Rational Approximation Preconditioners for General Sparse
Linear Systems

Philippe Guillaume * Yousef Saad Maria Sosonkina *
November 10, 1999

Abstract

This paper presents a class of preconditioning techniques which exploit rational func-
tion approximations to the original matrix. The matrix is first shifted and then an
incomplete LU factorization of the resulting matrix is computed. The resulting factors
are then used to compute a better preconditioner to the original matrix. Since the in-
complete factorization is made on a shifted matrix, a good LU factorization is obtained
without allowing much fill-in. The result needs to be extrapolated to the non-shifted
matrix. Thus, the main motivation for this process is to save memory. The method is
useful for matrices whose incomplete LU factorizations are poor, e.g., unstable. An error
analysis for the conjugate gradient algorithm gives some guidance for choosing the shift
of the matrix, in the special case where the shifted system is solved exactly.

1 Introduction

Rational approximation preconditioners are targeted at extremely ill-conditioned linear sys-
tems. Examples of such systems are those that arise in the modeling of thin Shells. These
systems tend to be very difficult to solve by iterative methods despite the fact that they are
symmetric positive definite. The problem is that the quality of incomplete LU (in this case
Cholesky) factorizations for such matrices can be so poor that they become ineffective. It
is tempting to simply shift the matrix A by a scalar « and extract the preconditioning for
A+ al which is then used for preconditioning the original matrix, see, e.g., [7]. This by itself
does not work well enough in general.

A modification of this idea which involves more work, will lead to a more effective tech-
nique. This modification consists of exploiting a rational approximation to A~! based on
an expansion in terms of the form (A + al)~". Because the matrix is shifted, its LU fac-
torization might be a fairly accurate factorization of A + al. More importantly, it is more

*UMR MIP 5640, Département de Mathématiques, INSA, Complexe Scientifique de Rangueil, 31077
Toulouse Cedex, France, guillaum@gmm.insa-tlse.fr

tDepartment of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Min-
neapolis, MN 55455, saad@cs.umn.edu. This work was supported in part by NSF under grant CCR-9618827,
and in part by the Minnesota Supercomputer Institute

iDepartment of Computer Science, University of Minnesota - Duluth, 320 Heller Hall, 10 University Drive,
Duluth, MN 55812-2496. masha®d.umn.edu

likely to be stable. In fact, instability is the main problem with incomplete LU factorization
preconditioners of very ill-conditioned matrices. Thus, the idea is to still manage to solve
such problems by using a fairly inaccurate factorization (less fill-in) obtained from A + al.

In the special case where the shifted system is solved exactly, some error bounds are
obtained for the conjugate gradient algorithm. A first error bound describes the behavior of
the approximate solution at the beginning of the iteration process, and explains the fast decay
of the error observed at the first steps in numerical experiments. A second error bound shows
that the rational transformation strongly improves the rate of convergence at the asymptotic
regime, where, for example, a large accuracy is required.

The next section introduces the rational preconditioner based on the (incomplete) LU
factorization of A+ «l, and presents some natural extensions to other types of perturbations
of the original matrix. Section 3 analyses the error in the case of an exact LU factorization
of A+ al, and discusses how to choose the shift a of the matrix. Finally, some numerical
experiments with solving difficult real-world problems in structural mechanics are reported
in Section 4.

2 Rational Approximation Preconditioners

Counsider the linear system
Az = b,

where A is a non singular square matrix of dimension n. A number of iterative methods
approximate the solution z = A~1b to the above system, by a vector of the form

z = p(A)b.

where p is a certain polynomial. The approximation theory underlying these methods is
to approximate the rational function s(A) = 1/A by a polynomial p(A) of degree d. The
approximation is to be accurate on the (discrete) set of eigenvalues of A. However, polyno-
mial approximation preconditioners have their limitations, and as a result they are currently
seldom used.

Rational approximations can be considered as an alternative. The first reaction to this
possible approach is that the problem may not be well defined, since the best approximation
to 1/A by rational functions is 1/X itself. A hint at a possible approach is to consider a
similar situation that is naturally encountered when solving large eigenvalue problems. In
shift-and-invert strategies, [9], it is common to compute an eigenvalue \; by using a Krylov-
subspace type method on the matrix (A — o) !, where o is chosen to be close to the
desired eigenvalue \;. More general rational Krylov subspaces have also been used in [10]
for eigenvalue computation. The goal is similar here since the inverse function is to be
approximated by a rational function with a pole close to the origin.

2.1 Approximations to 1/\

We wish to obtain the best possible approximation to the function s(A) = 1/A from an
expansion of the form

m o 7
Sy ra T Bt T Dty

1 N
)_n

where a > 0. If we use Padé-type approximation, then we multiply both sides by A and
require that the expansions in terms of (A + a)? agree up to the highest possible degree. A
little calculation yields the approximation

@
A) ~ —_— 1
W =Y oy (1)
This can alternatively be obtained by considering the following expansion
Zd: a1 _ 1 § «a :
~(Ata)) AtaZ\Ata
o |4
1 1= (m)
X

A+ 1 — &

The relative error made, which is

= (52)" ®)

is illustrated in Figure 1 for eight different values of «, with d = 3, using values of a ranging
from 0.025 to o = 0.375 with increments of 0.05. Notice that for large A all curves are fairly
accurate. For the smaller values of A, the quality of the approximation is still excellent and
stays close to zero for small . Thus, a good approximation to A~! is given by

d
Al ~ Z YA+ al) ™ (4)
=1
Another approach leading to the same rational approximation is to consider the solution

z(z) to the system
(A+zD)z(z) =b.

The Taylor expansion at the point « of the solution z(z) is given by

o(z) = Y aw(z — a)F, (5)

k>0

0.9

0.8

0.7

0.6

0.3

0.2

Figure 1: Relative error in interval [0.025, 1].

where the vectors zj are solutions to the systems

(A+al)zy = b,
(A-l-aI).’I,‘/H_l = —x, k>0.

The above relations are obtained by identifying the coefficients of (z — @)* in
(A+al +(z—a)l) Zxk(z —a)f =0

If the origin belongs to the disk of convergence of the series (5), then it is in theory possible
to obtain an approximation to the solution z = 2(0) by evaluating the truncated series

d—1
z(0) =~ ka(—a)k
k=0
= [(A +al) M faA+al) P4 A+ aI)—d] b, (6)

where the same matrix than in equation (4) can be recognized.

Such power series expansions are used in industrial applications for computing the solution
to a problem which depends on some parameters [2, 6]. When the matrix A is ill-conditioned,
even if it is symmetric positive definite, the direct computation of (6) gives poor results
because 0 is almost on the boundary of the disk of convergence: the convergence radius of (5)
is exactly @ + A1 where A; > 0 is the smallest eigenvalue of A. A Padé approximation could

be used instead of a Taylor polynomial, but it is still not very efficient. However, the matrix
involved in (6) can be considered a good candidate for preconditioning the original system.

The attraction of the above expansion is that it allows to ‘extrapolate’ an approximate
LU factorization of a close-by matrix to provide good convergence. Consider for example an
ILUT factorization [11] of the matrix with a small «

A+al =LU+ R, M,=LU. (7)

Then the preconditioning operation used for preconditioning the original matrix A is defined
by

d
M~y = Zai_lMa_i'u. (8)
=1
In many of our tests the degree d was between 1 and 10, while o could be taken to be
between 10~* and 1 (for a matrix whose rows are scaled by their norms). Assuming that M,
is the incomplete LU factorization for A + ol defined above, the algorithm for computing
w = M v is as follows.

ALGORITHM 2.1 Rational Preconditioner Operation.
W=
Doj=1:d-1
wi=v+aMjlw
EndDo
w = My w

G =

2.2 Inner-outer rational preconditioning

There is an interesting alternative to the above approach whose goal is to extract an optimal
solution from the iterates of Algorithm 2.1. Instead of a preconditioning of the form (8) we
seek a preconditioned vector of the form:

d
M~ =>" oM,
=1

where the scalars «; are determined to minimize the residual norm ||Aw — v||2. An Arnoldi-
Krylov basis can be generated for the preconditioned Krylov subspace

Koq =span{M; " Av,..., (M;'A)%},

and the usual least-squares solution obtained by GMRES is calculated to minimize the resid-
ual norm. This leads to an inner-outer iteration. In that case, the preconditioner is modified
at each step, hence some flexible outer iteration algorithm like FGMRES [12] must be used.
Numerical results indicate that this is more costly but often more effective than the simple
expansion (8).

2.3 Shifting with an arbitrary diagonal

It is sometimes more attractive to be able to compute the ILU factorization of a matrix of
the form
B, =A+ aD,

where D is a certain diagonal. In many instances, the matrix A is diagonally dominant
in most of its rows but may have a few strongly non-diagonally dominant rows. It is then
natural to shift only these rows, which means that the desired perturbation of the matrix is
of the form B, = A + aD. Note that the scalar a could be removed, but it is left here only
for generality.

It is easy to extract a similar rational preconditioner for this case. A simple way to
achieve this is to simply use the above idea for the matrix AD™!, and then deduce the
correct expansion. For the sake of completeness we show here the detail of the development.
Let

C = (A+ aD)(aD) L.

The expansion that is used is

C*l_l_cvf?_i_____l_cfd _ (I_Cfl)flcfl _(I_Cfl)flcfdfl
Cc-nt-@-ntc
= (aD)A™! — (aD)A"'C™

As a result,
Al =(@D) e +C 4O a0l 9)

The scalar o can be integrated as part of a scaling of the matrix D , so we can set a = 1.
With this we obtain the approximation

A7l ~ D! [C‘1+C—2+---+C—d] .

Assuming that Mp is an approximate LU factorization of A + D then, the equivalent of
Algorithm 2.1 would be as follows.

ALGORITHM 2.2 Rational Preconditioner Operation for Diagonal Shift.
wi=v
Doj=1:d—-1
w:=v+ DM, Lw
EndDo
w:= M, Lw

G =

2.4 Compounding ILU and shifting

We can take on further step in generalizing the principle of rational approximation by observ-
ing that in Algorithm 2.2, the matrix D is used only to perform a product with a vector and is
never inverted. This suggests generalizing the above ideas to use an arbitrary matrix D which

is not restricted to being a diagonal. In fact, the idea that comes to mind immediately is to
use for D the exact difference between A and an approximate LU factorization Ma in which
diagonal shifting is used to prevent instability. The idea resembles that of a multiple-step
SSOR or ILU, in which several steps of ILU or SSOR preconditioning operations are taken
at each GMRES iteration, instead of just one step. If the matrix D is set equal to M — A in
Algorithm 2.2 then we would obtain a simplification in Line 3 and the following algorithm
results.

ALGORITHM 2.3 Compound Perturbed Preconditioning Operation.

1. w:=w

2. Doj=1:d—-1

3. w:=v+ (I — AMYw
4. EndDo

5. w:= Mglw

In the above algorithm, M is an LU factorization of an arbitrarily perturbed matrix A.
In particular, we can perturb the diagonals of A as the ILU process progresses to prevent
instability - and we can drop small elements as is usually done. For example we can obtain
an ILU factorization of the matrix:

A+al = LUy + R

and use the resulting factor M, = L, U, as the matrix Ma in the above algorithm. In this
case, we have I — AM, ' = (ol — R)M;!, and the preconditioning matrix of algorithm 2.3
corresponds exactly to

MU (T AMY = MM AMY) TN - (1AM

(6] (6]

IS8
—

I
<)

Z = Al (I —[(al — R)M;l]d) : (10)

whereas the preconditioning matrix of algorithm 2.1 was

d
oo tMt = MM - oM NI - %M,
i=1

= (A-R) (1 - adM;d) . (11)

Of course, both preconditioners coincide when the factorization is exact, i.e., when R = 0.
When R # 0 is small, say of order «, then we have a perturbation of A~! of order a? in
(10), whereas the perturbation is only of order « in (11). Hence algorithm 2.3 seems more
attractive than algorithm 2.1, the price being an extra matrix-vector multiplication.

Alternatively, preconditioner (10) can be obtained by considering the Taylor expansion
of the function z(z) defined by

M(z)x(z) = b,
A+2I = M(z)+ R(2),

where M(a) = M, and R(a) = A+ al — M,. In order to have z(0) = A~'b, we require
M(0) = A, and the simplest form for R(z) is then R(z) = zR;. We can put M(2)z(z) =
(A+z(I — Ry))z(z) = b in the form

(M + (2 —a)(I — R1))) _ap(z —)F =b.
k>0

Here again, by identification of the coefficients of (z — a)¥, the vectors z;, are found to be
solution to the systems

Myxy = b,
Myzy, = —(—Ri)zg1, k>1,

which yields
_ _11k
Tk :Mal [_(I_Rl)Moc 1] b,

and the Taylor approximation of order d — 1 of z(0) = A~ 'b reads

[
QU
M
=
ol
|
2
=

z(0)
k=0

d—1

= MY [T = R)MT b
k=0
d—1

— M;'Y 71— AaM; e,
k=0

where the preconditioning operation (10) can be recognized.
Instead of R(z) = zR;, more general expressions of R(z) could be chosen of the form

R(Z) = Z szk,

k>0

the only constraints to be satisfied by R(z) being R(0) = 0 and R(a) = A + al — M,. At
this stage, a natural question is how can the coefficients Ry be selected?

2.5 A multiscale-type procedure using different shifts

It is often observed that after a certain number of steps the convergence of GMRES slows
down considerably, sometimes to the point of stagnating. This usually means that certain
modes are not captured by the iterative process. Assume that the incomplete factorization
is exact and consider

A+al =L,U,.

According to (11) with R = 0, the preconditioning matrix which is defined by Algorithm 2.1
is equal to
M=t =471 [I — (A +al)™,

8

and so the residual matrix, which is,

I—AM ' =a%(A+al) ¢,

d
Pi ()\Z'—{—OA) s

where J; is an arbitrary eigenvalue of A. These are the same functions as the errors in
(3) and they are shown in Figure 1. It is clear that for large « those residual components
associated with eigenvalues A; that are close to zero will not be reduced much. Notice that

Im(X)
A

has eigenvalues:

Figure 2: Damping region for preconditioner is outside the disk

any eigenvalue outside the disk D(—a, a) will be damped, i.e., it will be transformed into an
eigenvalue smaller than one. Eigenvalues inside the disk can cause serious difficulties since
they can be amplified and become very large if d is large.

Assuming that there are no eigenvalues inside the disk (as is the case for positive definite
matrices), all damping ratios will be less than one. The farther away is A; from the center
—a the smaller will be the damping ratio. Those eigenvalues close to the circle of center —«
and radius « will have a damping ratio close to one. The concentric arcs in Figure 2 show
the lines where the eigenvalues have the same damping factor p. If « is not changed during
the iteration process, then the eigen-components of the residual which have small damping
ratio (corresponding to large eigenvalues) will be eliminated quickly. Those with damping
ratios close to one (for example those close to the origin) may remain little changed. What
would be ideal is to have a procedure that does not disturb those small residual components
achieved in earlier steps - but that reduces those closer to the origin further. This can be
easily done by reducing «, say, at the occasion of a restart in the GMRES(m) algorithm.
Experiments do indeed show that this principle works: similar to other multiscale methods,

it is much better to work on different parts of the spectrum - using different stages - rather
than using a preconditioner based on a single a.

2.6 A multiple-pole rational expansion

It is possible to generalize the expansion (1) to one which uses several poles —«;. The most
general expansion is of the form

B B2 Ba

"o Gre)tm) T Ora) Ot

s(A)

The advantage of using the above expansion is that we can better exploit the use of different
shifts as was motivated in the previous section. The coefficients §; are easily determined as
is shown next.

Proposition 2.1 Let «; be d arbitrary nonzero numbers and define for any A % —aq, ...,
—ayg, and fori=1,...,d:

j=1
Then the following equality holds
1 A
L= oah) + e, (14)
Proof. The proof is by induction and is straightforward. [

The above equality provides an approximation o4(A) to s(A) which is a natural general-
ization of expression (1).
The relative error (3) is replaced by

e()) = ﬁ (aj“i A) (15)

j=1

It is interesting to note that, surprisingly, the error does not depend on the order in which
the poles are taken.

The corresponding modification of Algorithm 2.1 is quite simple. Since the order of the
shifts has no effect, we can simply replace M, in Line 3 by M,,; and the M, in Line 5 by
M,,.

10

3 Analysis

In this section we give some error bounds for the CG algorithm applied to the solution of the
preconditioned system
Bz :=M~'Az = M~'b. (16)

Here we assume that the LU factorization is exact, i.e., R = 0 in (7). The rational transfor-
mation B = r(A) makes the spectrum of B clustered around one, and the usual error bound
for the CG algorithm can be improved, both for the first iterations and asymptotically.
The matrix A is supposed to be symmetric positive definite, with increasingly ordered
eigenvalues)\;,
0<M <A< < A=1,

associated to normalized eigenvectors v;, ¢ =1, -, n.
The preconditioning operation corresponding to (2) is modified by a constant § into

()] () e

where r(0) = 0, (1) = 1, and the eigenvalues of B := r(A) are

pi=r(x), 1<i<n. (18)

The choice of § ensures that u, = r(\,) = 1. As the matrix A is supposed to be ill-
conditioned, the eigenvalue A; is very close to 0, and the shift & can be chosen greater
than A1, but still noticeably smaller than 1. Hence # ~ 1. The matrix B remains symmetric
positive definite, and has the same eigenvectors v; as A.

Let = A~'b be the exact solution. We denote by z,, the approximate solution obtained
at the m-th step of the CG algorithm applied to the matrix A, and by ¥, the approximate
solution obtained with the matrix B, starting with yg = xg. The error on y,, is given by

and a well-known optimality property which is satisfied by the iterates of the CG algorithm
is that

2 : 2
m = B — , 19
lym = 2lle = min lp(B)o —)| (19)

where P, is the set of polynomials of degree at most m. The minimizer p,, of (19) and the
vector yp, are related by y, — = pm(B)(zo —).

The classical error bound for the CG algorithm applied to the solution of the system
Az = b is given by

2m
]_ _
”_) o — ll3, (20)

2
Im — X <4 ————=
|| m ||A — (1 /_>\1

whereas the error for the preconditioned system (16) is

1 _ ,ul 2m
I =l <4 (T22) llo — ol @)

11

3.1 Error bounds for the first iterations

For given kK > 0 and m > 1, let

T, [1 + 2fk;1k+f]

HE+1 ’
T [1+ 24551]

p(t) = (22)

be the scaled Chebyshev polynomial that is small in the interval [pgy1, 1] (recall that p, = 1).
It satisfies p(0) = 1 and the following bounds, see e.g., [11],

P < 1, Ve, (23)
2m
P < Cma(eR) L v) 24

We have
n
Ip(B)(zo —)15 = > p*(wi)efus, € pi >0,
i=1
where e; = (z¢g — z,v;) is the initial error projected on the eigenvector v;. The initial error
|zo — z||% can be split into

lzo— 2|3 = Si+ S,
k n
Sio= Y e, Sa= Y e,
=1 1=k+1

and weighting factors p; and py can be chosen such that

{ p151 + p2Se = ||zo — z||%,
p2 = p1G-

Then, using (23) and (24), we obtain

lp(B) (o —)| = Zp)€ pi + Z (1) €3 pi

i=k+1
2
To— T
< Ze i + Z Cefpi = p1S1+p252) w-
Pl
i=k+1
Due to the definition of p;, we have

o — ali3

S1+¢Ss

and it follows that

lp(B)(zo — 2)|[< S1 +(S2 < 81+ (llwo — |5

12

Thus we obtain the error bound

2m
o =l < Sy (2L) o =l (29

One can observe that S; = 0 for the special case k = 0, and inequality (21) is then retrieved.

Up to now, we have not used the clustering of the spectrum of B = r(A4) around one.
One consequence of this clustering is that S; = S7(k) may be small simultaneously with g1
close to 1. We have pgi1 = r(Ag41) with

Ak+1 = Cc

for a certain positive number c. We keep in mind that we want to use an « larger than \;
but smaller than 1, which gives the possible magnitude of c¢. We choose also the smallest L,
independent of a and k, for which

S

Ze < MeL||lzo —z||?, VE=1,2,...,n. (26)
=1

For example, if the matrix A has a uniform spectrum \; = i/n and if €2 = 1 for all 4, then (26)
holds for L = 1 (recall that |lzo — z||*> = Y, €?). A large value of L would correspond to a
clustering of the spectrum of A near 0, or to an initial error £g — x essentially concentrated
on the eigenspace associated to the smallest eigenvalues. Then we have the following error
bound, which explains the fast decay of the error observed at the beginning of the iteration
process.

Proposition 3.1 For a > 0, let ¢ > 0 be chosen such that ca = Agy1 is an eigenvalue Agiq
of the matriz A. Then

4m
1
2 2
—z||% < |ecal +4 xo — x||“. 27
lym — 13 <¢(0+1)d+\/(c+1)d_1> o — <l (27)

Proof. Since y; <1 and by assumption (26), we have

M;r

K
S = Z < M Llzo — ||

=1

It follows from (25), Ax < Ak11 =ca, |- ||B < || - || and pgr1 = 7(Ag+1) that

2m
1—+/r(lca
—— caL+4< ()>]m—wn?.

14 /r(ca)) |
For 0 < r < 1, and since fBr < r, we have

1- ;<1_\/ﬁ7:<¢m)2
L+/r = 14+/Br \1++/pr

13

then, using
Brica) =11/ (c+ 1),

we obtain
2
1 —/r(ca) < 1/ (e+ 1)
14 +/r(ca) — 14 /1—1/(c+1)d
2
1
N (\/(c+1)d+\/(c+1)d—1> ' (28)

which completes the proof. |

We can notice that if we use the polynomial

) Bry1—t . pa—t
Ty [+ 2] w14 2mst]

p(t) =

Ty [1+ 2088 T, 14 2]

instead of (22), then the following bound is obtained for 1 < j < m :

4 2(m—j)
1 1— /1
m — z||% < 4 |caL + 4 <7> —z|]%.
||?/ 37||B_ cx <\/(c 1)d \/(c 1)d 1) 1 \/lTl ||=770 $||

However, for large m, we will see in the following section that a much stronger bound can be
obtained.

3.2 Asymptotic error bounds

A strategy based on an idea described in [13], which takes advantage of the clustering of
the spectrum of B = r(A) around one, is now used for obtaining asymptotic error bounds.
Instead of standard Chebyshev polynomials that are small in the interval [u1, uy] we will use
the following modified polynomial

Br4+1—t]

k _Het17Y
Cm(t) = H (MZ ; t> X Tm_k [1 + 2Nn_uk+1
i\ M T |1+ 25255

Hn —HE+1

This consists of two parts. The first is a product term which takes the value zero for the first
k smallest eigenvalues pu1,...,ur. The second is a standard scaled Chebyshev polynomial
which is small in the interval [pugy1,p,]- Note that Cy, is of degree m and that C,,(0) = 1.
Since Cy, (i) = 0 for i = 1,. .., k, the maximum of Cy, on the spectrum of B is

X ! (29)

HBE+41
Tn—k [1 + 2un—uk+1]

Mg — [
Mg

max |C N < max
i € A(B)| m(/“‘]))| T j=k+1,...n e

1

14

Proposition 3.2 For a > 0, let ¢ > 0 be chosen such that ca = Agy1 is an eigenvalue Ag4q
of the matriz A. Then, for m > k, we have

2k* ()

lym — zllB < 5ty 170 — @l (30)
[\/(c—l- 14+ /(c+1)d - 1]
where
d
1- (32)
k(a) = = (31)
()
o
Proof. Consider first the product term
b s — b — pn — p1]"
1 M) © — Hn n — M1
max —| = <
j:k+1,...,nH L4 H 1% o [M1]

1=

i=1
Recall that p, = 1. We denote by x(a) the term (1 — p1)/p1 inside the brackets:

1-— % (1—a?/(M +a)?)
5(1—a?/(\ +a))
1-a/(14+a)? -1+ /(M +a)d
1—at/(A + a)d
al/(M +a)? —at/(1 + a)d
1—al/(A +)

r(a)

Multiplying numerator and denominator by (A; 4+ a)?/a? yields (31). Next, the second term
is bounded by

1 <2(1—\/ﬂk+1>m_k
p - \1 ’
Tk [1 + 21_2;1] T VHE+1

and, using (28) once more, we obtain for pg1 = r(ca)

2(m—k)
1 1
Tk [1+2&] = (\/(C+ 1)d+ /(e +1)7 - 1)

Hn—HE+1

which completes the proof. n

A fair comparison would be to compare one step of the rational preconditioner with
d steps of the standard preconditioned conjugate gradient applied with some accurate ILU
preconditioner. This is because applying r(A) uses d solves with the LU factorization — which
is likely to dominate the cost. For these d steps the convergence factor as inferred from the
standard bound is given by
- (1 -V) ‘
=0+ vn

15

which is to be compared with the asymptotic convergence factor,

2
1
ple) < <\/(c—l— 14+ /(c+1)4 — 1)

The above asymptotic argument ignores the potentially large constant in the numerator of
(30). However, it gives a rough comparison of the situation at the asymptotic regime where,
for example, a large accuracy is required.

erboundl

log10 residual norm

erbound2 |

L L L L
10 20 30 40 50 60 70 80) 100
number of iterations

Figure 3: error bounds ||y, — z|| -

The estimated error bounds resulting from Propositions 3.1 and 3.2 are illustrated by the
two curves erboundl and erbound2 on Figure 3. The following parameters were used: d = 3,
A = 10715, L =10, n = 10%, a = 1075 and the first eigenvalues were supposed to be

k—1

A=At =7

3.3 Choice of the parameter «

Propositions 3.1 and 3.2 have shown that the rational preconditioned CG algorithm converges
faster not only because of the shift on the smallest eigenvalue u; > A1, but also because of the
clustering of the spectrum of the matrix B around one. Although one of the principal interest
of the method is to allow a sparse incomplete LU factorization of A 4+ al, the efficiency of
Algorithm 2.1, when using this incomplete LU factorization, is difficult to analyze directly.
However, some guidance for choosing the shift & can be obtained by supposing that M, =
A+al in Line 3 of Algorithm 2.1, and that each system (A+al)u = v itself is solved by using
the CG algorithm also. Then we can compare the computational cost of this method to the
cost of the direct solution of the original system by the CG algorithm without preconditioning.
Now the choice of o has to be a compromise between two conflicting demands:

16

e The smaller « is, the better the convergence of the rational preconditioned CG algo-
rithm.

e However, a small a slows down the convergence of the CG algorithm for solving (A +
al)u =v.

Let € > 0 be the wanted error reduction ||z, —z||/||zo — z|| for the solution of Az = b, and
¢’ the error reduction which is used for the solution of the intermediate systems (A+al)u = v.
We denote respectively by N4, Ng and N, the estimated number of iterations for solving
Az = b without preconditioning, the preconditioned system M ' Az = M ~'b, and each of the
intermediate systems (A + al)u = v. Algorithm 2.1 requires d NN, matrix-vector products,
whereas the direct implementation of the CG algorithm requires N4 matrix-vector products.
The question is which @ minimizes dNgN,, and whether the ratio w = dNgN, /N4 is smaller
than one.

The classical estimate for N4 follows from (20):

log(2/¢) f 1+t

47 logp(Ar)’ 11—Vt

However this estimate does not take into account the rounding errors due to finite arithmetic.

(32)

15
10 T T T T T

10°F finite arithmetic]

number or iterations

| exact arithmetic
10"

10 Il 1 1 1
0™ 107 107 A 10° 10" 10 10°
1

Figure 4: number of CG iterations.

For very small A1, say 0 < A\ < s, the CG algorithm will in fact not converge at all, and
N4 = oo. For this reason we use the following estimate of N4 :

Na = Ni(g, A1), (33)

17

_ log(2/e) n
NED = T o) "\ e
log p(s)
The two functions (32) and (33) are shown in Figure 4 for s = 10716 and 5 = 100. Using the
same function for N, we have

, 0<s<t.

N, = N(EEI,Al +).

Next we need to estimate Np. For this purpose, we suppose here that c =1 in Ay = ca
(with 0 < k <mn —1), and that
AL+ k (1—-Xp)
o = _— —
1 n_1 1)

which means that the spectrum of A is uniformly distributed between A; and 1. Then it
follows from Proposition 3.2 that

2k (a)§2]F (@)
Jm ol < 2O oy — i,

with

1- (Afi‘“)d (n—1)(a—N\)
5= V3T V2T~ 1, K(a) = —) k(a) = =,
()\1+oz) 1 1—)\1

a

which yields
k(c)log(k()d?) + log(2/¢)
2log d

The ratios w(a) = dNgN, /N4 are illustrated in Figure 5 for different values \; = 1072, 10711,
10713, 10712, The following parameters were used: d = 3, ¢ = 1076, &/ = 10710, s = 10716
and n = 100. These estimates are far from being optimal for the rational preconditioned
algorithm, since we have not taken into account that when solving the intermediate systems
(A+ al)w = v, some good initial guess can be obtained from the solution obtained at the
previous step, which can significantly speed-up global convergence.

It is interesting to observe that the optimal « is not very sensitive to the value of the
smallest eigenvalue A\;. We could not obtain a closed form for the « which minimizes the
function w(a). However, for 0 < A\; € a < 1, a very good approximation to this function is
given by

Np =

nalog(ad?/(dA1)) + log(2/e)

w(e) = C NG
o~ @log(2/€)log(p(M))
2log(d)log(2/e)
which is obtained by using the following approximations:
log(2/¢')
log(p(A1 + @) = 2Va, No =~ “ova
a nalog(ad?/(dA1)) + log(2/e)
k(o) ~na, k(a) ~ D Np ~ 3108(0) .

Figure 5: ratio w = dNgN, /N4y

The minimum of @(«) is obtained for
& dvi) n 8 e)’
Setting s = 262/(d\1) and v = as, this equation reads

Ylog(y) = v := = log(2/e)

and, for large v, an approximate solution to this equation is given by

1%

y

?

~—

- log(v

which yields
v log(2/¢)
slog(v) nlog(e?621og(2/e)/(ndA1))’

These approximate values (a,@(a)) are indicated with a plus sign in Figure 5. It can be
observed that the minima are obtained with a sufficient accuracy.

The functions n x a(\;) are illustrated in Figures 6 and 7 for different values of the
dimension n and the error reduction e (notice that a(X;) is independent of the inner error
reduction €'). The other parameters are d = 3, ¢ = 10~ for Figure 6 and n = 10° for Figure
7. A good candidate for « can be simply 1/n.

o=

19

10 T T T T

107 Il 1 1 1 1 1
0™ 10 107 A 10° 10° 107

1

Figure 6: nx (optimal «) versus \; for n = 103, 10%, 105, 10°

10 T T T T T T T T T

107 I . ! n | n | " | " |
-14 -12 -10 -8 -6 -4

10 10 10)\ 10 10 10
1

Figure 7: nx (optimal o) versus A\; for ¢ = 1074, 1076, 1078, 10710

20

Finally, for a general symmetric positive definite matrix with smallest eigenvalue A\; and
largest eigenvalue A,, the recommended value of the shift would become

_ An log(2/e)
nlog(e2d2log(2/e) A\, /(ndA1))’

and a good candidate for o would be simply A, /n. The value A, itself can be estimated by
a few iterations of the power method.

4 Numerical results

This section reports on a few numerical experiments with the rational preconditioning tech-
niques for solving difficult real-world problems in structural mechanics. For these problems,
a straightforward application of standard preconditioning techniques, such as an incomplete
LU factorization, fails due to their instability. Diagonal shift and large fill-in may be needed
to achieve convergence as investigated in [15] for tire design problems. However, choosing
the most appropriate shift value can be very time consuming, and the preconditioning be-
comes quite expensive to apply in the case of large fill-in. We attempt to show how rational
preconditioning can handle these difficulties.

4.1 Test problems and the components of the iterative solution

For the experiments, we have selected a few linear systems arising in shell modeling and
tire design. Table 1 gives some information about the problems. The matrix ELTCOQUE
comes from the discretization of thin shells, using DKT12 elements (Discrete Kirchoff Triangle
with 12 ddl, [1]), and was provided by CADOE S.A. The matrices MCHLNF and MCHLNE
come from the discretization of nonlinear static equilibrium equations in tire problems, and
were provided by MICHELIN. Columns denoted by n and n, give the numbers of rows and
nonzero entries in the matrices, respectively. Column Dominance shows the ratio of diagonally
dominant rows to the matrix size. This number gives a good indication of the difficulty of the
corresponding linear system. The matrices have a small percent of the diagonally dominant
rows, and thus we can expect the linear systems to be quite difficult. All the matrices in
Table 1 are structurally symmetric. The symmetry in value is indicated in Column Symmetry.

Table 1: Description of test problems.

‘ Name H n ‘ Ty ‘ Dominance ‘ Symmetry ‘ Matrix source ‘
ELTCOQUE | 38002 | 949452 0.6% Yes Shell modeling
MCHLNF 49800 | 4136484 5% Yes Tire design
MCHLNE 49800 | 4136580 4.6% No Tire design

Restarted GMRES was used as the accelerator. In particular, its variant FGMRES(k)
which allows variable preconditioning [11] was employed when preconditioner changes during

21

iteration. Deflated GMRES(k) [8], [3] was used in the cases of stagnation. In deflated
GMRES(k) the eigenvectors corresponding to a few smallest eigenvalues are added to the
Krylov subspace to prevent stalling of the GMRES(k) convergence. For both FGMRES(k)
and deflated GMRES(k), the Krylov subspace dimension is equal to 54 and includes four
injected eigenvectors in the case of deflated GMRES(k). We took a random initial guess with
the right-hand side constructed such that the solution is the vector of all ones.

Rational acceleration is applied to the factorization produced by the Algebraic Recursive
Multilevel Solver (ARMS) [14]. This choice of the preconditioner is motivated by the versa-
tility of ARMS and its ability to solve efficiently the structural mechanics problems. ARMS
is an algebraic multigrid-like algorithm that requires no underlying set of grids for defining
prolongation and restriction operators. ARMS works by reordering the matrix in the block

form
B F
E C)°

in which B is diagonal or block-diagonal with small blocks. The above matrix is then ap-
proximately block-factored as

(z c)~(c1)(0 %)

using again dropping strategies. Then the reordering and factorization were repeated recur-
sively on the Schur complement matrix S, for a small number of levels. At the last level
the matrix S is factored using again a standard ILUT or ILUTP factorization. Both the
construction of the preconditioner and the forward-backward solutions in ARMS are recur-
sive. In addition ARMS allows inter-level iterations (referred to as W-cycles in the multigrid
literature), though these tend to be fairly expensive if the number of levels is high.

A particular instance of the ARMS preconditioner as well as the ARMS performance for
a given iterative algorithm are controlled by several parameters, such as the block size and
number of levels specifying the block and level preconditioner structures, respectively. We
allow no inner iterations in the levels of ARMS to reduce the time of the preconditioning
operation. Varying the number of ARMS levels from 2 to 5 did not affect the preconditioner
performance, but fewer levels make the preconditioner construction less expensive. Thus, the
number of levels was chosen to be equal to two. Our experience shows that taking small blocks
(of size 3 or 10) instead of larger blocks (of size 100) often yields better overall performance.

Filtering small (less the 10~3) off-diagonal entries in the matrix from which the precon-
ditioners are built speeds up their construction since fewer nonzero entries remain in the
original and preconditioner matrices. We have observed that in the given problem types after
such a filtering process, the majority of (weakly) diagonally dominant rows have all their
off-diagonal entries dropped. The corresponding rows constitute an independent set, which
we call the trivial independent set. These rows become properly permuted by setting to 1 the
independent set parameter in ARMS.

4.2 Rational acceleration and the accuracy of preconditioning

With a rational acceleration (Algorithm 2.1), a less accurate preconditioning matrix (i.e.,
with a small fill-in) may be required to achieve a good convergence. For the MCHLNF and

22

MCHLNE problems, Table 2 shows the results of the three runs of an experiment in which
the acceleration degree was increased in each run while the amount of preconditioner fill-in
was halved. The total number of nonzero elements in the preconditioning matrix is shown
in Column 2. Columns Construction and Solution give the preconditioner construction
and solution times (in seconds), respectively. The number of outer deflated GMRES(54)
iterations is stated in Column 5. The shift value a and the ARMS dropping tolerance have
been kept constant and equal to 0.8 and 0.0, respectively. The reduction of 10% in the residual
norm has been achieved by deflated GMRES(54).

Table 2: Dependence of the execution times on the degree of rational acceleration and the
preconditioner accuracy.

‘ Name H (Degree, Fill-in) ‘ Ny ‘ Construction ‘ Solution ‘ Iterations ‘
MCHLNF (2,240) 22,161,175 1327.12 1988.43 564
(3,120) 11,301,437 726.81 1417.35 465
(4,60) 5,710,647 410.15 1412.13 541
MCHLNE (2,240) 22,161,330 1286.47 2256.35 626
(3,120) 11,286,156 696.18 1575.95 508
(4,60) 5,621,009 381.48 1406.52 550

As expected, the preconditioner construction time is almost proportional to the amount of
fill-in and affects significantly the total execution time. The preconditioning application cost
itself increases when the degree d of approximation grows, but decreases when the amount of
fill-in is reduced. Similarly, increasing d reduces the number of outer iterations, while reducing
the fill-in augments the number of outer iterations. These opposite tendencies finally result in
a reduction of the solution time. Hence, increasing the degree and reducing the fill-in reduces
both the construction and solution time, that is, in this example, the rational acceleration
saves time and memory.

4.3 Shift and degree selection

Some guidelines for choosing the shift value a are proposed in subsection 3.3 for an exact
factorization of A + al used with the CG algorithm. Here, for a test problem, we show the
dependences of the convergence rate and the stability of the preconditioner on a and outline
an automatic process of arriving at an appropriate shift value. In [4], a strong correlation
between stability of the preconditioner and the size of £ = log (||(LU) }||int) Was shown and
was suggested as a practical means of evaluating the quality of a preconditioner. We can
inexpensively compute £, as

Eo = log (||(LU)_1€||1),

where e is a vector of all ones and LU is the incomplete LU factorization of A + al.
For the problem ELTCOQUE, the amount of fill-in was equal to 30 and the dropping
tolerance equal to 0 in the preconditioner construction. Without rational preconditioning

23

and without shift (¢« = 0), there was no reduction of the residual norm. Figure 8 shows
the convergence curves for different choices of o without rational approximation (i.e., its
degree d = 1). When « is quite large (solid line) the convergence of flexible GMRES(54)
is slow although the incomplete LU factors are stable (£, = 0.29). It is possible to start
with some large a (say, 0.8) and gradually decrease it as long as the indicator &, stays
small. Changing o dynamically requires modifying the incomplete LU factors. Relatively
inexpensive modifications could potentially be obtained by means of sparse approximate
inverse techniques as mentioned in [5]. Devising an effective procedure for updating LU factors
is beyond the scope of this paper. In the experiments, we refactor the shifted matrix A each
time a new shift value is taken. Since this procedure is expensive, it is performed only at a
GMRES restart. The dashed line in Figure 8 indicates that the iterative convergence is much
faster for varying « than for some constant large a.. The solution times are 222.22 and 303.54
seconds, respectively. Monitoring &, allows an early detection of a possible preconditioner
instability for some small « indicating that it should not be decreased further. The dash-
dotted and dotted curves show the convergence histories for the two constant shift values
(3.8 x 1072 and 6.25 x 1073, respectively) that precede sharp increases in the estimate of &,
for two strategies of changing . A more aggressive decrease, halving alpha at each restart
(dotted line), quickly arrives at a shift value corresponding to an unstable preconditioner
with the preceding value being already too small. A more gradual decrease in « allows to
find the shift value more accurately.

2 T T T

—_— Constant alpha=0.8

- - Varying alpha

s - = Constant alpha=3.8E-2
Constant alpha=6.25E-3

log10 residual norm

Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900
Outer iterations

Figure 8: Choosing « for the problem ELTCOQUE without rational approximation.
The effect of an unstable preconditioning is especially pronounced when the shift value

continues to be halved (dash-dotted curve in Figure 9), where the residual norm increases at
about iteration 500. Figure 9 presents the convergence curves of the experiments in which an

24

iterative method attempts to achieve maximum accuracy in 1,000 iterations given four ways
to choose (a,d) in the rational approximation (Algorithm 2.3) of the preconditioning. Both
the solid and dashed lines are for the case when alpha is decreasing slowly. The curve for a
fixed degree of approximation is represented by the solid line. The case where the degree is
increased by one at each restart, with initial degree 2, is represented by the dashed line. The
dotted line corresponds to the constant smallest shift (6.25 x 1073) as given in Figure 8. Note
that keeping a constant and small enough accelerates convergence in the first iterations, but
the ultimate residual norm reduction may be much less than when the degree is varied and a
large shift value is taken (dashed curve). Thus varying the degree as well as the shift « can be
beneficial in achieving high accuracy in spite of an increase in the cost of the preconditioning
operation.

2 T T T

—— Constant degree=2
- - Varying degree
- Halving alpha
Constant degree=2, alpha=6.25E-3

log10 residual norm

o=~

L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Outer iterations

Figure 9: Achieving high accuracy for the problem ELTCOQUE with rational approximation.

5 Conclusion

We have shown a strategy for building an effective preconditioner for dealing with highly
ill-conditioned matrices. The main difficulty with such matrices is that the standard ILU
preconditioners tend to produce an ILU factorization that is often unstable. Instability is
often avoided by using a very high level of fill-in to obtain an LU factorization that is very close
to that of A. This approach may not be feasible because of its high memory and computational
cost. The alternative proposed in this paper, is to shift the matrix before computing its ILU
factorization, and then to use a rational expansion in order to increase the accuracy by

25

extrapolating it to approximate A~!. We have explained why changing the shift or the
degree during iteration helps refocus the iterative process in reducing residual components
on different parts of the spectrum and can be quite important in achieving convergence.
Numerical experiments support this hypothesis. They also show that the method can succeed
in solving rather difficult problems without requiring an excessive amount of memory.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

J. L. Batoz, G. DHATT, Modélisation des structures par éléments finis, volume 3 :
coques, Hermes, Paris, 1992.

J. D. BELEY, C. Broupiscou, PH. GUILLAUME, M. MAsSMOUDI, F. THEVENON,

Application de la méthode des dérivées d’ordre élevé a optimisation des structures,
Revue Européenne des éléments finis, 5 (1996), 537-567.

A. CHAPMAN AND Y. SAAD, Deflated and augmented Krylov subspace techniques, Nu-
merical Linear Algebra with Applications, 4 (1997), pp. 43-66.

E. CHOW AND Y. SAAD, Ezperimental study of ILU preconditioners for indefinite ma-
trices, Journal of Computational and Applied Mathematics, 87 (1997), pp. 387-414.

—, Approximate inverse preconditioners via sparse-sparse iterations, SIAM Journal
on Scientific Computing, 19 (1998), pp. 995-1023.

PH. GUILLAUME AND M. MASMOUDI, Solution to the time-harmonic Mazwell’s equa-
tions in a wavequide, use of higher order derivatives for solving the discrete problem,
STAM J. on Num. Anal. 34-4, (1997), 1306-1330.

T. A. MANTEUFFEL, An incomplete Factorization technique for positive definite linear
systems, Math. of Comp., 34 (1980), 473-497.

R. MORGAN, A restarted GMRES method augmented with eigenvectors, STAM J. Matrix
Anal. Appl., Vol. 16 (1995), pp. pages 1154-1171.

B. N. PARLETT, The Symmetric Figenvalue Problem, Prentice Hall, Englewood Cliffs,
1980.

A. RUHE, Rational Krylov algorithms for eigenvalue computation, Linear Algebra Appl.,
58 (1984), 391-405.

Y. SAAD, Iterative Methods for Sparse Linear Systems, PWS publishing, New York,
1996.

Y. SAAD, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Com-
put. 14 (1993), no. 2, 461-469.

Y. SAAD, Theoretical Error Bounds and General Analysis of a few Lanczos-Type Al-

gorithms, in Proceedings of the Cornelius Lanczos International Centenary Conference,
Editors J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons, STAM, 1994, 123-134.

26

[14] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general
sparse linear systems. Technical Report umsi-99-107, Minnesota Supercomputer Insti-
tute, University of Minnesota, Minneapolis, MN, 1999.

[15] M. SOSONKINA, J. MELSON, AND L. WATSON, Iterative Solution of Large Linear Sys-

tems Arising in Tire Design, in Modeling and Simulation Based Engineering, S. Atluri
and P. Donoghue, eds., vol. 1, Tech Science Press, 1998, pp. 473-478.

27

