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Abstract. Krylov subspace methods are strongly related to polynomial spaces and their convergence
analysis can often be naturally derived from approximation theory. Analyses of this type lead to
discrete min-max approximation problems over the spectrum of the matrix, from which upper bounds
of the relative Euclidean residual norm are derived. A second approach to analyzing the convergence
rate of the GMRES method or the Arnoldi iteration, uses as a primary indicator the (1,1) entry of
the inverse of KH

mKm where Km is the Krylov matrix, i.e., the matrix whose column vectors are
the first m vectors of the Krylov sequence. This viewpoint allows to provide, among other things,
a convergence analysis for normal matrices using constrained convex optimization. The goal of this
paper is to explore the relationships between these two approaches. Specifically, we show that for
normal matrices, the Karush-Kuhn-Tucker (KKT) optimality conditions derived from the convex
maximization problem and the characterization properties of polynomial of best approximation on
a finite set of points are identical. Therefore, these two approaches are mathematically equivalent.
In developing tools to prove our main result, we will give an improved upper bound on the distance
of a given eigenvector from Krylov spaces.

Key words. Krylov subspaces, polynomials of best approximation, min-max problem, interpolation,
convex optimization, KKT optimality conditions.

1. Introduction. This paper is concerned with the study of convergence of
Krylov subspace methods for solving linear systems of equations,

Ax = b, (1.1)

or eigenvalue problems

Au = λu . (1.2)

Here, A is a given matrix of size N × N , possibly complex. These are projection
methods onto Krylov subspaces

Km(A, v) = span
{
v,Av, · · · , Am−1v

}
,

generated by v and A, where v ∈ CN is a given initial vector.
A wide variety of iterative methods fall within the Krylov subspace framework.

This paper focuses on two methods for non-Hermitian matrix problems: Arnoldi’s
method [15] which computes eigenvalues and eigenvectors of A, and the generalized
minimal residual method (GMRES) [14] which solves linear systems of equations. GM-
RES extracts an approximate solution x(m) from the affine subspace x(0)+Km(A, r(0))
(r(0) = b − Ax(0) is the initial residual and x(0) ∈ CN is a given initial approximate
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solution of (1.1) by requiring that this approximation yield a minimum residual norm.
The question of estimating the convergence rate of iterative methods of this type, has
received much attention in the past and is still an active area of research. Researchers
have taken different paths to provide answers to the question, which is a very hard
one in the non-normal case.

Numerous papers dealt with this issue by deriving upper bounds for the residual
norm, which reveal some intrinsic links between the convergence properties and the
spectral information available for A. The standard technique in most of these works
[16, 15, 6, 5, 8, 2, 3] is based on a polynomial approach. More precisely, the link
between residual vectors and polynomials inspired a search for bounds on the resid-
ual norm that are derived from analytic properties of some normalized associated
polynomials as functions defined on the complex plane. In recent years, a different
approach taking a purely algebraic point of view, was advocated for studying the con-
vergence of the GMRES method. This approach discussed initially by Sadok [17, 18]
and Ipsen [7], and followed by Zavorin, O’Leary and Elman [21], Liesen and Tichy
[10] is distinct from that based on approximation theory. Related theoretical residual
bounds have been established, by exploring certain classes of matrices, in trying to ex-
plain the obscure behavior of this method, in particular the stagnation phenomenon.
Nevertheless, a great number of open questions remain.

Exploiting results shown in [18], we have recently presented in [1] an alternative
way to analyze the convergence of the GMRES and Arnoldi methods, based on an
expression for the residual norm in terms of determinants of Krylov matrices. An
appealing feature of this viewpoint is that it allows us to provide, in particular, a
thorough analysis of the convergence for normal matrices, using results from con-
strained convex optimization. It provides an upper bound for the residual norm, at
any step, which can be expressed as a product of relative eigenvalue differences.

The purpose of the present work is to show the connection between these two ap-
proaches: on the one hand the min-max polynomial approximation viewpoint and on
the other, the constrained convex optimization viewpoint. Specifically, we establish
that the Karush-Kuhn-Tucker (KKT) optimality conditions derived from the con-
vex maximization problem and the characterization properties of polynomial of best
approximation on a finite set of points are mathematically equivalent.

The paper is organized as follows. Section 2 sets the notation and states the main
result which will be key to showing the connection between the approximation theory
viewpoint on the one hand and convex optimization on the other. Also included in
the same section is a useful Lemma whose application to the GMRES and Arnoldi
cases lead to the introduction of the optimization viewpoint. Sections 3 and 4 begin
with brief reviews of the two Krylov methods under consideration and then derive
upper bounds for GMRES and for Arnoldi algorithms respectively. Results concerning
the characterization of the polynomial of best approximation on finite point sets are
discussed in Section 5 and they are then applied to our situation. Section 6 outlines
the proof of the main result by examining the KKT optimality conditions derived
from the convex maximization problem and establishes the equivalence of the two
formulations. Finally, a few concluding remarks are made in Section 7

2. Preliminaries and statement of the main result. Throughout the paper
it is assumed that the matrix under consideration, namely A, is normal. In addition,
all results are under the assumption that exact arithmetic is used. The Euclidean
two-norm on CN and the matrix norm induced by it will be denoted by ‖.‖. The
identity matrix of order m (resp. N ) is denoted by Im (resp. I). We use ei to denote
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the i-th column of the identity of appropriate order.
Let A ∈ CN×N be a complex matrix with spectrum σ(A) = {λ1, λ2, . . . , λN}.

Since A is normal, there exists a unitary matrix U such that

A = UΛUH ,

where Λ = diag(λ1, λ2, . . . , λN ). The superscripts “T” and “H” indicate the trans-
pose and the conjugate transpose respectively. The diagonal matrix with diagonal
entries βi, i = 1, . . . ,m will be denoted by

Dβ = diag(β1, β2, . . . , βm). (2.1)

The Krylov matrix whose columns are r(0), A r(0), . . . , Am−1 r(0) is denoted by
Km. Polynomials which are closely related to Krylov subspaces will play an important
role in our analysis. We denote the set of all polynomials of degree not exceeding m
by Pm and the set of polynomials of Pm with value one at ω by P(ω)

m . Recall that for
any p ∈ Pm we have p(A) = p(UΛUH) = Up(Λ)UH .

For any vector µ = (µ1, µ2, . . . , µM )T we denote by Vm(µ) the rectangular Van-
dermonde matrix:

Vm(µ) =


1 µ1 · · · µm−1

1

1 µ2 · · · µm−1
2

...
... · · ·

...
1 µM · · · µm−1

M

 . (2.2)

For example we will denote by Vm(λ) the matrix of size N ×m whose entry (i, j) is
λj−1

i , where λ1, λ2, . . . , λN are the eigenvalues of A.
We will also need a notation for a specific row of a matrix of the form (2.2). We

define the vector function

sm(ω) = (1, ω, . . . , ωm−1)H . (2.3)

Note that the i-th row of the Vandermonde matrix (2.2) is sm(µi)H .
Finally, for a complex number z = ρeıθ, z = ρe−ıθ denotes the complex conjugate

of z, |z| = ρ its modulus, and sgn(z) = z/|z| its sign

2.1. Main result. The result to be presented next will be used in the conver-
gence analysis of both GMRES and the Arnoldi method. For this reason it is stated
in general terms without reference to a specific algorithm. We denote by ∆M the
standard simplex of RM :

∆M =
{
γ ∈ RM : γ ≥ 0 and eT γ = 1

}
where e = (1, 1, . . . , 1)T ∈ RM . The common notation γ ≥ 0 means that γi ≥ 0 for
i = 1, . . . ,M . Let ω, µ1, . . . , µM be (M + 1) distinct complex numbers, and m an
integer such that m+ 1 < M . Define the following function of γ

Fm,ω(γ) =
1

sH
m+1(ω) (Vm+1(µ)HDγVm+1(µ))−1

sm+1(ω)
. (2.4)

Then, we can state the following.
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Theorem 2.1. Let ∆̃M ⊂ ∆M be the domain of definition of Fm,ω. Then the
supremum of Fm,ω over ∆̃m is reached and we have(

min
p∈P(ω)

m

max
j=1,...,M

|p(µj)|

)2

= max
γ∈e∆M

Fm,ω(γ). (2.5)

The above theorem will be helpful in linking two approaches, one based on ap-
proximation theory and the other on optimization. It shows in effect that the min-max
problem is equivalent to a convex optimization problem.

The proof of this theorem is based on the Karush-Kuhn-Tucker (KKT) conditions
applied to the maximization problem stated above. From these KKT conditions, we
will derive two linear systems which appear in the characterization of the polynomial
of best approximation.

2.2. A lemma on the projection error. Next, we state a known lemma which
will be key in establishing some relations between various results. This lemma gives
in simple terms an expression for what we will refer to as the projection error, i.e.,
the difference between a given vector and its orthogonal projection onto a subspace.

Lemma 2.2. Let X be an arbitrary subspace with a basis represented by the matrix
B and let c /∈ X. Let P the orthogonal projector onto X. Then, we have

‖(I − P)c‖2 =
1

eT
1 C

−1e1
(2.6)

where

C =
(

cHc cHB
BHc BHB

)
.

Proof. The proof, given in [1], is reproduced here for completeness. Given an
arbitrary vector c ∈ CN , observe that

‖(I − P)c‖2 = cH(I − P)(I − P)c = cH(I − P)c = cHc− cHPc

with P = B(BHB)−1BH . From this it follows that

‖(I − P)c‖2 = cHc− cHB(BHB)−1BHc. (2.7)

The right-hand side of (2.7) is simply the Schur complement of the (1,1) entry of C,
which as is well-known is the inverse of the (1,1) entry of C−1.

The expression (2.6) can also be derived from basic identities satisfied by least
squares residuals as was shown first in [19]. This was later formulated explicitly and
proved in [9] by exploiting properties of the Moore-Penrose generalized inverse.

3. Convergence analysis for GMRES for normal matrices. The basic idea
of the GMRES algorithm for solving linear systems is to project the problem onto the
Krylov subspace of dimension m ≤ N . The GMRES algorithm starts with an initial
guess x(0) for the solution of (1.1) and seeks the m-th approximate solution x(m) in
the affine subspace

x(m) ∈ x(0) +Km(A, r(0)),
4



satisfying the residual norm minimization property∥∥∥b−Ax(m)
∥∥∥ = min

u∈x(0)+Km(A,r(0))
‖b−Au‖ = min

z∈Km(A,r(0))

∥∥∥r(0) −Az
∥∥∥ . (3.1)

As can be readily seen, this approximation is of the form x(m) = x(0) + p∗m−1(A)r(0),
where p∗m−1 ∈ Pm−1. Therefore, the residual r(m) has the polynomial representation
r(m) = (I −Ap∗m−1(A))r(0), and the problem (3.1) translates to∥∥∥r(m)

∥∥∥ = min
p∈P(0)

m

∥∥∥p(A)r(0)
∥∥∥ . (3.2)

Characteristic properties of GMRES are that the norm of r(m) is a non increasing
sequence of m and that it terminates in m steps if r(m) = 0 and r(m−1) 6= 0. Moreover,
we have r(m) 6= 0 if and only if dim(Km+1(A, r(0))) = m + 1. Therefore, while
analyzing the convergence of GMRES, we will assume that the Krylov matrix Km+1 is
of rank m+1 . Before we turn our attention to the bounds for analyzing convergence,
we will explore two different ways of studying the convergence rate. They will be
given in terms of the so-called optimal polynomials for one and in terms of spectral
decomposition of Krylov matrices for the other.

3.1. Analysis based on the best uniform approximation. The contribu-
tion of the initial residual in (3.2) is usually simplified by exploiting the inequality∥∥p(A)r(0)

∥∥ ≤ ‖p(A)‖
∥∥r(0)∥∥. Then the issue becomes one of finding an upper bound

for ‖p(A)‖ for all p ∈ P(0)
m . It follows that an estimate of the relative Euclidean

residual norm

∥∥r(m)
∥∥∥∥r(0)∥∥ is associated with the so-called ideal GMRES polynomial of a

matrix problem: min
p∈P(0)

m

‖p(A)‖ . If we expand r(0) in the eigenbasis r(0) = U α then

‖r(m)‖ = ‖Up(Λ)UHr(0)‖ = ‖Up(Λ)α‖ = ‖p(Λ)α‖ ≤ ‖α‖ max
i=1,...,N

|p(λi)|

which then shows that

‖r(m)‖ ≤ ‖r(0)‖ min
p∈P(0)

m

max
λ∈σ(A)

|p(λ)| .

3.2. Analysis based on convex optimization. Next, an alternative viewpoint
for analyzing residual norms will be formulated. This alternative, developed in [18, 1],
uses as a primary indicator the (1, 1) entry of the inverse of KH

l Kl where Kl is the
Krylov matrix with l columns, associated with the GMRES method.

It is assumed that rank(Km+1) = m + 1. Setting c = r(0) and B = AKm in
Lemma 2.2 yields the following expression for the residual norm r(m):

‖r(m)‖2 =
1

eT
1 ( KH

m+1Km+1)
−1
e1
. (3.3)

Assume that r(0) has the eigen-expansion r(0) = Uα. A little calculation shows
(see [21]) that we can write Km+1 as Km+1 = U Dα Vm+1(λ) (spectral factorization
of Km+1). We refer to (2.1) and (2.2) for the definitions of Dα and Vm+1(λ). Thus,
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in the normal case (UH U = I), we obtain KH
m+1Km+1 = ‖α‖2

V H
m+1(λ)DβVm+1(λ)

where βi =
|αi|2

‖α‖2 =
|αi|2∥∥r(0)∥∥2 . We can therefore rewrite (3.3) as follows,

‖r(m)‖2

‖r(0)‖2
=

1

eT
1

(
V H

m+1(λ)DβVm+1(λ)
)−1

e1
. (3.4)

Note that β ∈ ∆̃N . Thus, an optimal bound for ‖r(m)‖2/‖r(0)‖2 can be obtained
by maximizing the right-hand side of (3.4), i.e., the maximum over β ∈ ∆̃N of(
1/[eT

1

(
V H

m+1(λ)DβVm+1(λ)
)−1

e1]
)

is another upper bound for ‖r(m)‖2/‖r(0)‖2. In
fact, thanks to Theorem 2.1, the two bounds given in this section coincide. Indeed,
substituting M = N,µj = λj and ω = 0 in (2.5) would yield:

max
β∈∆N

1(
eT
1

(
V H

m+1(λ)DβVm+1(λ)
)−1

e1

) = max
β∈e∆N

Fm,0(β) =

(
min

p∈P(0)
m

max
j=1,...,N

|p(λj)|

)2

.

We end this section by stating the following assertion. Let =(β) be the set of
indices j such that βj 6= 0. If rank(Km+1) = m + 1( ‖r(m)‖ 6= 0) then clearly the
cardinality of =(β) is at least m+ 1.

4. Outline of the convergence analysis for Arnoldi’s method. Arnoldi’s
method approximates solutions of the eigenvalue problem (1.2) by computing an ap-
proximate eigenpair (λ̃(m), ũ(m)) obtained from the Galerkin condition

ũ(m) ∈ Km(A, v1),

and (Aũ(m) − λ̃(m)ũ(m), Aiv1) = 0 for i = 0, . . . ,m− 1.

Let Pm be the orthogonal projector onto the Krylov subspace Km(A, v1), and (λ, u)
be an exact eigenpair of A. In [15] the following result was shown to analyze the
convergence of the process in terms of the projection error ‖u− Pmu‖ of a given
eigenvector u from the subspace Km(A, v1).

Theorem 4.1. Let Am = PmAPm and let γm = ‖Pm(A− λI)(I − Pm)‖. Then
the residual norms of the pairs λ,Pmu and λ, u for the linear operator Am satisfy,
respectively

‖(Am − λI)Pmu)‖ ≤ γm ‖(I − Pm)u‖ ,

‖(Am − λI)u‖ ≤
√
|λ|2 + γ2

m ‖(I − Pm)u‖ .

This theorem establishes that the convergence of the Arnoldi method can be
analyzed by estimating ‖(I − Pm)u‖. Note that γm ≤ ‖A‖. The result shows that
under the condition that the projected problem is not too ill-conditioned, there will
be an approximate eigenpair close the exact one when ‖(I − Pm)u‖ is small.

4.1. Analysis based on (uniform) approximation theory. The result just
discussed above shows how the convergence analysis of the Arnoldi method can be
stated in terms of the projection error ‖(I − Pm)u‖ of the exact eigenvector u from
the Krylov subspace. The usual technique to estimate this projection error assumes
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that A is diagonalizable and expands the initial vector v1 in the eigenbasis as v1 =∑N
j=1 αjuj . We examine the convergence of a given eigenvalue which is indexed by 1,

i.e., we consider u1, the 1-st column of U . Adapting Lemma 6.2 from [15] stated for
diagonalizable matrices to the special situation of normal matrices gives the following
theorem.

Theorem 4.2. Let A be normal (A = UΛUH , UHU = I) and let v1 =∑N
j=1 αjuj = Uα, then

‖(I − Pm)u1‖ ≤

√∑N
j=2 |αj |2

|α1|
ε
(m)
1 (4.1)

where ε
(m)
1 = min

p∈P(λ1)
m−1

max
j=2,...,N

|p(λj)| .

The right-hand side of (4.1) may exceed one but we know that ‖(I − Pm)u1‖ ≤ 1
since Pm is an orthogonal projector and ‖u1‖ = 1. The new bound provided next for
the left part of (4.1) does not exceed one. This result is based on optimization theory.

4.2. Analysis based on convex optimization. Let Lm+1 be the (rectangular)
matrix of CN×(m+1), with column-vectors α1u1, v, A v, . . . , A

m−1 v. Lemma 2.2 with
c = α1u1 and B = [v1, A v1, . . . , Am−1 v1], yields:

‖(I − Pm)α1u1‖2 =
1

eT
1 (LH

m+1Lm+1)
−1
e1
,

where it is assumed that Lm+1 is of full rank so that LH
m+1Lm+1 is nonsingular. As

with the Krylov matrix, we can write Lm+1 as Lm+1 = U DαWm+1 with Wm+1 ≡
[e1, Vm(λ)]. Thus, in the normal case (UH U = I), we have

‖(I − Pm)u1‖2 |α1|2

‖α‖2 =
1

eT
1

(
Z

(W )
m+1(β)

)−1

e1

, (4.2)

where Z(W )
m+1(β) ∈ C(m+1)×(m+1) is the matrix Z(W )

m+1(β) = WH
m+1DβWm+1 and βi =

(αi/‖α‖)2. Another formulation of ‖(I −Pm)u1‖ is given next. Definitions of Vm(λ),
sm, and other quantities may be found in Section 2.

Theorem 4.3. If the matrix function Z
(W )
m+1(β) is nonsingular with β1 > 0, then

eT
1

(
Z

(W )
m+1(β)

)−1

e1 =
1
β1

+ ϕm(β̃),

where β̃ = (β2, . . . , βN )T and the function ϕm is independent of β1. More precisely,
we have

‖(I − Pm) u1‖2 =
1

1 + β1ϕm(β̃)
,

where ϕm(β̃) = sH
m(λ1)

(
Ṽ H

m DeβṼm

)−1

sm(λ1) in which Ṽm = Vm(λ̃) where λ̃ =

[λ2, λ3, · · · , λN ]T .
Proof. We write the matrix Z(W )

m+1(β) in the partitioned form

Z
(W )
m+1(β) =

(
β1 β1s

H
m(λ1)

β1sm(λ1) V H
m (λ)DβVm(λ)

)
.
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First, using the matrix inversion in block form and then applying the Sherman-
Morrison-Woodbury formula to the (1, 1)-block, see, e.g., [20], leads to:

eT
1

(
Z

(W )
m+1(β)

)−1

e1 =
1
β1

+ sH
m(λ1)

(
V H

m (λ)DβVm(λ)− β1sm(λ1) sH
m(λ1)

)−1
sm(λ1).

Note that Vm(λ) =
(
sH

m(λ1)
Ṽm

)
and V H

m (λ)DβVm(λ) =
∑N

i=1 βi sm(λi) sm(λi)H ,

hence

V H
m (λ)DβVm(λ)− β1sm(λ1) sH

m(λ1) =
N∑

i=2

βi sm(λi) sm(λi)H = Ṽ H
m DeβṼm.

Therefore,

eT
1

(
Z

(W )
m+1(β)

)−1

e1 =
1
β1

+ sH
m(λ1)(Ṽ H

m DeβṼm)−1sm(λ1).

Applying the relation (4.2) results in

‖(I − Pm)u1‖2 =
1

1 + β1ϕm(β̃)
.

Next, we state a bound for ‖(I − Pm)u1‖ which slightly improves the one given
in Theorem 4.2.

Theorem 4.4. If m < N , ‖(I − Pj) u1‖ 6= 0 for j ∈ {1, . . . ,m} and the matrix
A is normal then

‖(I − Pm) u1‖ ≤
‖α̃‖ ε(m)

1√
‖α̃‖2 (ε(m)

1 )2 + |α1|2
≤ 1,

where α̃ = (α2, . . . , αN )T .
Proof. First observe that

β1ϕm(β̃) = |α1|2 ϕm(|α2|2 , . . . , |αN |2) =
|α1|2

‖α̃‖2ϕm(
|α2|2

‖α̃‖2 , . . . ,
|αN |2

‖α̃‖2 ) =
|α1|2

‖α̃‖2ϕm(γ),

where γ = (γ1, . . . , γN−1) with γi =
|αi+1|2

‖α̃‖2 . It is easy to see that γ ∈ ∆̃N−1.

Invoking Theorem 4.3, we obtain

‖(I − Pm) u1‖2 ≤ 1

1 + |α1|2
‖eα‖2 min

γ∈e∆N−1

ϕm(γ)
.

Using Theorem 2.1 with M = N − 1, µj = λj+1 andω = λ1 , leads to

‖(I − Pm) u1‖2 ≤ 1

1 + |α1|2
‖eα‖2 1(

ε
(m)
1

)2

≤ 1,

and this completes the proof.
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5. Characterization of the polynomial of best approximation. To char-
acterize polynomials of best uniform approximation, we will follow the treatment of
Lorentz [11, Chap. 2]. Our main goal is to derive two linear systems which character-
ize the optimal polynomial. These systems are fundamental in establishing the link
with the optimization approach to be covered in the next section.

5.1. General context. We begin this section with some additional notation.
Let C(S) denote the space of complex or real continuous functions on a compact subset
S of K(R or C). If g ∈ C(S), then the uniform norm of g is ‖g‖∞ = max

z∈S
|g(z)|. We

set

E(g, S) := {z : |g(z)| = ‖g‖∞ , z ∈ S} .

A set Ψ = {ψ1, ψ2, . . . , ψm} from C(S) is a Chebyshev system, if it satisfies the Haar
condition, i.e., if each polynomial

p = a1ψ1 + a2ψ2 + . . .+ amψm,

with the coefficients ai not all equal to zero, has at most (m− 1) distinct zeros on S.
The m-dimensional space E spanned by such a Ψ is called a Chebyshev space. We
can verify that Ψ is a Chebyshev system if and only if for any m distinct points zi ∈ S
the following determinant is nonzero :

det(ψj(zi)) :=

∣∣∣∣∣∣∣
ψ1(z1) · · · ψ1(zm)
... · · ·

...
ψm(z1) · · · ψm(zm)

∣∣∣∣∣∣∣ .
Let f ∈ C(S), f /∈ E. We say that q∗ ∈ E is a best approximation to f from E if
‖f − q∗‖∞ ≤ ‖f − p‖∞ ,∀p ∈ E. In other words ‖f − q∗‖∞ = min

p∈E
max
z∈S

|f(z)− p(z)|.
Our first result exploits the following well-known characterization of the best uniform
approximation, which can be found for example in [11]. An elegant characterization
of best approximations is also given in [13].

Theorem 5.1. A polynomial q∗ is a polynomial of best approximation to f ∈ C(S)
from E if and only if there exist r extremal points, i.e., r points z1, z2, . . . , zr ∈ E(f −
q∗, S), and r positive scalars βi, i = 1, · · · , r, such that

r∑
l=1

βl = 1, with r ≤ 2m + 1

in the complex case and r ≤ m+ 1 in the real case, which satisfy the equations:

r∑
l=1

βl [f(zl)− q∗(zl)]ψj(zl) = 0, j = 1, . . . ,m. (5.1)

Two remarks regarding this result are important to make. First, it can be applied
to characterize the best uniform approximation over any finite subset σ of S, with at
least (m+1) points. Second, the uniqueness of the polynomial of best approximation
is guaranteed if E is a Chebyshev space [11, Chap. 2, p.26]. Moreover, we have
r = m + 1 if S ⊂ R and m + 1 ≤ r ≤ 2m + 1 if S ⊂ C. This will be the case
because we will deal with polynomials of Pm.

The above result can be applied to our finite min-max approximation problem:
min

p∈P(ω)
m

max
j=1,...,M

|p(µj)|. This is the goal of the next section.
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5.2. Application to the min-max problem. Let σ denote the set of the
complex numbers µ1, . . . , µM and let Q(ω)

m (m < M) denote the set of all polynomials
of degree not exceeding m with value zero at ω. Let (ψj)m

j=1 be the set of polynomials

of Q(ω)
m defined by ψj(z) = zj − ωj . Our problem corresponds to taking f ≡ 1 and

E = Q(ω)
m . This yields:

min
p∈P(ω)

m

max
µ∈σ

|p(µ)| = min
q∈Q(ω)

m

max
µ∈σ

|1− q(µ)| ≡ ‖f − q∗‖∞ .

According to the remarks made following Theorem 5.1, the polynomial of best ap-
proximation q∗ ∈ Q(ω)

m for f ≡ 1 (with respect to σ) exists and is unique.
The following theorem, which gives an equivalent formulation of the relation (5.1),

can now be stated. This theorem will lead to auxiliary results from which the maxi-
mum and the polynomial of best approximation can be characterized.

Theorem 5.2. The polynomial q∗(z) = a∗1ψ1(z) + a∗2ψ2(z) + . . . + a∗mψm(z) is
the best approximation polynomial for the function f(z) = 1 on σ from Q(ω)

m if and
only if there exist r extremal points, i.e., r points z1, z2, . . . , zr ∈ E(f − q∗, S), and r

positive scalars βi, i = 1, · · · , r, such that
r∑

l=1

βl = 1, with r ≤ 2m+ 1 in the complex

case and r ≤ m+ 1 in the real case, verifying:

t∗1 +
m+1∑
j=2

t∗jµ
j−1
l = εl

1√
δ∗
, l = 1, . . . , r; (5.2)

with δ∗ = ‖f − q∗‖2
∞, t∗j+1 = −

a∗j
δ∗

, j = 1, . . . ,m, and t∗1 =
1
δ∗

−
m+1∑
j=2

t∗jω
j−1 and

r∑
l=1

βlεl =
√
δ∗, (5.3)

r∑
l=1

βlεl(µ
j
l − ωj) = 0, j = 1, . . . ,m; (5.4)

where εl = sgn(1− q∗(µl)).
Proof. Let δ∗ = ‖f − q∗‖2

∞. Then µl ∈ E(f − q∗, σ) is equivalent to |1− q∗(µl)| =
‖f − q∗‖∞ =

√
δ∗. Without loss of generality, we can assume the r extremal points to

consist of the r first items of σ. According to the above definition of εl, the polynomial
q∗ satisfies the following interpolation conditions:

1− q∗(µl) =
√
δ∗εl for j = 1, . . . , r. (5.5)

Setting t∗1 =
1
δ∗

−
m+1∑
j=2

t∗jω
j−1 and t∗j+1 =

−a∗j
δ∗

, j = 1, . . . ,m, we obtain (5.2).

Equation (5.5) shows that
r∑

l=1

βlεlψj(zl) = 0, j = 1, . . . ,m is a restatement of

(5.1). We then have

r∑
l=1

βlεlq(zl) = 0 for all polynomials q ∈ Q(ω)
m . (5.6)
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Furthermore, from (5.5) we have the relation
√
δ∗βl = βlεlf(zl)− βlεlq

∗(zl),
l = 1, . . . , r. To see that

∑r
l=1 βl = 1 is equivalent to (5.3) it suffices to sum-up the

terms in this relation and apply the conjugate of (5.6).
As a remark, we may transform the interpolation conditions (5.5) to πm(µj) = εj

for all j = 1, . . . , r, with πm(z) =
1√
δ∗

(1 − q∗(z)). Then πm can be written in the

form of the Lagrange interpolation formula

πm(z) =
m+1∑
j=1

εj l
(m+1)
j (z), with l

(m+1)
j (z) =

m+1∏
k=1,k 6=j

z − µk

µj − µk

Note that l(m+1)
j (z) is the jth Lagrange interpolating polynomial of degree m associ-

ated with {µ1, . . . , µm+1}. Finally, recalling that πm(ω) =
1√
δ∗

, we obtain

m+1∑
j=1

εj l
(m+1)
j (ω) =

1√
δ∗
, (5.7)

A consequence of this is that:

min
p∈P(ω)

m

max
µ∈σ

|p(µ)| = ‖f − q∗‖∞ =
√
δ∗ =

1
m+1∑
j=1

εj l
(m+1)
j (ω)

.

6. Proof of the main result. In this section, we will show that

max
β∈e∆M

Fm,ω(β) =
(
ε
(m)
1 (ω)

)2

,

where Fm,ω(β) is defined in (2.4) and

ε
(m)
1 (ω) = min

p∈P(ω)
m

max
j=1,...,M

| p(µj)| . (6.1)

The proof will be based on applying the Karush-Kuhn-Tucker (KKT) optimality con-
ditions to our convex maximization problem. We begin by establishing the following
lemma which shows a few important properties of the function Fm,ω. Since there is
no ambiguity, we will simplify notation by writing Vm+1 for Vm+1(µ) in the remainder
of this section.

Lemma 6.1. Let ∆̃M ⊂ ∆M be the domain of definition of the function Fm,ω in
(2.4). Then the following properties hold :

1. Fm,ω is a concave function defined on the convex set ∆̃M .
2. Fm,ω is differentiable at β ∈ ∆̃M and we have

∂Fm,ω

∂βj
(β) = − (Fm,ω(β))2

∣∣eT
j Vm+1t

∣∣2 ,
where t = (t1, t2, . . . , tm+1)T is such that V H

m+1DβVm+1t = sm+1(ω). More-
over, we have

N∑
i=1

βi
∂Fm,ω(β)

∂βi
= Fm,ω(β). (6.2)
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Proof. We will begin by proving the first property. Let r be a real positive scalar.
Since Drβ = r Dβ , then

Fm,ω(rβ) =
1

sH
m+1(ω)(r(V H

m+1DβVm+1))−1
sm+1(ω) = r Fm,ω(β).

Thus Fm,ω is homogeneous of degree 1. Let β, β′ ∈ ∆̃M and 0 ≤ r ≤ 1. It is easy to
see that rβ+(1−r)β′ ∈ ∆̃M . We now take taking x = sm+1(ω), G1 = V H

m+1DrβVm+1

and G2 = V H
m+1D(1−r) β′Vm+1, in the following version of Bergstrom’s inequality given

in [12, pp. 227] :(
xH (G1 +G2)

−1
x
)−1

≥
(
xHG1

−1x
)−1

+
(
xHG2

−1x
)−1

whereG1 andG2 are positive definite Hermitian matrices. Then from the homogeneity
of Fm,ω it follows that

Fm,ω(rβ + (1− r)β′) ≥ r Fm,ω(β) + (1− r)Fm,ω(β′).

Hence Fm,ω is concave.
Next we establish the second part. Let us define Zm+1(β) to be the matrix

Zm+1(β) = V H
m+1DβVm+1 ∈ Cm+1,m+1. We have ZH

m+1(β) = Zm+1(β) and Fm,ω(β) =[
sH

m+1(ω)Z−1
m+1(β)sm+1(ω)

]−1
for β ∈ ∆̃M . Clearly, Fm,ω is differentiable at β ∈ ∆̃M .

By using the derivative of the inverse of the matrix function, we have

∂Z−1
m+1(β)
∂βi

= −Z−1
m+1(β)

∂Zm+1(β)
∂βi

Z−1
m+1(β).

It follows that

sH
m+1(ω)

∂Z−1
m+1(β)
∂βi

sm+1(ω) = −tHV H
m+1eie

T
i Vm+1t,

where t is such that Zm+1(β)t = sm+1(ω). As a consequence,

∂Fm,ω

∂βi
(β) = −

sH
m+1(ω)

∂Z−1
m+1(β)
∂βi

sm+1(ω)(
sH

m+1(ω)Z−1
m+1(β)sm+1(ω)

)2 =
tHV H

m+1eie
T
i Vm+1t(

sH
m+1(ω)Z−1

m+1(β)sm+1(ω)
)2 .

We can write more succinctly

∂Fm,ω

∂βi
(β) = (Fm,ω(β))2 |eT

i Vm+1t|2.

The equality (6.2) follows from a simple algebraic manipulation. Indeed, we have

M∑
i=1

βi
∂Fm,ω(β)

∂βi
= (Fm,ω(β))2

M∑
i=1

tHV H
m+1(βieie

T
i )Vm+1 t

= (Fm,ω(β))2
(
tHV H

m+1DβVm+1 t
)

= Fm,ω(β).
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With the lemma proved, we now proceed with the proof of the theorem. Let
us consider the characterization of the solution of the convex maximization problem
maxβ∈e∆M

Fm,ω(β) by using the standard KKT conditions. We begin by defining the
functions gi(β) = −βi and g(β) = eTβ. Thus β ∈ ∆M means that g(β) = 0 and
gi(β) ≤ 0. So the Lagrangian function is formulated as

Lm(β, δ, η) = Fm,ω(β)− δg(β)−
M∑
i=1

ηigi(β),

where δ ∈ R and η = (η1, . . . , ηM ) ∈ RM . Note that the functions g, gi are convex
(affine functions) and by Lemma , the objective function−Fm is also convex. It follows
that this maximization problem can be viewed as a constrained convex optimization
problem. Thus according to the KKT conditions [4], if Fm,ω(β) has a local maximizer
β∗ in ∆̃M then there exist Lagrange multipliers δ∗, η∗ = (η∗1 , . . . , η

∗
M ) such that (β∗,

δ∗, η∗), satisfy the following conditions :

(i)
∂Lm

∂βj
( β∗, δ∗, η∗) = 0;

(ii) g(β∗) = 0 and (gj(β∗) ≤ 0 and η∗j ≥ 0 for all j = 1, . . . ,M) ;
(iii) η∗j gj(β∗) = 0 for all j = 1, . . . ,M .
As β∗ is in ∆̃M , we have at least m+1 components of β∗ which are nonzero. Thus,

there exists m + κ, (κ ≥ 1) components of β∗ which we label β∗1 , β
∗
2 , . . . , β

∗
m+κ, for

simplicity, such that β∗j 6= 0 for all j = 1, . . . ,m+κ. The complementarity conditions
(iii), yields η∗j = 0 for all j = 1, . . . ,m+ κ and η∗j > 0 for all j = m+ κ+ 1, . . . ,M .
Hence the condition (i) can be re-expressed as

∂Fm,ω

∂βj
(β∗) = δ∗, for j = 1, . . . ,m+ κ, and

∂Fm,ω

∂βj
(β∗) = δ∗ − η∗j , for j = m+ κ+ 1, . . . ,M.

(6.3)

Again by using the formula of
∂Fm,ω

∂βj
(β∗) given in the lemma, the relations in (6.3)

become

Fm,ω(β∗)2
∣∣eT

j Vm+1t
∗∣∣2 = δ∗ for j = 1, . . . ,m+ κ, (6.4)

and

Fm(β∗, ω)2
∣∣eT

j Vm+1t
∗∣∣2 = δ∗ − η∗j for j = m+ κ+ 1, . . . ,M. (6.5)

Note that t∗ is such that

V H
m+1Dβ∗Vm+1t

∗ = sm+1(ω). (6.6)

Now by observing that β∗j = 0 for all j = m + κ + 1, . . . , k,
∑m+κ

j=1 β∗j = 1, and by
using the first part of (6.3), equation (6.2) of the lemma shows that Fm,ω(β∗) = δ∗.
The remaining part of the proof is devoted to establishing the same formulas given in
the theorem which characterize the polynomial of the best approximation. In view of
(6.4), we then have

eT
j Vm+1t

∗ = εj
1√
δ∗

for all j = 1, . . . ,m+ κ. (6.7)
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Here we have written εj = eιθj in the complex case and εj = ±1 in the real case.

Combining
[
sH

m+1(ω)
(
V H

m+1Dβ∗Vm+1

)−1
sm+1(ω)

]−1

= Fm,ω(β∗) with (6.6) we

obtain sH
m+1(ω) t∗ = 1/δ∗. On the other hand, the optimal solutions β∗j and the

numbers εj can be derived from (6.6). Indeed, using (6.6) and (6.7), we have

eT
j Dβ∗Vm+1t

∗ = β∗j εj
1√
δ∗

for all j = 1, . . . ,m+ κ.

Therefore, by applying V H
m+1 we have

∑m+κ
j=1 β∗j εj =

√
δ∗ and

∑m+κ
j=1 β∗j εjµ

l
j =

√
δ∗ωl =

∑m+κ
j=1 β∗j εjω

l for l = 1, . . . ,m. Hence, we find that
∑m+κ

j=1 β∗j εj(µl
j − ωl) =

0 for l = 0, . . . ,m. The relations (5.2), (5.4) and (5.3) in Theorem 5.2 are all
satisfied, with , f ≡ 1, zj = µj , ψj(z) = zj − ωj and r = m + κ. It follows that the
Lagrange multiplier δ∗ is the same as in the previous section. As a consequence we
have δ∗ = Fm,ω(β∗) = ‖1− q∗‖2

∞ and (2.5) is established.

7. Concluding remarks. We have established the equivalence, for normal ma-
trices, between the approximation theory approach on the one hand and the optimiza-
tion approach on the other, for solving a min-max problem that arises in convergence
studies of the GMRES and Arnoldi methods. Because of their convenient proper-
ties, the KKT equations allow us to give a complete characterization of the residual
bounds at each step for both methods. It also unravels a strong connection between
the two viewpoints. KKT equations give more precise information about the extremal
points than the approximation theory approach. We point out the importance of the
KKT-equations obtained, of which only the non active part is needed to prove the
equivalence. For the GMRES method for example, from the active part (6.5), we infer
that

η∗j = δ∗ − Fm(β∗, ω)2
∣∣eT

j Vm+1(λ)t∗
∣∣2 > 0, for j = m+ κ+ 1, . . . , k.

So that ∣∣eT
j Vm+1(λ)t∗

∣∣ < 1√
δ∗

for j = m+ κ+ 1, . . . , k.

This shows that the extremal points can be characterized by

1√
δ∗

=
∣∣eT

i Vm+1(λ)t∗
∣∣ = max

1≤j≤k

∣∣eT
j Vm+1(λ)t∗

∣∣ for i = 1, . . . ,m+ κ.

The connections established in this paper provide new insights into the different ways
in which residual bounds can be derived. It is hoped that the developments with the
optimization approach will pave the way for extensions beyond the case of normal
matrices.
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