that the condition number of S3 is 2 orders of magnitude smaller. The only way

13

to make either method M1 or M2 converge with these approximations is to increase the
allowable fill-in parameter in the A and Ss preconditioners to 60 and 120 respectively.
This results in an excessive preconditioning time as well as an expensive solution process,
since the preconditioners are much more expensive to apply.

Rusten and Winther [17] indicate that for appropriately scaled Stokes problems, the
combination of identity preconditioning and ICT preconditioning of S; performs quite
well. However, this does not explain the poor performance of ICT preconditioning for
A. This stems from the fact that in this case A is SPD but not diagonally dominant.
This carries over to the L factor in the ICT of A. As a result, the zero-fill in procedure
for computing X is not a good approach, since it assumes that elements away from the
diagonal of L are not important.

Figure 4 shows the history for the best case in Figure 3 using ICT, ILUT and IQR
preconditioning for the Schur complement. Of these, the ICT appears to be most effective.
The convergence rate of the ILUT preconditioning is nearly identical to ICT, however, the
preconditioning time is much greater. The IQR preconditioning time is quite good; less
than ICT in fact however, the convergence rate is only about one half that of ICT. As
it turns out, this is an artifact of the approximation Q7Q ~ I. If the allowable fill-in
in computing @ is tripled, then a similar convergence rate is obtained. However, this
increases the preconditioning time to about 1.5 times that needed for the ILUT.

For Case 2, the S5 approximation performs quite well and in fact, is the only ap-
proximation that converges within the defined parameters. Convergence curves are shown
in Figure 5. Method M1 performs the fastest, followed by methods M3 and M2. The
preconditioning times of methods M1 and M2 are the same, but again, the accurate solves
with A greatly degrade the convergence rate of method M2.

The simple Schur complement approximations S; and Sy perform poorly because
the matrix B is nearly rank deficient, hence the conditioning of the Schur complement
preconditioner is quite poor. An attempt was made to account for this deficiency by
removing either the first or last column from B, but this seemed to have no effect on the
convergence behavior. Ideally, the column that is the most linearly dependent should be
removed, but there is no computationally efficient way to determine this.

An attempt was made to scale the equations in the manner suggested in [17] to see
if results similar to Case 1 could be obtained. This amounts to symmetrically scaling A
by diag(A)fé and B by Re> where Re is the Reynolds number. Unfortunately, the ICT
factorization for A under this scaling fails due to a zero pivot. The common technique of
specifying a minimum value of the pivot in this case fixed this problem, but the overall
iterative method did not converge for any variations of methods M1 and M2.

Figure 6 shows the convergence histories for the best case in Figure 5 using ICT,
ILUT and IQR preconditioning. The results are qualitatively identical to those discussed
above for Figure 4.

The results for Case 3 are quite different from the previous cases. Nearly all ap-
proaches are successful. The only technique that fails within the defined parameters is

14

method M2 with diagonal preconditioning for A and the S, Schur complement approxi-
mation. Some representative convergence curves are shown in Figure 7 and convergence
information for all cases is given in Table 3. As in Case 2, the best performance is obtained
from method M1 using the S3 Schur complement approximation and ICT preconditioning
for A though this is only slightly better than diagonal preconditioning for A. As one might
suspect from the tabular data, A is very diagonally dominant. In addition, the condition
number of A is quite small hence, method M2 is relatively more effective than in the pre-
vious 2 cases. The worst case is method M3. Though the convergence rate is acceptable,
the preconditioning time is roughly factor of 25-30 larger than all the other methods.
Figure 8 shows convergence curves for method M1 with ICT preconditioning for A
and the S3 approximation using ICT, ILUT and IQR preconditioning. The results are
similar to Figures 4 and 6, though the IQR seems to be more effective than in Cases 1-2.

Method | A | S It P S Method | A | S| It P S
M1 Cl1 68 | 2.46 | 13.4 M2 Cl|1]32]|246 | 14.2
M1 C|2 158 | 2.39 | 30.9 M2 C| 298|239 |41.9
M1 Cl|3 20 | 2.56 | 4.17 M2 C|3|25|256 1114
M1 D1 196 | 1.68 | 26.6 M2 D|1|32)1.68|27.2
M1 D | 2 | DNC M2 D| 2|98]| 1.58 | 79.5
M1 D |3 24 | 2.41 | 4.48 M2 D|3|25]| 241 |21.8
M3 52 1 95.3 | 9.18

Table 3: Convergence results for Case 3. The first six column headings indicate, in order,
the preconditioning type for A (C for Cholesky and D for diagonal), the Schur complement
approximation type, the iteration count, the preconditioning time and the solution time.

For the weakly nonsymmetric Case 4, only S5 has been computed, though it would
be possible to use S; and Sy as well. ILUT preconditioning is used for both A and the
Schur complement. The results are shown in Figure 9. Method M1 is far superior to
methods M2 and M3. The overall solution time for method M1 is not much greater than
for Case 3 despite the fact the the condition number of S3 (see Table 2) is five orders of
magnitude higher. The solution time for method M3 is the nearly same as for method
M1, but the preconditioning time is so great that M3 is unusable in practice. Method M2
takes 8 times longer to converge.

The observations for the highly nonsymmetric Case 5 are similar, though method
M2 is by far the most inefficient. The condition number of A is larger than in Case 4,
hence it is reasonable to expect that longer times are required to solve (3). Also, the
number of iterations required for all three methods increases greatly. It is known that for
convection dominated problems such as this, the ILU class of preconditioners can be very
poorly conditioned [7]. This further influences the accuracy of S3 which leads to the large
condition number in Table 2.

Finally, a further comment on Table 2. There does not appear to be any direct
relation between the magnitude of the condition number and the performance of the

15

solution method. As an example, in Case 1, the condition number of S; is two orders
of magnitude higher than S yet the former approximation results in a preconditioner
that will solve Equation (1) quite effectively while a preconditioner based on the latter
approximation stagnates. Conversely, for Case 3, S3 has a larger condition number than
S, yet S5 performs (slightly) better.

3.4 Effectiveness of the Zero-fill strategy for X

In this section the differences in computing X by using a fixed amount of allowable element
fill-in and employing a tolerance-based dropping strategy versus restricting X to have the
same sparsity structure as B are compared. Figures 11-12 show the convergence histories
for Cases 2 and 3 using method M1 and ICT preconditioning for the Schur complement
equation. In each plot, the convergence history for the zero fill-in version of X as well
using fill-in amounts of 10, 15 and 20. Case 1 cannot be similarly compared since the
S3 approximation stagnates for the set of parameters considered and this discussion does
not apply to the S; and S, approximations. The corresponding condition numbers of the
Schur complements are given in Table 4. Note that the convergence rates for the zero-fill
and fill-in level 20 cases are nearly identical though the preconditioning times are about
2.5 to 3 times greater for a fill-in level of 20. The total time to compute X increases
linearly with the fill-in allowed.

It is curious to note that as the fill-in level increases, the number of iterations de-
creases while the conditioning of the Schur complement approximation increases. These
results indicate that the zero-fill version of X gives a better Schur complement approxi-
mation over the range of allowable fill-in considered when A is diagonally dominant in the
sense that a good approximation can be obtained at a reasonable cost.

Case 1 Case 2 Case 3
Fill-in | K(XTX) | nnz(XTX) | K(XTX) | nnz(XTX) | K(XTX) | nnz(XTX)
0 | 2.47E(3)* 23340 | 6.16E(3) 182794 | 1.10E(3) 38839
10 | 8.00E(4)* 407096 | 1.22E(4) 108630 | 1.17E(4) 171699
15 | 1.44E(5)* 686928 | 1.69E(4) 164482 | 1.26E(4) 298176
20 | 1.69E(5)* 938748 | 1.76E(4) 216776 | 1.30E(4) 416978

Table 4: Comparison of restricting X to have the same sparsity structure as B versus
using a limited amount of fill-in per row of X for Cases 1-3. A fill-in of 0 indicates that X
is restricted to the same sparsity pattern as B. The *’ indicates that the solution process
either stagnates or does not converge.

4 Conclusions

The block LU preconditioner presented in this work appears to be effective when combined
with a global iterative approach in the solution of saddle point problems. In particular, the

16

computation of the Schur complement approximation S3 using the zero-fill approach 2.3
appears to be both computationally efficient and numerically effective in the case where
A is SPD and diagonally dominant.

For the generalized saddle point problem, convergent solutions can be obtained, but
the preprocessing part which consists of computing the preconditioner is as yet inefficient
relative to its symmetric counterpart. This is due to the relatively large time required by
the ILUT routine to compute the preconditioning factors. One way to improve this would
be to improve the efficiency of the ILUT routine.

References

[1] K. Arrow, L. Hurwicz, H. Uzawa, Studies in nonlinear programming, Stanford Uni-
versity Press, Stanford, CA, 1958.

[2] R. E. Bank, B. D. Welfert, H. Yserentant, A class of iterative methods for solving
saddle point problems, Numer. Math., 55 (1990), pp. 645-666.

[3] J. H. Bramble, J. E. Pasciak, A. T. Vassilev, Analysis of the inezact Uzawa algorithm
for saddle point problems, SIAM J. Numer. Anal., 5 (1997), pp. 1072-1092.

[4] J. H. Bramble,A. T. Vassilev, J. E. Pasciak, Uzawa type algorithms for nonsymmetric
saddle point problems, To Appear, Math. Comp.

[5] H. Choi Personal communication, Univ. of Minnesota, Department of Aerospace
Engineering and Mechanics, 1999.

[6] N. Dyn, W. Ferguson The numerical solution of equality-constrained quadratic pro-
gramming problems, Math. Comput., 41 (1983), pp. 165-170.

[7] H. Elman, A stability analysis of incomplete LU factorizations, Math. Comput., 47
(1986), pp. 191-217.

[8] H. Elman, Perturbation of eigenvalues of preconditioned Navier—Stokes operators,
Technical Report CS-TR-3559, Department of Computer Science, University of Mary-
land, (1996).

[9] H. Elman, Preconditioning for the steady—state Navier—stokes equations at low viscos-
ity, Technical Report CS-TR-3712, Department of Computer Science, University of
Maryland, (1996).

[10] H. Elman, D. Silvester, Fast nonsymmetric iterations and preconditioning for Navier—
Stokes equations, Technical Report CS-TR-3283, Department of Computer Science,
University of Maryland, (1994).

[11] G. Golub, A. Wathen, An iteration for indefinite systems and its application to the
Navier-Stokes equations, STAM J. Sci. Comput., 19 (1998), pp. 530-539.

17

[12] M. Jones, P. Plassman, An improved incomplete Choleski factorization, ACM TOMS,
21 (1995), pp. 5-17.

[13] A.Klawonn, Block-triangular preconditioners for saddle point problems with a penalty
term, STAM J. Sci. Comput., 19 (1998), pp. 172-184.

[14] A. Klawonn, An optimal preconditioner for a class of saddle point problems with a
penalty term, SIAM J. Sci. Comput., 19 (1998), pp. 540-552.

[15] L. Little, A finite—element solver for the Navier—Stokes equations using a precondi-
tioned adaptive Bicgstab(l) method, Ph.D. Thesis, Arizona State Univ, 1998.

[16] I. Perugia, V. Simoncini, M. Arioli, Linear algebra methods in a mized approzimation
of magnetostatic problems, IAN-CNR Tech. Report 1060, 1997.

[17] T. Rusten, R. Winther, A preconditioned iterative method for saddlepoint problems,
STAM J. Matrix Anal. Appl., 13 (1992), pp. 887-904.

[18] Y. Saad, Preconditioning techniques for nonsymmetric and indefinite linear systems,
J. Comput. Appl. Math., 24 (1988), pp. 89-105.

[19] Y. Saad, Iterative methods for sparse linear systems, PWS, New Jersey, 1996.

[20] Y. Saad, J. Zhang, BILUTM: A domain-based multi-level block ILUT preconditioner
for general sparse matrices, Technical Report UMSI-97-118, Minnesota Supercom-
puting Institute, Minneapolis, MN, 1998.

[21] D. J. Silvester, A. J. Wathen, Fast iterative solution of stabilised Stokes systems Part
II: using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352—
1367.

[22] R. Verfurth, A combined conjugate gradient—multigrid algorithm for the numerical
solution of the Stokes problem, IMA J. of Num. Anal., 4 (1984), pp. 441-455.

[23] A. J. Wathen, D. J. Silvester, Fast iterative solution of stabilised Stokes systems
Part I: Using simple diagonal preconditioners, SIAM J. Numer. Anal., 30 (1993),
pp. 630-649.

18

A, M3

Iog‘w(resmtfal)
o S
T T
7/
J
| |

|

)
T
P
I

|

~
T
-
I

_8l- 26 187 58

0 5 10 15 20 25 30 35 40
Time (seconds)

Figure 3: Convergence histories for Case 1 using method M1. The matrix A is not
preconditioned and the Schur complement is preconditioned by ICT. The trailing number
is the total number of iterations required and the preconditioning time is indicated by the
starting time of the convergence curve.

0 T
A
_1 |- \ .
N IQR
\ ILuT
-2t ict B
\
\
-3+ \ 4
\
AY
s \ i
3 \
[
E \
g .
E -5 N 4
\
\
6L N |
\
AN
L - |
\
\
-8r 27 26 83]
_g L L L L L L L L
1 2 3 4 5 6 7 8 9 10

Time (seconds)

Figure 4: Convergence histories for Case 1 using method M1 and ICT, ILUT and IQR
preconditioning for the Schur complement equation. The S; Schur complement approxi-
mation is used along with identity preconditioning for A. Preconditioning time is indicated
by the starting time of the convergence curve.

19

log, (residual

otresidua
S
T

!
a
T

6L M3 SoM2

49 w

-9 Il Il Il Il L L
0 20 40 60 80 100 120 140
Time (seconds)

Figure 5: Convergence histories for Case 2 using ICT preconditioning for the Schur com-
plement equation and A. The Schur complement approximation is Ss.

ILUT

ual)
IS

T
|

° |
[
£ 8 IQR
5]
-5 N R
2 \
IcT
61 \ |
\
\
-7+ ~ N .
N
N
L |
27 101
21
_g L L L L L L L L L
5 10 15 20 25 30 35 40 45 50 55

Time (seconds)

Figure 6: Convergence histories for Case 2 for ICT, ILUT and IQR preconditioning for
the Schur complement equation. The S3 Schur complement approximation is used along
with ICT preconditioning for A.

20

log, (residual
otresidua
S

!
a

-6

M3

53

Il Il
0 20 40 60 80 100 120
Time (seconds)

Figure 7: Convergence histories for Case 3 using ICT preconditioning for the Schur com-
plement equation and A. The S5 Schur complement approximation is used.

|
w
T
I

|
kS

T
I

IcT IQR ILUT

Iogm(residual)

I
a
T

I

|

)
T

I

8L 4

21 41 21

-9 Il Il Il L
0 5 10 15 20 25
Time (seconds)

Figure 8: Convergence histories for Case 3 for ICT, ILUT and IQR preconditioning for
the Schur complement equation. The S3 Schur complement approximation is used along
with ICT preconditioning for A.

21

T T
|
|
b | i
|
|
- | 4
\
|
1
-3 ,
|
= 1
S-a |
7] |
g
§ |
-5 !
S |
|
-6 !
M1 M2 “ M3
|
7t \ i
|
|
_gl | i
41 43 84
-9 \ \ \ \ \
0 50 100 150

200 250

300
Time (seconds)

Figure 9: Convergence histories for Case 4. ILUT preconditioning is used for A and the
Schur complement.

0 T
1
1
-1 \
\
M2 \
\
- |
| M3
\
-3t I
\
= M1 !
S -4 '
o \
@
o 1
e \
o5 \ 4
S
\
\
-6 | -
\
\
1
-7 \ i
\
\
-8 155 236 108
-9 | | | | \ \ \ \ \
0 50 100 150 200 250 300 350 400 450 500
Time (seconds)

Figure 10: Convergence histories for Case 5. ILUT preconditioning is used for A and the
Schur complement.

22

0 a TT
|
110 |15 20
b I | i
| |
| |
-2t | ' .
|
! |
\ \
3l . . i
\ \
= \ \
S -at \ \ E
o
k= oo
£ No il NN
3
o-5F E
o
6k i
\7 T ~
\ ~
~ o~ \
-7k N _ N -
A EEREN
-8k \ AN |
20 33 60
_g Il Il Il Il Il Il
5 10 15 20 25 30 35 40

Time (seconds)

Figure 11: Comparison of convergence histories for Case 2 when X is computed from
Algorithm 2.2 using a zero-fill approach and allowing X to have a maximum of 10, 15 and
20 elements per row. ICT preconditioning is used for the Schur complement equation.

No fill \ 10 \\ 15 20
-1k \ \ -
\ \
N \
\ N N
v . . B
N N
AN N
3k N N 4
3 N N .
N \
= \ \
g -4 N N i
- N
% \
-5 \ \ b
k=l \ \
\ \
L \ \ B
\
N \
7k \ \ B
\ \
\ \
N \
-8+ \ -\ 21
21 24 \ 23
_g 1 1 1 1 Il Il Il Il
2 3 4 5 6 7 8 9 10 11

Time (seconds)

Figure 12: Comparison of convergence histories for Case 3 when X is computed from
Algorithm 2.2 using a zero-fill approach and allowing X to have a maximum of 10, 15 and
20 elements per row. ICT preconditioning is used for the Schur complement equation.

23

