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A personal tribute

ä I was invited by Mohammed Bellalij to visit UVHC in May
2009.

Goal: To collaborate on linear algebra methods for data
mining

ä One of my interests at the time: Face recognition..

ä Then: Fisher analysis (LDA)→ Trace ratio
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ä Much of what was done in literature was ad-hoc

Our Aim: More rigorous techniques + theory

ä It was a *hot* month of May, but...

ä .. Phenomenal inspiration in our discussions..

ä Drafted a paper - Later finalized with Than Ngo [Student]

T. T. Ngo, M. Bellalij, and Y. Saad, The trace ratio optimization
problem for dimensionality reduction.

ä Appeared (quickly!) in 2010 is SIMAX.
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ä On Nov. 27, 2011, SIAM editor-in-chief sent us an e-mail:
Our paper selected as a SIGEST article.

ä Appeared in 2012 in SIAM Review ...

ä ... Plus there was a formal SIAM award

ä SIAM prize at the Siam Annual meeting in July 2013

ä Mohammed planned to attend award ceremony (SIAM An-
nual meeting luncheon)

... but...
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Date: Sat, 15 Jun 2013 17:01:03 +0200
From: Mohammed Bellalij <mohammed.bellalij@univ-valenciennes.fr>
To: Mitch Chernoff <Chernoff@siam.org>

....

Dear Mitch,

Because of an important and unplanned meeting in my department on the
11th of July, and my current health, which makes a return trip over 3 days
rather complicated, I must unfortunately let you know that I cannot be
present for the Awards Lunch on Tuesday, July 9. I am very disappointed
to have to miss this ceremony, which was a great honor for me.

Best wishes,
...
...
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ä Valenciennes feels empty all of a sudden

“Un seul être vous manque et tout est
dépeuplé.”
(one person is no longer around and
the whole world seems depopulated)
Alphonse de Lamartine.
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The trace ratio problem

ä Goal of this talk: present this work

ä Discuss origin of problem + applications

ä Extensions done by Mohammed [MOCASIM’14 talk]
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The trace ratio problem: Origins

ä What is data mining?

Set of methods and tools to extract meaningful information
or patterns from (big) datasets. Broad area : data analysis,
machine learning, pattern recognition, information retrieval, ...

ä Blends: linear algebra; Statistics; Graph theory; Approxima-
tion theory; Optimization; ...

ä A fundamental tool: dimension reduction: Often in the form
of an explicit projector that is sought to achieve a certain desir-
able property, e.g., to separate data well, i.e., to ‘discriminate’
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Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

• Discover important ‘features’ or ‘paramaters’

The problem: Given: X = [x1, · · · , xn] ∈ Rm×n, find a

low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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ä Φ may be linear : yi = W>xi , i.e., Y = W>X , ..

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Example: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä SolutionW = { dominant eigenvectors } of the covariance
matrix≡ Set of left singular vectors of X̄ = X − µe>
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Unsupervised learning

“Unsupervised learning” : meth-
ods that do not exploit known labels
ä Example of digits: perform a 2-D
projection
ä Images of same digit tend to
cluster (more or less)
ä Such 2-D representations are
popular for visualization
ä Can also try to find natural clus-
ters in data, e.g., in materials
ä Basic clusterning technique: K-
means
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each
item of a given set, find a
mechanism to classify an
unlabelled item into either
the “A” or the “B" class.

?

?
ä Many applications.

ä Example: distinguish SPAM and non-SPAM messages

ä Can be extended to more than 2 classes.
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image

��
��
��
��

�
�
�
�
��
��
��
��

������ ��

Training data Test data

D
im

en
sio

n
 red

u
ctio

n
 

D
ig

it
 0

D
ig

fi
t 

1

D
ig

it
 2

D
ig

it
 9

D
ig

it
 ?

?

D
ig

it
 0

D
ig

fi
t 

1

D
ig

it
 2

D
ig

it
 9

D
ig

it
 ?

?

ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample
and training samples

ä Get the k nearest neighbors
(here k = 8)

ä Predominant class among
these k items is assigned to the
test sample (“∗” here)
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Linear classifiers and Fisher’s LDA

ä Idea for two classes: Find a hyperplane which best sepa-
rates the data in classes A and B.

Linear

classifier
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Linear classifiers

Given: • X = [x1, · · · , xn] – the data matrix.
• L = [l1, · · · , ln] – the data labels: +1 or -1.

ä 1st Solution: Find a vector v
such that vTxi close to li ∀i
ä Common solution: (1) SVD
to reduce dimension of data [e.g.
2-D]; (2) Do comparison in this
space, e.g.:

A: vTxi ≥ 0 , B: vTxi < 0.
[Note: v principal axis drawn be-
low where it should be]

v
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Fisher’s Linear Discriminant Analysis (LDA)

Goal: Use label information to define a good projector, i.e.,
one that can ‘discriminate’ well between given classes

ä Define “between scatter”: a measure of how well separated
two distinct classes are.

ä Define “within scatter”: a measure of how well clustered
items of the same class are.

ä Objective: make “between scatter” measure large and “within
scatter” small.

Idea: Find projector that maximizes the ratio of the “between
scatter” measure over “within scatter” measure
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Define:

SB =
c∑

k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =
c∑

k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T

Where:

• µ = mean (X)
• µ(k) = mean (Xk)
• Xk = k-th class
• nk = |Xk|

H
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ä Consider
2nd moments
for a vector a:
Project on one-
dimensional space
span{a}:

aTSBa =
c∑
i=1

nk |aT(µ(k) − µ)|2,

aTSWa =
c∑

k=1

∑
xi ∈ Xk

|aT(xi − µ(k))|2

ä aTSBa ≡ weighted variance of projected µj’s

ä aTSWa ≡ w. sum of variances of projected classes Xj’s

ä LDA projects the data so as to maxi-
mize the ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector associated with the largest eigen-
value of: SBui = λiSWui .
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LDA – Extension to arbitrary dimensions

ä Criterion: maximize the ratio
of two traces:

Tr [UTSBU ]

Tr [UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

ä ... alternative: Solve instead
the (‘easier’) problem:

max
UTSWU=I

Tr [UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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LDA – Extension to arbitrary dimensions (cont.)

ä Consider the original
problem:

max
U ∈ Rn×p, UTU=I

Tr [UTAU ]

Tr [UTBU ]

Let A,B be symmetric & assume that B is semi-positive
definite with rank(B) > n− p. Then Tr [UTAU ]/Tr [UTBU ]
has a finite maximum value ρ∗. The maximum is reached for a
certain U∗ that is unique up to unitary transforms of columns.

ä Consider
the function:

f(ρ) = max
V TV=I

Tr [V T(A− ρB)V ]

ä Call V (ρ) the maximizer for an arbitrary given ρ.

ä Note: V (ρ) = Set of eigenvectors - not unique
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ä Define G(ρ) ≡ A− ρB and its n eigenvalues:

µ1(ρ) ≥ µ2(ρ) ≥ · · · ≥ µn(ρ) .

ä Clearly:

f(ρ) = µ1(ρ) + µ2(ρ) + · · ·+ µp(ρ) .

ä Can express this differently. Define eigenprojector:

P (ρ) = V (ρ)V (ρ)T

ä Then:
f(ρ) = Tr [V (ρ)TG(ρ)V (ρ)]

= Tr [G(ρ)V (ρ)V (ρ)T ]

= Tr [G(ρ)P (ρ)].
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ä Recall [e.g.
Kato ’65] that:

P (ρ) =
−1

2πi

∫
Γ

(G(ρ)− zI)−1 dz

Γ is a smooth curve containing the p eivenvalues of interest
and Rρ(z) is the resolvant

Rρ(z) = (G(ρ)− zI)−1 = (A− ρB − zI)−1.

ä Hence: f(ρ) =
−1

2πi
Tr
∫

Γ
G(ρ)(G(ρ)− zI)−1 dz = ...

=
−1

2πi
Tr
∫

Γ
z(G(ρ)− zI)−1 dz

ä With this, can prove :



1. f is a non-increasing function of ρ;
2. f(ρ) = 0 iff ρ = ρ∗;
3. f ′(ρ) = −Tr [V (ρ)TBV (ρ)]

ä Careful when defining V (ρ): define the eigenvectors so the
mapping V (ρ) is differentiable. But ∃ Differentiable branch of
eigenvectors
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Can now use Newton’s method.

ρnew = ρ−
Tr [V (ρ)T(A− ρB)V (ρ)]

−Tr [V (ρ)TBV (ρ)]
=

Tr [V (ρ)TAV (ρ)]

Tr [V (ρ)TBV (ρ)]

ä Newton’s method to find
the zero of f ≡ a fixed
point iteration with:

g(ρ) =
Tr [V T(ρ)AV (ρ)]

Tr [V T(ρ)BV (ρ)]
.

ä Idea: Compute V (ρ) by a Lanczos-type procedure

ä Note: Standard problem - [not generalized]→ inexpensive

ä See T. Ngo, M. Bellalij, and Y.S. 2010 for details
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GRAPH-BASED TECHNIQUES



Graph-based methods

ä Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)

Want: Perform a projection which pre-
serves the graph in some sense.

ä Define a graph Laplacean:

L = D −W

x

x
j

i

y
i

y
j

e.g.,: wij =

{
1 if j ∈ Adj(i)
0 else D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excluding i)
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Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-Dim. data)
ä Original data used indirectly
through its graph
ä Leads to n× n sparse eigenvalue
problem [In ‘sample’ space]

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n
Y D Y > = I

Tr
[
Y (D −W )Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W )ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä An n× n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I −W )ui = λiui ; yi = u>i ; i = 1, · · · , d
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Implicit vs explicit mappings

ä In PCA the mapping Φ from high-dimensional space (Rm)
to low-dimensional space (Rd) is explicitly known:

y = Φ(x) ≡ V Tx

ä In Eigenmaps and LLE we only know

yi = φ(xi), i = 1, · · · , n

ä Mapping φ is complex, i.e.,

ä Difficult to get φ(x) for an arbitrary x not in the sample.

ä Inconvenient for classification

ä “The out-of-sample extension” problem
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y
in the form Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
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A unified view: two types of problems encountered

First : Y obtained from
computing eigenvectors
ä LLE, Eigenmaps, ...

min Y ∈ Rd×n
Y Y > = I

Tr
[
YMY >

]

Second: Low-dim.
data: Y = V >X
ä G == identity, or
XDX>, or XX>

min V ∈ Rm×d
V > G V = I

Tr
[
V >XMX>V

]

Observation: 2nd is just a projected version of the 1st.

* Joint work with Efi Kokiopoulou and J. Chen
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A unified view: two types of problems

ä In essence we select two matrices

• A : represents a similarity, distance

• B : represents dissimilarity, separate groups, ...

Want: Projected data Y such that TrY TAY is small while
TrY TBY is kept large (or normalized).

ä Encapsulates: graph partitioning, LDA, PCA, ... (almost
everything!)

ä Can select A, B from ’local’ information: kNN graphs

ä Can select A, B from ’global’ information: use all of data
X: LLE, ONPP, PCA, ...
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Method Object. (min) Constraint

LLE Tr [Y (I −W T )(I −W )Y T ] Y Y T = I

Eigenmaps Tr [Y (D −W )Y T ] Y DY T = I

PCA/MDS Tr [−V TX(I − 1
n
11T )XTV ] V TV = I

LPP Tr [V TX(D −W )XTV ] V TXDXTV = I

OLPP Tr [V TX(D −W )XTV ] V TV = I

NPP Tr [V TX(I −W T )(I −W )XTV ] V TXXTV = I

ONPP Tr [V TX(I −W T )(I −W )XTV ] V TV = I

LDA Tr [V TX(I −H)XTV ] V TXXTV = I

Spect. Clust. Tr [ZT (D −W )Z] ZTZ = I

(ratio cut)

Spect. Clust. Tr [ZT (D −W )Z] ZTDZ = I

(normalized cut)
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ä See: (survey paper)

E. Kokiopoulou, J. Chen, Y. S., “ Trace optimization and eigen-
problems in dimension reduction methods,” Numerical Linear
Algebra with Applications; vol. 18, pages 565-602 (2011).
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Tests

Notation for the various methods tested:

• LDA and LDE == methods that rely on the eigenvectors of
B−1A. LDA : non-local matrices, LDE : local matrices.

• LDA-ITER and LDE-ITER == methods that optimize the trace
ratio [Newton scheme]. Matrices A and B are ‘non-local’ for
LDA-ITER and ‘local’ for LDE-ITER.
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ä First: compare trace ratios

Values of Tr [V TAV ]/Tr [V TBV ].

Dims 10 20 30 40 50 60
LDE-ITER 32.46 19.37 13.67 11.71 28.29 16.96
LDE 23.54 13.55 9.46 8.00 20.08 12.74

ä Significantly bigger ratios with trace optimization
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ä Face recognition: a couple of comparisons [from paper]
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A FEW EXTENSIONS



Extension 1: Application to Hypergraph clustering

ä See: Context-Aware Hypergraph Construction for Robust
Spectral Clustering Xi Li, Weiming Hu, Chunhua Shen, Anthony
Dick, and Zhongfei Zhang, IEEE TKDE,

ä Issue: construct equivalent of kNN graph + do clustering on
hypergraph.

ä Step 1: construct a similarity matrix S that captures similar-
ity between groups of vertices.

ä D ≡ diag(Se), Q = D − S.

ä Step 2: Trace ratio
maximization max

Ps.t.P TP=Ik

Tr [P TSP ]

Tr [P TQP ]
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Extension 2: Application to cell Formation Problem

Date: Sat, 05 Jan 2013 02:44:59 +0100
From: Mohammed Bellalij <mohammed.bellalij@univ-valenciennes.fr>
To: Yousef Saad <saad@cs.umn.edu>
Subject: Meilleurs voeux pour 2013 et nouveau probleme de trace

Salut Yousef,

(....)

J’ai recemment trouve un problème d’optimisation discrète (the cell for-
mation problem - cellular manufacturing) dans le domaine de la concep-
tion des cellules de production qui peut s’ècrire sous forme de rapport
de traces (singulières). Sa forme relaxée est de maximiser Tr[XTAY ]/(µ
+Tr[XTBY ]) sous les contraintes X et Y matrices orthogonales avec p
colonnes . J’y travaille en ce moment et dès que je rédigerai une note, je
te l’enverrai.
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Generalized trace ratio optimization and applications

Generalized trace ratio optimization and
applications

Mohammed Bellalij

University of Valenciennes, France

MOCASIM, 19-22 November 2014
Marrakech

MOCASIM 2014 Generalized trace ratio optimization and applications 1 / 29



Generalized trace ratio optimization and applications
Overview of different trace ratio problems : TROP and generalized TROP

Cell formation problem

Cell formation problem

Application : Group technology or cellular manufacturing
System : machines and parts interacting
Partition the system into subsystems to maximize efficiency :

Interactions between the machines and the parts within a
subsystem are maximized
Interactions between the parts of other systems are reduced as
much as possible
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The Cell Manufacturing Formation Problem (MCFP)

Goal: Identify families of parts and group of machines on
which these parts are to be processed.

“If the number, types, and capacities of production machines,
the number and types of parts to be manufactured, and the
routing plans and machine standards for each part are known,
which machines and their associated parts should be grouped
together to form manufacturing cells?” (Wu and Salvendy, 1993).

ä Very rich literature.. Rich variety of methods [metaheuristics,
PCA, Simulated annealing, graph partitioning, ....]
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Leads to: Singular-value TRace OPtimization (STROP)

ä Mohammed formulated the problem ...

ä .. and an algorithm for solving it.

ä Note: (1) Modified ratio;
(2) SVD is now needed instead of eigen-decomposition

ä SVD analogue of the trace ratio problem..

ä Wrote a short note – and presented the work in MOCASIM-
14
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Generalized trace ratio optimization and applications
Overview of different trace ratio problems : TROP and generalized TROP

Cell formation problem

The problem consists of finding the matrices X and Y which solve
the following discrete generalized trace ratio problem :

Discrete STROP





maximize Tr(XT AY )
1+Tr(XT BY )

s .t . X = (xik) ∈ {0,1}M×C ,Y = (yjk) ∈ {0,1}P×C
∑C

k=1 xik = 1; i = 1, . . . ,M and ∑M
i=1 xik ≥ 1;k = 1, . . . ,C∑C

k=1 yjk = 1; j = 1, . . . ,P and ∑P
j=1 yjk ≥ 1;k = 1, . . . ,C .

To obtain an optimal solution we would need first to maximize the
relaxed problem

max
(X ,Y )∈O

Tr [XT AY ]
1+Tr [XT BY ]

.
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Generalized trace ratio optimization and applications
Mathematical analysis

Single Value Decomposition & Newton Method for STROP

STROP

Given real matrices A and B of dimension m×n.
Let Op,k = {

Z ∈Rp×k : ZT Z = Ik
}

and Om,n,k =Om,k×On,k .
Goal : Find a pair of orthogonal matrices X∗ ∈Om,k and Y∗ ∈On,k
optimal solution of the problem :

max
(X ,Y )∈Om,n,k

Tr [XT AY ]
1+Tr [XT BY ]

.

We will assume that the matrix B verifies 1+Tr [XT BY ]> 0 for
any (X ,Y ) ∈Om,n,k .
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Generalized trace ratio optimization and applications
Mathematical analysis

Single Value Decomposition & Newton Method for STROP

Existence and Uniqueness of a Solution of STROP

The problem STROP admits a finite maximum value ρ∗. It is
reached for certain (nonunique) orthogonal matrices : X∗ and
Y∗ .
Thanks to the cyclic property of the trace, any simultaneous
orthogonal transformation of the columns of X∗ and Y∗ will
not change the objective function ( U =X∗R ,V =Y∗R for any
regular matrix R ∈Rk×k such that R−1 =RT ).
We have Tr [XT (A−ρ∗B)Y ]≤ ρ∗ because
1+Tr [XT BY ]> 0. Therefore, we have the following necessary
condition for the triplet ρ∗,X∗ and Y∗ to be optimal :

max
(X ,Y )∈Om,n,k

Tr [XT (A−ρ∗B)Y ]=Tr [XT
∗ (A−ρ∗B)Y∗]= ρ∗.

Let g(ρ)= max
(X ,Y )∈Om,n,k

Tr [XT (A−ρ B)Y ].

Then, it is equivalent to solve the scalar equation g(ρ)= ρ.
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Generalized trace ratio optimization and applications
Mathematical analysis

Single Value Decomposition & Newton Method for STROP

Properties of f (ρ)= g(ρ)−ρ.

Evaluating g(ρ) consists in computing the left and right
singular vectors X (ρ) and Y (ρ) associated with the k largest
singular values of A−ρB. So,
g(ρ)=Tr [XT (ρ)(A−ρ B)Y (ρ)].
Under the assumption that B verifies 1+Tr [XT BY ]> 0, we
have

1 f is differentiable at ρ with df (ρ)
dρ =−Tr

[
X (ρ)T B Y (ρ)

]−1 and
f is a strictly decreasing function.

2 f is convex.
3 f (ρ)= 0 iff ρ= ρ∗.
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Generalized trace ratio optimization and applications
Mathematical analysis

Single Value Decomposition & Newton Method for STROP

Fractional iteration of the Newton-approximation-formula

Newton’s method to approximate the unique fixed point of g :

ρnew = ρ−Tr [XT (ρ)(A−ρ B)Y (ρ)]−ρ
−Tr [XT (ρ) B Y (ρ)]−1

= Tr [XT (ρ) A Y (ρ)]
1+Tr [XT (ρ) B Y (ρ)]

.

The Newton-SVD algorithm includes the following three
iterative steps :

1 Compute the trace ratio ρ= Tr [XT AY ]
1+Tr [XT BY ]

;
2 Run the SVD algorithm to compute the k largest singular

values of A−ρB as well as their associated singular
eigenvectors X and Y ;

3 Repeat the above two steps until convergence.
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Conclusion

ä Many interesting applications of trace ratio optimization prob-
lems.

ä Some recent following on our work - for some applications -
More to come?

ä Mohammed started to work on some nice extensions ..

.. But his work was left unfinished

Valenciennes 05/19/2016 p. 55



ä Mohammed was a very amiable, human being

ä The example to retain from his character is to

BE KIND to OTHERS

BE COOL and RELAX

and

BE HAPPY and OPTIMIST

Valenciennes 05/19/2016 p. 56


