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Abstract

Two multilevel frameworks for manifold learning algorithms are discussed which are
based on an affinity graph whose goal is to sketch the neighborhood of each sample point.
One framework is geometric and is suitable for methods aiming to find an isometric or a
conformal mapping, such as isometric feature mapping (Isomap) and semidefinite embed-
ding (SDE). The other is algebraic and can be incorporated into methods that preserve the
closeness of neighboring points, such as Locally Linear Embedding (LLE) and Laplacian
eigenmaps (LE).

The multilevel coarsening technique presented in this paper can be applied to both
directed and undirected graphs. It is based on the degree of dependency between vertices, a
parameter that is introduced to control the speed of coarsening. In the algebraic framework,
we can coarsen the problem by some form of restriction and then uncoarsen the solution by
prolongation, as a standard procedure in multigrid methods. In the geometric framework,
the uncoarsening method can improve the embedding quality in the sense of being isometric
or conformal. The methods presented provide multiscale resolution of a manifold, and a
coarse embedding is very inexpensive. An application to intrinsic dimension estimation is
illustrated. Results of experiments on synthetic data and two image data sets are presented.

Keywords: manifold learning, nonlinear dimensionality reduction, multilevel methods,
spectral decomposition

1. Introduction

Real world high dimensional data can often be represented as points or vectors in a much
lower dimensional nonlinear manifold. Examples include face databases, continuous video
images, digital voices, microarray gene expression data, and financial time series. The
observed dimension is the number of pixels per image, or generally the number of numerical
values per data entry, and can be characterized by far fewer features.

Since around the year 2000, a number of algorithms have been developed to ‘learn’ the
low dimensional manifold of high dimensional data sets. Given a set of high dimensional
data as vectors x1, . . . , xn ∈ R

m, the task is to represent them with low dimensional vectors
y1, . . . , yn ∈ R

d with d ≪ m. The objective is to preserve certain properties, such as local
shapes or local angles, or simply to make nearby points preserve their proximity.
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Linear methods of dimensionality reduction, such as the principal component analysis
(PCA) and classical multidimensional scaling (MDS), can become inadequate because the
meaningful low dimensional structure of high dimensional data is often nonlinear. Therefore,
considerable research effort has been devoted to the development of effective nonlinear
methods to discover the underlying manifolds of given data sets.

Multilevel techniques, which aim at reducing the problem size and improving computa-
tional efficiency, have been successfully applied to various scientific problems, such as graph
and hypergraph partitioning (Karypis and Kumar, 1998, 2000). However, their incorpora-
tion into manifold learning methods is currently under-explored. Inspired by their success in
other applications, we presented a preliminary multilevel scheme for nonlinear dimensional-
ity reduction (Fang et al., 2010). We found several issues that needed to be resolved. First,
we used trustworthiness and continuity (Venna and Kaski, 2006) to evaluate the embedding
quality. These criteria are rank-based and tend to favor methods that preserve the close-
ness of neighboring points, such as the uncoarsening scheme (Fang et al., 2010). Manifold
learning methods for isometric or conformal mappings are likely to be under-estimated by
these criteria. Second, our experiments used image data sets that were then mapped into
two-dimensional space for visualization and evaluation, but the intrinsic dimension can be
higher than two. Finally, our coarsening method was based on the maximum independent
sets, a method which often results in too small a coarse set after one level of coarsening.

This paper describes a set of enhanced multilevel methods for nonlinear dimensionality
reduction. Our discussion starts with differential geometry in order to provide a theoretical
support for the techniques presented. A geometric and an algebraic multilevel frameworks
are described both of which consist of three phases: data coarsening, nonlinear dimensional-
ity reduction, and data uncoarsening. The methods presented rely on an affinity graph and
so they are especially useful for affinity-graph-based manifold learning methods. To coarsen
the data, we employ a graph coarsening algorithm based on the dependency between ver-
tices. After this, we map the coarsened data at the coarsest level using one of the standard
manifold learning algorithms. Finally, we recursively uncoarsen the data, level by level,
using the information between the graphs of adjacent levels. The geometric framework
propagates geodesic information in the coarsening phase, and improves the isometric or
conformal mapping in the uncoarsening phase. In the algebraic framework, we can restrict
the working matrix in the coarsening phase and prolong the solution in the uncoarsening
phase in the style of multigrid methods. Figure 1 provides an illustration.

Landmark versions of manifold learning algorithms by random sampling have been pro-
posed to reduce the problem size and therefore the computational cost, e.g., landmark
Isomap (L-Isomap) (de Silva and Tenenbaum, 2003b) and landmark semidefinite embed-
ding (L-SDE) (Weinberger et al., 2005). Another approach to reduce cost is via low-rank
matrix approximation techniques (Talwalkar et al., 2008).

The multilevel methods proposed in this paper offer some advantages over the landmark
approach. For example, the data points in each coarse level are selected according to the
dependency of vertices in the affinity graph. It typically generates a better representation
of the original data than by random sampling. Indeed, the worse case random selection
is prevented by multilevel approaches. In addition, by recursive coarsening we obtain a
succession of graphs on which the uncoarsening scheme is based. The succession of graphs
provides useful information, such as the neighborhood of points at each level and the global
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Figure 1: A sketch of the multilevel nonlinear dimensionality reduction.

geodesic information, not available with the random sampling approach. In Fang et al.
(2010), we gave an example showing that bad landmarks may result in an unsatisfactory
embedding which can be prevented by the multilevel approach.

In this paper we consider mainly 5 manifold learning algorithms: isometric feature
mapping (Isomap) (Tenenbaum et al., 2000), locally linear embedding (LLE) (Roweis and
Saul, 2000; Saul and Roweis, 2003), Laplacian eigenmaps (LE) (Belkin and Niyogi, 2001,
2003), local tangent space alignment (LTSA) (Zhang and Zha, 2004), and semidefinite
embedding (SDE) (Weinberger and Saul, 2004, 2006). The conformal variants of Isomap
(de Silva and Tenenbaum, 2003a,b) and SDE are also discussed.

Note that multilevel techniques are not limited to these methods. They are likely to be
adaptable to other affinity-graph-based manifold learning methods, such as Hessian LLE
(hLLE) (Donoho and Grimes, 2003), conformal eigenmaps (Sha and Saul, 2005), diffusion
maps (Coifman and Lafon, 2006; Lafon and Lee, 2006), minimum volume embedding (MVE)
(Shaw and Jebara, 2007), Riemannian manifold learning (RML) (Lin and Zha, 2008), and
Greedy Procrustes (GP) and Procrustes Subspaces Alignment (PSA) (Goldberg and Ritov,
2009). Table 1 lists these manifold learning methods along with references. These algorithms
can be categorized according to whether the affinity graph is directed or undirected1, and
also the characteristics of the mapping. See Section 2.2 for a discussion.

The rest of this paper is organized as follows. Section 2 reviews the background on
manifold learning with different insights. Sections 3 and 4 present the geometric and the
algebraic multilevel frameworks for nonlinear dimensionality reduction. Section 5 describes
the quality assessment criteria for manifold embedding. Section 6 reports the results of
manifold learning experiments. A conclusion is given in Section 7. Appendix A gives a
unified view of the orthogonal Procrustes problem, PCA, and MDS, with applications to

1. For conformal eigenmaps, whether the affinity graph is directed or not depends on whether the basis
vectors come from LE or LLE. For diffusion maps, the original formulation uses an undirected graph,
which is not a restriction, though.
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Table 1: Manifold Learning Algorithms.

Algorithm Abbrev.
Affinity

Mapping Reference
Graph

isometric feature mapping Isomap undirected isometric Tenenbaum et al. (2000)

locally linear embedding LLE directed proximity
Roweis and Saul (2000) and
Saul and Roweis (2003)

Laplacian eigenmaps LE undirected proximity Belkin and Niyogi (2001, 2003)
conformal Isomap C-Isomap undirected conformal de Silva and Tenenbaum (2003a,b)
landmark Isomap L-Isomap undirected isometric de Silva and Tenenbaum (2003b)
Hessian LLE hLLE directed geometric Donoho and Grimes (2003)
local tangent space alignment LTSA directed geometric Zhang and Zha (2004)
semidefinite embedding SDE undirected isometric Weinberger and Saul (2004, 2006)
landmark SDE L-SDE undirected isometric Weinberger et al. (2005)
conformal eigenmaps - either conformal Sha and Saul (2005)
diffusion maps - either proximity Coifman and Lafon (2006)
minimum volume embedding MVE undirected isometric Shaw and Jebara (2007)
Riemannian manifold learning RML undirected isometric Lin and Zha (2008)
Greedy Procrustes GP undirected isometric Goldberg and Ritov (2009)
Procrustes Subspaces Alignment PSA undirected isometric Goldberg and Ritov (2009)

isometric and conformal analysis. Appendix B describes 5 manifold learning algorithms:
Isomap, LLE, LE, LTSA, and SDE.

A word on notation. The column vector of ones of size k is denoted by ek. It may be
written as e, if omitting the superscript k does not cause ambiguity. An identity matrix is
denoted by I, or Ik to reflect the size k-by-k. The norm ‖ · ‖, without a subscript, means
2-norm. We use matrices X = [x1, . . . , xn] ∈ R

m×n and Y = [y1, . . . , yn] ∈ R
d×n (d < m)

to denote the high dimensional data and the corresponding low dimensional embedding,
respectively.

2. Background on Manifold Learning

The underlying theory of manifold learning is closely related to differential geometry. Know-
ing the connection between a continuous manifold mapping and its discrete samples helps to
understand the essence of the manifold learning algorithms and to design quality multilevel
techniques.

2.1 Some Basics of Differential Geometry

We review some basics of differential geometry which are related to manifold learning
(Do Carmo, 1976; O’Neill, 2006; Zha and Zhang, 2006).

2.1.1 Tangent Space

A function is smooth if it is infinitely differentiable. However, in the following discussion we
often just need the function to be twice continuously differentiable. Consider a manifold
M ⊂ R

m. A curve on M is a smooth function α : [0, 1] → M, where without loss of
generality, we have restricted the domain interval to [0, 1]. The velocity vector, also called a
tangent vector, of the curve α(t) at α(t0) ∈ M is its derivative α′(t0) for t0 ∈ [0, 1]. Given
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x ∈M, the tangent space at x, denoted by Tx(M), is formed by all possible tangent vectors
α′(0) with α(0) = x.

A smooth function between two manifolds is called a mapping. Let f : Ω ⊂ R
d → R

m

be a mapping such that f(Ω) = M. We focus on the case when Ω is open, but if Ω is a
lower dimensional regular manifold, the differentiability is defined via the parameterization
of Ω. The tangent map of f(y) is a function f∗(y, v) which associates a given tangent vector
v ∈ Ty(Ω) with a tangent vector u ∈ Tf(y)(M), such that if v is a velocity vector of a curve
α : [0, 1] → Ω at y = α(0), then f∗(y, v) is the velocity vector of the curve f(α(t)) on M
at f(α(0)). In other words, the tangent map f∗ takes a given tangent vector v ∈ Ty(Ω)
and outputs the corresponding tangent vector u ∈ Tf(y)(M) with respect to the function
f : Ω→M. It is clear that a tangent map transforms tangent vectors linearly. Under the
assumption that Ω is open, we have

f∗(y, v) = Jf (y)v, (1)

where Jf (y) is the Jacobian matrix of f at y.

2.1.2 Isometry

The mapping between two manifolds f : Ω → M is called an isometry, if it is one-to-one
and onto and for any given v, w ∈ Ty(Ω), we have

f∗(y, v)T f∗(y, w) = vT w. (2)

In other words, the dot product is invariant under the tangent mapping. The condition
(2) implies that the lengths of tangent vectors are preserved and vice versa, where the
length of a vector v is defined as the norm induced by the dot product ‖v‖ =

√
vT v.

Riemannian geometry generalizes this by replacing the dot product in the Euclidean space
by an arbitrary inner product on the tangent spaces of abstract manifolds. For the sake of
concreteness, we restrict our attention to the Euclidean measure in this paper.

By (1) and (2), an isometry f : Ω→M where Ω is open implies

Jf (y)T Jf (y) = Id, y ∈ Ω. (3)

It is equivalent to the fact that the singular values of Jf (y) are all one. Given a curve
α : [0, 1]→ Ω on Ω, the length of the curve f(α) onM is

L̄(f(α)) =

∫ 1

0

∥∥∥∥
df(α(t))

dt

∥∥∥∥ dt =

∫ 1

0
‖Jf (α(t))α′(t)‖dt =

∫ 1

0
‖α′(t)‖dt = L(α), (4)

which is the same as the length of the curve α on Ω. Therefore, we can measure the curve
length onM via an isometry f : Ω→M.

The geodesic distance between two points x1, x2 ∈ M, denoted by δM(x1, x2), is the
length of the shortest path between x1 and x2. If there is an isometry f : Ω → M where
Ω ∈ R

d is open and convex, then by (4),

δ(f(y1), f(y2)) = ‖y1 − y2‖, (5)

for any y1, y2 ∈ Ω.
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According to the Theorema Egregium of Gauss, Gaussian curvature is invariant under
an isometry. That is, if f : Ω→M is an isometry, then the Gaussian curvature of any point
y on Ω, denoted by KΩ(y), is the same as the Gaussian curvature of f(y) on M, denoted
by KM(f(y)). Recall that we consider the case when Ω is open, which implies KΩ(y) = 0
for all y ∈ Ω. Hence if KM(x) 6= 0 for some x ∈ M, there exists no isometry f : Ω →M
with Ω open. For example, we cannot find an isometry that maps an open set in R

2 to a
sub-manifold of a sphere in R

3, since a sphere has a positive Gaussian curvature at every
point on it.

2.1.3 Conformal Mapping

For manifolds for which an isometry is too much to ask, we consider weaker alternatives,
for example, to preserve angles. Formally, a mapping f : Ω → M between two manifolds
Ω ⊂ R

d and M ⊂ R
m is conformal, if there is a positive smooth function c : Ω → R such

that

‖f∗(y, v)‖ = c(y)‖v‖ (6)

for all tangent vectors v ∈ Ty(Ω) at each y ∈ Ω (O’Neill, 2006). An equivalent definition
(Do Carmo, 1976) is that for v, w ∈ Tp(Ω),

f∗(y, v)T f∗(y, w) = c(y)2vT w. (7)

The equivalence between (6) and (7) can be seen from the norm which is induced by the
dot product of the tangent spaces of both Ω and M. Note that every tangent space is a
vector space and every tangent map is a linear function in terms of the tangent vectors.
Assuming that f is one-to-one and onto, c(y) ≡ 1 implies an isometry f .

A conformal mapping preserves angles. A well-known example is that in complex analy-
sis, every analytic function is conformal at any point where it has a nonzero derivative (Bak
and Newman, 1982). Assume that the domain Ω of a conformal mapping f is open. By (1)
and (7),

Jf (y)T Jf (y) = c(y)2Id, y ∈ Ω. (8)

In other words, a conformal mapping f : Ω → M has the Jacobian Jf (y) consisting of
orthonormal columns subject to a nonzero scale factor c(y) for all y ∈ Ω. Let

f̃(y) =

∫
1

c(y)
Jf (y)dy. (9)

By the gradient theorem and (8), we have

J ef
(y) =

1

c(y)
Jf (y) ⇒ J ef

(y)T J ef
(y) = Id. (10)

Hence f̃ is an isometry. In this respect the manifold M̃ = f̃(Ω) is more tractable than

M = f(Ω), since M̃ is isometric to an open set Ω ∈ R
d.
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2.1.4 Regular Mapping

In manifold learning, it is a natural desire to preserve the intrinsic dimension. Hence we
consider regular mappings. A mapping f : Ω → M between two manifolds Ω ⊂ R

d and
M⊂ R

m is regular provided that at every point y ∈ Ω, the tangent map f∗(y, v) is one-to-
one in terms of v (O’Neill, 2006). It is equivalent to the statement that f∗(y, v) = 0 implies
v = 0 for v ∈ Ty(Ω), since a tangent map is a linear transformation. Assuming that Ω ∈ R

d

is open, a mapping f ∈ Ω → M is regular if the Jacobian Jf (y) has full column rank for
y ∈ Ω and vice versa. Here d is called the intrinsic dimension of M, which is independent
of the mapping f and its open domain Ω.

Consider the one-to-one and onto mappings f : Ω → M. An isometry guarantees a
conformal mapping, which implies a regular mapping.

2.2 Learning with Discrete Samples

Given a manifold M ⊂ R
m, we may wish to find a function g :M→ Ω ⊂ R

d which maps
M to another manifold g(M) = Ω in a lower dimensional space R

d (d < m). In practice, we
often have discrete and possibly noisy sampled data points x1, . . . , xn ∈ R

m ofM, and the
objective is to find a low dimensional embedding y1, . . . , yn ∈ R

d. The goal of the mapping
is to preserve certain ‘local’ properties, for which it is typical to employ an affinity graph.

2.2.1 Affinity Graph

We denoted by G = (V, E) an affinity graph of data x1, . . . , xn ∈ R
d, where the vertex set

V = {1, . . . , n} consists of data indices, and (i, j) ∈ E if vertex j is a neighbor of vertex i.
There are two ways to define the neighborhood based on distances between x1, . . . , xn.

1. ǫ-neighborhood: vertex j is a neighbor of vertex i if ‖xi − xj‖ < ǫ.

2. k-nearest-neighbor: vertex j is a neighbor of vertex i if xj is one of the k nearest
neighbors of xi.

The first definition yields neighborhoods that are reciprocal, in that the corresponding graph
is undirected, while the second does not. In practice, the k-nearest-neighbor metric is also
popular, since the ǫ-neighborhood often yields a disconnected graph.

There are two types of affinity graphs used in a manifold learning algorithm. One is
directed, for example, those used in LLE, hLLE, LTSA, and RML. The other is undirected,
for example, those used in Isomap, LE, and SDE. See Table 1 for a summary. If the
neighborhood is not reciprocal but the algorithm requires an undirected affinity graph, then
we need to perform the symmetrization, by either removing (i, j) from E for (j, i) /∈ E, or
adding (j, i) to E for (i, j) ∈ E. The latter method is used in our experiments.

In what follows the graphs are considered directed. We also assume that there is no
self-edge, i.e., (i, i) /∈ E for all i ∈ V . An affinity graph G = (V, E) is canonically associated
with a sequence of neighborhood sets N1, . . . ,Nn, such that j ∈ Ni if and only if (i, j) ∈ E
for i, j = 1, . . . , n. That is, Ni contains the neighbors of vertex i.
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2.2.2 Isometric Embedding

An isometric embedding method assumes the existence of an isometry f : Ω ⊂ R
d →

M ⊂ R
m described in Section 2.1.2. Given input x1, . . . , xn ∈ M and neighborhood sets

N1, . . . ,Nn, the goal is to find an embedding y1, . . . , yn ∈ Ω such that ‘local’ distances are
preserved, i.e.,

‖yi − yj‖ ≈ ‖xi − xj‖, i = 1, . . . , n, j ∈ Ni, (11)

where Ni contains indices of neighbors of xi. The objective (11) can be seen from the Taylor
series applied to f(y)

f(y + ∆y) = f(y) + Jf (y)∆y + O(‖∆y‖2), (12)

which implies
‖f(y + ∆y)− f(y)‖ ≈ ‖Jf (y)∆y‖ = ‖∆y‖, (13)

where the property of isometry Jf (y)T Jf (y) = Id in (3) is used for the last equation.
Substituting xi for f(y), xj for f(y + ∆y), and yj − yi for ∆y in (13), we obtain (11).

A typical example of isometric embedding is SDE, which aims to preserve the local
distances and at the same time maximize

∑
i,j ‖yi − yj‖2. It requires solving a semidefinite

programming problem (Vandenberghe and Boyd, 1996). An outline of the process is given
in Section B.5.

Isomap further assumes the convexity of Ω and exploits (5). More precisely, two vertices
i, j are nearby if (i, j) ∈ E in the affinity graph G = (V, E). The distance between two
nearby vertices i, j is defined as ‖xi − xj‖. The length of the shortest path from vertex i
to vertex j is used to approximate the geodesic distance δ(xi, xj), which equals ‖yi − yj‖
according to (5). With all approximate ‖yi − yj‖ for i, j = 1, . . . , n available, the MDS is
applied to find the embedding y1, . . . , yn. See, for example, Appendix B.1 for additional
details.

Both Isomap and SDE are spectral methods, since they eventually form a symmetric
matrix, called a kernel, and compute its eigenvectors for embedding. With the strong
property of preserving the isometry, the number of significant eigenvalues in practice is
a good indicator of the intrinsic dimensions (Saul et al., 2006; Tenenbaum et al., 2000;
Weinberger and Saul, 2006). In Section 6.4, we will demonstrate an application of the
multilevel technique to intrinsic dimension estimation with a coarse kernel.

There are other manifold learning methods for an isometric embedding, such as hLLE,
RML, GP and PSA. These methods rely on the tangent spaces of the sample points and
more or less use the techniques summarized in Appendix A.

2.2.3 Conformal Embedding

For manifolds with non-negotiable Gaussian curvatures, an alternative to use conformal
mapping described in Section 2.1.3. The discrete form can be written as

‖yi − yj‖ ≈
1

ci
‖xi − xj‖, i = 1, . . . , n, j ∈ Ni, (14)

where c1, . . . , cn ∈ R are positive constants, and Ni contains the indices of neighbors of
vertex i. This can be seen from a similar discussion leading to (11). The difference is that
here we use (8) instead of (3), and ci in (14) plays the role of c(yi) defined in (8).

8
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A manifold learning method with the objective (14) is conformal eigenmaps (Sha and
Saul, 2005), which solves a semidefinite program using basis vectors from LE or LLE.

Another example is a variant of Isomap, called conformal Isomap (de Silva and Tenen-
baum, 2003a,b). It is abbreviated as C-Isomap in this paper. The only algorithmic change is
that in Isomap, the distance between two nearby vertices i, j is the local distance ‖xi−xj‖,
and in C-Isomap it is scaled by 1/

√
M(i)M(j), where M(i) the mean distance from xi to

its neighbors. To be precise, the ‘distance’ between each pair of neighboring vertices i, j in
C-Isomap is

‖xi − xj‖/
√

M(i)M(j), M(i) =
1

|Ni|
∑

j∈Ni

‖xi − xj‖. (15)

The underlying assumption is that the sample points are uniformly distributed in the pa-
rameter space Ω. Therefore, the density of points in the neighborhood of xi is proportional
to 1/ci in (14). Hence M(i) is a good estimate of ci. Instead of M(i), C-Isomap uses the
scale factor

√
M(i)M(j) for the symmetry of the scaled distances.

Note that the scaling can also be applied to isometric embedding methods which relies
on the local distances, such as SDE, MVE, RML, GA, and PSA, yielding conformal versions
of these algorithms. In addition to the manifold learning methods in the literature, we also
used this conformal version of SDE, abbreviated as C-SDE, in our experiments. Some
results are reported in Section 6.

It is worth noting that while the input x1, . . . , xn are points sampled from the manifold
M, C-Isomap actually considers the transformed manifold f̃(Ω) = M̃ which is isometric to
Ω, where f̃ is defined in (9). Here we give a new interpretation to support C-Isomap.

2.2.4 Proximity Preserving Embedding

This type of method also studies a manifold mapping f : Ω → M with an open domain
Ω ∈ R

d, whereM = f(Ω) ⊂ R
m. However, it makes no assumption on f being conformal or

an isometry. Suppose we are given two close points y1, y2 ∈ Ω and their mapped points x1 =
f(y1) and x2 = f(y2). By the Taylor series (12), we still have ∆x = Jf (y)∆y + O(‖∆y‖2),
where ∆x = x2 − x1 and ∆y = y2 − y1. Therefore, small ‖∆y‖ implies small ‖∆x‖.

On the other hand, if the mapping f is regular, then Jf (y) has full column rank and
therefore (Jf (y)+)T Jf (y) = Id, where Jf (y)+ is the Moore-Penrose pseudo-inverse of Jf (y).
Hence Jf (y)+∆x = ∆y + O(‖∆y‖2). We also have the property that small ‖∆x‖ implies
small ‖∆y‖.

In conclusion, assuming that f is regular and one-to-one, for two close points x1, x2 ∈M,
the corresponding points y1, y2 ∈ Ω, mapped by f−1, are close to each other, too. Hence
the goal is to make nearby points remain nearby. A typical example is LE, and another
example is LLE.

There are manifold learning algorithms which utilizes local tangent spaces but the final
objective is weaker than conformal mapping, e.g., LTSA and hLLE. Because local tan-
gent spaces contain geometric information, these methods preserve more than closeness of
neighboring points. Hence we mark them as ‘geometric’ in Table 1.
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3. Geometric Multilevel Nonlinear Dimensionality Reduction

We present two multilevel frameworks for nonlinear dimensionality reduction in this section
and in the next section. Both of them consist of three phases: data coarsening, nonlinear
dimension reduction, and data uncoarsening. In a nutshell, a few levels of coarsening are
performed leading to a sequence of smaller and smaller graphs. The analysis of the data is
done at the coarsest level using a standard manifold learning method, such as Isomap or
LLE. Then an ‘uncoarsening’ step of this low dimensional data is performed level by level
backing up to the highest level.

A key property of the framework presented in this section is that, it propagates geodesic
information in the coarsening phase. In the uncoarsening phase, the geodesic information
will be utilized to improve the isometric or conformal embedding. Hence we call this frame-
work geometric. It is particularly useful to incorporate the manifold learning algorithms
which aim to preserve the isometric or conformal information, e.g., Isomap, C-Isomap,
SDE, and C-SDE. We call the resulting methods multilevel Isomap, multilevel C-Isomap,
multilevel SDE, and multilevel C-SDE.

3.1 The Coarsening Phase

As it is assumed in Section 2.2.1, the graphs are considered directed and free of any self-
edges. This property will be preserved in a coarsened graph in the geometric framework.
Note that since the geodesic information is propagated, it is common to use an undirected
affinity graph. Nevertheless, part of the techniques presented here will be used in another
multilevel framework given in Section 4, where directed graphs are also popular.

Coarsening a graph G(l) = (V (l), E(l)) means finding a ‘coarse’ approximation G(l+1) =
(V (l+1), E(l+1)) that represents G(l) = (V (l), E(l)), where |V (l+1)| < |V (l)|. By recursively
coarsening for l = 0, . . . , r−1, we obtain a succession of smaller graphs G(1), . . . , G(r) which
approximate the original graph G(0). To simplify the notation, we use G = (V, E) and
Ĝ = (V̂ , Ê) to denote, respectively, the fine graph G(l) = (V (l), E(l)) and the coarse graph
G(l+1) = (V (l+1), E(l+1)) of two successive levels.

3.1.1 Vertex–based Coarsening

In a previous paper (Fang et al., 2010), we used maximum independent sets for graph
coarsening. However, this requires the graph to be undirected and it often results in a
rapid coarsening, which is undesirable. This paper considers another strategy based on the
dependency between vertices. We start with a definition.

Definition 1 Given a graph G = (V, E), we say that V̂ ⊂ V is a degree p representation of
V , if every vertex i ∈ V \ V̂ has at least p neighbors in V̂ , i.e., |{(i, j) ∈ E : j ∈ V̂ }| ≥ p for
i ∈ V \ V̂ . Furthermore, V̂ is called a minimal degree p representation of V , if any proper
subset of V̂ is not a degree p representation of V . In addition, the complement V \ V̂ , is
said to be self-repellent if if for all i, j ∈ V \ V̂ , (i, j) /∈ E.

An example of a coarse representation with p = 2 is illustrated in Figure 2. Conceptually,
(i, j) ∈ E means that vertex i depends on vertex j. If every vertex i ∈ V \ V̂ has at least p

10



Enhanced Multilevel Manifold Learning

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

V

V

^

Figure 2: Illustration of a coarse representation of V with p = 2; vertices of V̂ are in red.

neighbors in V̂ it means that V \ V̂ depends on V̂ to degree p, and therefore V̂ can be used
as a coarse representation of V . The parameter p controls the coarseness of V̂ .

The rationale for having a self-repellent complement V \ V̂ is that when we use V̂ as
a coarse representation of V and exclude V \ V̂ , the vertices dropped do not cluster since
they are adjacent to each other in the graph. Note however that having a self-repellent
complement V \ V̂ is a strong constraint. It makes the coarsening slow and insensitive to
the degree p, as long as p is small. An example will be illustrated at the end of Section 6.1.

An interesting property is that when the graph G = (V, E) is undirected, a self-repellent
complement V \ V̂ is an independent set, and hence the representation V̂ is a vertex cover
of G. Moreover, if the graph G = (V, E) is undirected and connected and the degree of
dependency is p = 1, then a self-repellent complement V \ V̂ is an independent set and vice
versa.

A minimal representation V̂ of V to degree p can be found by a greedy algorithm.
Initialize V̂ as V , visit k ∈ V̂ in a graph traversal, and remove this k from V̂ if after
V̂ remains a degree p representation after the removal. The self-repellent complement
constraint can be incorporated. Algorithm 1 gives the pseudo-code.

Consider the main loop of Algorithm 1. If repel = true, it is required to find all edges
(i, k) ∈ E efficiently for a given vertex k ∈ V , i.e., it is required to find the parents i of
k. We can store the graph G = (V, E) as a boolean sparse matrix B ∈ {0, 1}n×n in some
sparse storage format, e.g., the Compressed Sparse Column (CSC) format (Saad, 1994),
where B(i, j) = 1 if (i, j) ∈ E and otherwise B(i, j) = 0. On the other hand, if repel =
false, we need to visit not only all the edges (i, k) but also the edges (k, i) for a given
vertex k. This would require the sparsity patterns of both B and its transpose, but this is
unnecessary if the graph is undirected.

Algorithm 1 also determines Ê, the edge set of Ĝ = (V̂ , Ê). The rule is that for i, j ∈ V̂
with i 6= j, (i, j) ∈ Ê if (i, j) ∈ E or there is a vertex k ∈ V \V̂ such that (i, k), (k, j) ∈ E. It
is clear that if G = (V, E) is undirected and connected, then Ĝ = (V̂ , Ê) remains undirected

11
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function Ĝ=CoarseGraph(G, p, repel)
input: Graph G = (V, E) with V = {1, . . . , n}, and the degree p.
output: Coarsened Ĝ = (V̂ , Ê) with V̂ a minimal representation of V to degree p.
remark: If repel = true, then V \ V̂ is a self-repellent complement of V̂ .
V̂ ← V
Û ← ∅ ⊲ complement set of V̂
for all k ∈ V do

n(k)← |{j : (k, j) ∈ E}| ⊲ number of neighbors of vertex k in V̂
end for

if repel = true then

for all k ∈ V do

if n(k) ≥ p, and ∀(i, k) ∈ E or (k, i) ∈ E, i /∈ Û then

V̂ ← V̂ \ {k}
Û ← Û ∪ {k}

end if

end for

else

for all k ∈ V do

if n(k) ≥ p, and ∀(i, k) ∈ E with i ∈ Û , n(i) > p then

V̂ ← V̂ \ {k}
Û ← Û ∪ {k}
for all (i, k) ∈ E with i ∈ Û do

n(i)← n(i)− 1
end for

end if

end for

end if

Ê ← {(i, j) : (i, j) ∈ E ∧ i, j ∈ V̂ } ⊲ edge set of Ĝ
for all i, j ∈ V̂ and i 6= j do

if ∃k ∈ Û such that (i, k), (k, j) ∈ E then

Ê ← Ê ∪ {(i, j)}
end if

end for

end function

Algorithm 1: Graph coarsening according to the dependency between vertices.

and connected. In some manifold learning algorithms, it is important that the affinity graph
be undirected and connected. For example, a connected graph is required for Isomap so
that the shortest path between each pair of vertices is defined. For SDE, the objective
function is unbounded if the affinity graph is not connected.

3.1.2 Propagation of Geodesic Information

For algorithms aiming for an isometric embedding, such as Isomap and SDE, we propagate
the geodesic information in the coarsening phase as follows. For each edge (i, j) ∈ E of the

12
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fine graph G = (V, E), we use δ(i, j) to denote the distance between vertex i and vertex j.
For two vertices i, j of the coarse graph Ĝ = (V̂ , Ê), we define the distance δ̂(i, j) by

δ̂(i, j) = min{δ(i, j), min
(i,k),(k,j)∈E

δ(i, k) + δ(k, j)}, (16)

where we let δ(i, j) = ∞ for (i, j) 6= E for notational convenience. If G = (V, E) is the
affinity graph G(0) at the top level, then we set δ(i, j) = ‖xi − xj‖ for (i, j) ∈ E, in which

case (16) implies δ̂(i, j) = δ(i, j) for (i, j) ∈ Ê ∩ E.

Assuming that the graph is undirected, the distance function defined by the recursion
(16) indeed approximates geodesic distances across levels. Note that the geodesic distances
may not satisfy triangle inequality. As discussed in Section 2.1.2, if the mapping x = f(y) to
discover is isometric and has an open convex domain, then the Euclidean distance ‖yi− yj‖
between yi and yj is the geodesic distance between xi and xj . In manifold learning, the
distances ‖xi−xj‖ for (i, j) ∈ E are used, since ‖xi−xj‖ approximates the geodesic distance
between xi and xj while xi and xj are close to each other. In the proposed multilevel
framework, the geodesic distances approximated from iteratively applying (16) are better
than the Euclidean distances when the goal is to preserve isometry.

The propagation (16) does not rely on whether or not the graphs are undirected. Hence
it is possible to use directed affinity graphs, in which case the computed distances can
be asymmetric. In practice, if we apply a dimensionality reduction algorithm based on
local distances at the bottom level, then we use an undirected graph G(0) at the top level
and propagate distances by (16). For every coarse graph G(l) = (V (l), E(l)) and for each
(i, j) ∈ E(l), the length of the shortest path from vertex i to vertex j in G(l) is the same as
the length of the shortest path from vertex i to vertex j in G(0). This is an ideal property
to have for Isomap.
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Figure 3: Illustration of multilevel graph coarsening.

An example of multilevel graph coarsening is illustrated in Figure 3. We use a sym-
metrized kNN graph G(0) = (V (0), E(0)) with k = 3, shown in Figure 3(a), where the vertex
indices are in black and edge distances are in blue italic. We apply Algorithm 1 to coarsen
G(0) = (V (0), E(0)) with the degree of dependency p = 3, where the vertices are visited in
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this order (7), 5, 1, 2, (8), 6, (9), 3, (10), 4, with the vertices in V (0) \ V (1) are in parenthe-
ses. In Figure 3(a), we use solid circles for vertices in V (1), hollow circles for vertices in
V (0) \ V (1), solid lines for edges between vertices in V (1), and dashed lines for the other
edges. The resulting coarse graph G(1) = (V (1), E(1)) is shown in Figure 3(b), where we
have applied (16) for lengths of newly added edges, which are marked by dashed arcs. We
apply Algorithm 1 again to coarsen G(1) = (V (1), E(1)) with the degree of dependency p = 3,
where the vertices are visited in the order (5), 1, 2, (6), 3, 4, with vertices 5, 6 in parentheses
since they are in V (1)\V (2). The resulting graph G(2) = (V (2), E(2)) is shown in Figure 3(c).

3.1.3 Propagation of Conformal Information

Now consider C-Isomap, which assumes the given high dimensional points x1, . . . , xn are
sampled from a manifold M ∈ R

m which is the image of a conformal manifold mapping
f : Ω→M with an open convex set Ω ∈ R

d. Instead of f , C-Isomap studies the transformed
mapping f̃ defined in (9) as an isometry. Assuming the data points are sampled uniformly
in the parameter space Ω, C-Isomap uses the scaled local Euclidean distances (15) as the

approximate local Euclidean distances on M̃ = f̃(Ω) defined in Section 2.1.3.

Incorporating C-Isomap into the multilevel framework, we use (15) as the distance mea-
sure for the affinity graph G(0) at the top level, and propagate distances by (16), approxi-

mating the geodesic information on M̃.

3.2 The Dimension Reduction Phase

In manifold learning, we apply a dimensionality reduction algorithm to a given data set X =
[x1, x2, . . . , xn] ∈ R

m×n and obtain the low dimensional embedding Y = [y1, y2, . . . , yn] ∈
R

d×n (d < m), such that Y preserves certain neighborhood information of X.

In the geometric multilevel framework, the dimensionality reduction method is applied
to the data set X(r) ∈ R

m×|V (r)| of the bottom, i.e., the coarsest, level and results in a coarse
embedding Y (r) ∈ R

d×|V (r)| (d < m). The dimensionality reduction methods considered for
this task, such as Isomap and SDE, are based on an affinity graph and local distances
between neighboring vertices. Instead of building a kNN graph at the bottom level, we use
the graph from the coarsening phase. We also use the approximate geodesic distances from
the propagation for the local distances in the dimensionality reduction algorithm.

3.3 The Uncoarsening Phase

The objective of this phase is to obtain a reduced representation Y ∈ R
d×n of the data

X ∈ R
m×n at the finest level, starting from the reduced representation Y (r) ∈ R

d×|V (r)| of
data X(r) ∈ R

m×|V (r)| at the coarsest level. Note that Y = Y (0) and n = |V (0)|,
We recursively uncoarsen the data, level by level, in the low dimensional space as follows.

We denote by G = (V, E) and Ĝ = (V̂ , Ê) the two affinity graphs of adjacent levels l and
(l+1), respectively. For each level l = r−1, r−2, . . . , 0, we recursively build the reduced
representation Y = [yi]i∈V of level l from Ŷ = [yi]i∈bV

of level (l+1). Since yi ∈ R
d is known

for i ∈ V̂ , the goal is to determine yi ∈ R
d for i ∈ V \ V̂ .

14
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At first glance, the problem is similar to that of out-of-sample extension (Bengio et al.,
2004). However, we should utilize the geodesic information from the coarsening phase
instead of the high dimensional coordinates. We consider the following approaches.

3.3.1 Greedy Isometric Refinement

Consider the manifold learning methods for an isometric embedding, e.g., Isomap and SDE.
If such a method is used at the bottom level to compute the coarse embedding, then the
objective for an isometric embedding should be retained in the uncoarsening phase.

Assume for now that V̂ has a self-repellent complement, and hence for i, j ∈ V \ V̂ ,
(i, j) /∈ E. A discussion will follow for the case without a self-repellent complement. Let

N̂i = {j ∈ V̂ : (i, j) ∈ E} and Ñi = N̂i ∪ {i} (17)

for each vertex i ∈ V \ V̂ . That is, N̂i is the set of neighbors of vertex i, and Ñi in addition
includes vertex i.

We perform local Isomap on vertices in Ñi with the subgraph of G = (V, E) induced

by Ñi, and obtain an embedding Z̃i = [z
(i)
j ]

j∈ eNi
∈ R

d×| eNi| in the lower dimensional space.
Note that we use the geodesic information propagated in the coarsening phase instead of
computing the Euclidean distances in the high dimensional space. This is an ideal local
embedding for each i ∈ V \ V̂ . See Appendix A.4 for a discussion.

Let Ỹi = [yj ]j∈ eNi
, in which the only column to determine is yi for i ∈ V \V̂ . Ideally there

is an orthogonal matrix Qi ∈ R
d×d and a translation vector γi such that Ỹi = QiZ̃i + γie

T
ni

.
Due to the approximation errors and potential noise in the data, it is unrealistic to expect
the existence of such a pair of Qi and γi to satisfy the equation. Therefore, we consider

{
minimize

Qi, γi

‖Ŷi −QiẐi − γie
T
ni
‖2F

subject to QT
i Qi = Id, Qi ∈ R

d×d, γi ∈ R
d,

(18)

where Ŷi = [yj ]j∈ bNi
and Ẑi = [z

(i)
j ]

j∈ bNi
, from removing yi in Ỹi and z

(i)
i in Z̃i, respectively.

Problem (18) is related to the orthogonal Procrustes analysis and it can be solved optimally.
See Appendix A.1 for details. Finally, we use the minimizer Qi and γi of (18) to compute

yi = Qiz
(i)
i + γi. The procedure is repeated for all i ∈ V \ V̂ to complete one level of

uncoarsening. The embedding points yi can be computed in parallel for i ∈ V \ V̂ .

So far we have assumed that V̂ has a self-repellent complement, and hence there is no
edge between vertices in V \ V̂ . If V \ V̂ is not self-repellent, then the above uncoarsening
scheme still works. On the other hand, the embedding quality can be improved as follows.
We keep a set of embedded vertices, denoted by V̄ , and replace the definition of Ni in (17)
by N̂i = {j ∈ V̄ : (i, j) ∈ E}. The set V̄ is initialized as V̂ , and has vertex i added whenever
yi is determined for i ∈ V \ V̂ . The points yi for i ∈ V \ V̂ can be embedded in random
order, or in the sequence that vertex i has the most embedded neighbors at the point right
before yi is embedded. The trade-off of this approach is that we lose the parallel nature of
the algorithm.

To summarize, we use yi for i ∈ V̂ as anchors to obtain yj for j ∈ V \ V̂ with the goal
to preserve local shapes. This idea has been exploited in RML (Lin and Zha, 2008) and
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GP (Goldberg and Ritov, 2009). The key difference is that instead of local PCA, we use
local Isomap to obtain the low dimensional local coordinates. Compared to the local PCA
approach, the uncoarsening presented here is economical since it does not have to compute
distances in the high dimensional space. In addition, we utilize the approximate geodesic
information which is better than the Euclidean distances in manifold learning.

3.3.2 Alternating Isometric Refining

Greedy isometric refining is simple and efficient. On the other hand, since G = (V, E)
contains more information than Ĝ = (V̂ , Ê), the embedding in the coarse level Ŷ = [yi]i∈bVi

may no longer be optimal with respect to G = (V, E). Therefore, we may modify the
existing yi for i ∈ Ê in order to improve the embedding quality.

Let Ni = {j ∈ V : (i, j) ∈ E} ∪ {i} for each vertex i ∈ V . We perform local Isomap on
vertices in Ni with the subgraph of G = (V, E) induced by Ni, and obtain a local embedding

Zi = [z
(i)
j ]j∈Ni

for i ∈ V . If V \ V̂ is self-repellent, then Zi obtained in this step is the same

as Z̃i in Section 3.3.1 for i ∈ V \ V̂ . We consider the program
{

minimize
Qi, γi

∑
i∈V ‖Yi −QiZi − γie

T
ni
‖2F

subject to QT
i Qi = Id, Qi ∈ R

d×d, γi ∈ R
d, ∀i ∈ V,

(19)

where Yi = [yj ]j∈Ni
contains the global coordinates and Zi = [z

(i)
j ]j∈Ni

contains the local
coordinates for all i ∈ V . As shown in Appendix A.1, when the minimum of ‖Yi −QiZi −
γie

T
ni
‖2F is reached, we have γi = 1

ni
(Yi−QiZi)eni

, where ni = |Ni|. Therefore, the program
(19) is equivalent to

{
minimize

Qi

∑
i∈V ‖(Yi −QiZi)Jni

‖2F
subject to QT

i Qi = Id, Qi ∈ R
d×d, ∀i ∈ V,

(20)

where Jni
= Ini

− 1
ni

eni
eT
ni

is the centering matrix.
Let Bi be the boolean selection matrix such that Yi = Y Bi for each i ∈ V . Then the

objective function of (20) can be written as

F(Y, {Qi}i∈V ) =
∑

i∈V

trace
(
(Y Bi −QiZi)Jni

(Y Bi −QiZi)
T
)
.

Note that Jni
is a projection matrix and therefore JT

ni
= Jni

= J2
ni

.
To minimize F in terms of Y , we set ∂F/∂Y = 0 and obtain

1

2
∂F/∂Y =

∑

i∈V

(Y Bi −QiZi)Jni
BT

i = Y (
∑

i∈V

BiJni
BT

i )− (
∑

i∈V

QiZiJni
BT

i ) = 0, (21)

which is a symmetric linear system with multiple right-hand sides Y . Since F is convex
in terms of Y , the condition (21) is necessary and sufficient to reach the minimum. It is
a standard orthogonal Procrustes problem to minimize ‖(Yi − QiZi)Jni

‖2F in terms of Qi

subject to QT
i Qi = I. See, for example, Appendix A.1. Therefore, it is straightforward to

minimize F in terms of Qi subject to QT
i Qi for i ∈ V . The discussion leads to an alternating

algorithm to solve (19).
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Note that Problem (19) is not convex. Therefore, a global solution is not guaranteed,
even though we alternatively solve the two subproblems optimally. Initialization is impor-
tant to get a good local solution, and we use the existing yi for i ∈ V̂ and the yj from the

greedy isometric refining method for j ∈ V \ V̂ for initialization.

Our discussion parallels that in the alternating algorithm for an isometric variant of
LTSA discussed in the appendix of Zhang and Zha (2004). There are two key differences.
First, instead of local PCA which relies on the high dimensional coordinates, we use local
Isomap with the geodesic information propagated in the coarsening phase. Second, the
initialization utilizes the embedding in the coarse level, which is not available in the setting
of Zhang and Zha (2004).

3.3.3 Conformal Refining

The isometric refining schemes in Sections 3.3.1 and 3.3.2 can be extended for conformal
refining as follows. We add a scale factor ci ≥ 0 to the program (18) and obtain

{
minimize

ci, Qi, γi

‖Ŷi − ci QiẐi − γie
T
ni
‖2F

subject to ci ≥ 0, QT
i Qi = Id, Qi ∈ R

d×d, γi ∈ R
d,

(22)

for each vertex i ∈ V \ V̂ . A solution to (22) is given in Appendix A.5, which follows Sibson
(1978). With the minimizer ci, Qi, γi of (22), we can embed yi = ciQizi−γi. The procedure
is repeated for all i ∈ V \ V̂ to complete one level of uncoarsening. We call the scheme
greedy conformal refining. If V \ V̂ is not self-repellent, an enhancement can be made in a
similar way to that of Section 3.3.1.

To improve the quality of the conformal embedding, we can add, for i ∈ V , a scalar
ci ≥ 0 to the program (19) and obtain

{
minimize

ci, Qi, γi

∑
i∈V ‖Yi − c QiZi − γie

T
ni
‖2F

subject to ci ≥ 0, QT
i Qi = Id, Qi ∈ R

d×d, γi ∈ R
d, ∀i ∈ V,

(23)

where Yi = [yj ]j∈Ni
contains the global coordinates and Zi = [z

(i)
j ]j∈Ni

contains the local
coordinates for all i ∈ V . The problem (23) can be solved sub-optimally by an alternating
algorithm similar to that for (19). We call the resulting method alternating conformal
refining. Note that the solution to (46) in Appendix A.1 is an ingredient for solving the
program (19), whereas we use the solution to (53) in Appendix A.5 for solving (23).

4. Algebraic Multilevel Nonlinear Dimensionality Reduction

We consider a class of spectral methods for manifold learning, including LLE, LE, and LTSA.
These methods use the bottom eigenvectors of a symmetric positive semidefinite matrix M
to define the embedding. The multilevel framework presented in this section can coarsen
the matrix M by restriction and uncoarsen the solution by prolongation, as it is common
in algebraic multigrid methods (AMG). Hence we call this framework algebraic. The goal
of this section is to develop multilevel techniques to incorporate LLE, LE, and LTSA. The
resulting methods are called multilevel LLE, multilevel LE, and multilevel LTSA.
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Recall that the symmetric matrix in Section 3 is built at the bottom level using the
geodesic information from the coarsening phase. The key difference here is that we construct
the symmetric positive semidefinite matrix M at the top level, and this matrix M is the
same as the one in the original manifold learning method.

Another type of spectral embedding is to use the low rank approximation of a symmetric
matrix, called a kernel matrix. Isomap and SDE are two such examples. To obtain a kernel
matrix, Isomap solves an all-pairs shortest path problem and SDE resorts to semidefinite
programming. In both cases, the aim is to preserve the isometry, and the cost of the kernel
matrix dominates the whole computation of manifold learning. For computational efficiency,
the geometric multilevel framework in Section 3 is favored for these two methods, as well
as for their conformal variants C-Isomap and C-SDE.

4.1 The Coarsening Phase

The manifold learning algorithms considered here utilize an affinity graph and eventually
compute the eigenvectors of a symmetric matrix M for embedding. The meaning of coars-
ening is twofold. The first is that of graph coarsening (geometric), and the second is that
of find a coarse representation of the symmetric matrix M in the form P T MP (algebraic),
where P is the prolongation matrix. However the two concepts are correlated closely with
each other. The discussion is focused on one level of coarsening. The extension for a mul-
tilevel mechanism is straightforward. We begin with LLE, and will generalize the scheme
for LTSA and LE.

4.1.1 Edge Weights of LLE

Consider LLE, which uses a directed affinity graph G = (V, E) with V = {1, . . . , n}, where
each edge (i, j) ∈ E is associated with a weight wij ∈ R. The weights form a matrix
W = [wij ] ∈ R

n×n, satisfying wij = 0 for (i, j) /∈ E.

Algorithm 1 can be used to coarsen the affinity graph G = (V, E) to obtain Ĝ = (V̂ , Ê),
where V̂ ⊂ V . To apply LLE with the coarse graph Ĝ = (V̂ , Ê), we need to assign a weight
ŵij ∈ R to each edge (i, j) ∈ Ê.

Without loss of generality, we reorder the vertex indices such that V̂ = {1, . . . , n̂}.
The objective is to find a prolongation matrix P ∈ R

n×bn and use its transpose P T as the
restriction matrix. This is standard in an algebraic multigrid (AMG) methods. Eventually
we will use P T to ‘restrict’ the weights wij of the fine graph G = (V, E) to obtain the

weights ŵij of the coarse graph Ĝ = (V̂ , Ê). The goal of the discussion here is to develop
this prolongation matrix P . While the derivation is inspired by the LLE algorithm, the
resulting P can be used with other manifold learning methods, such as LE and LTSA.

We impose the constraint Pebn = en, so that each element in Pv ∈ R
n is a weighted

average of elements of any given vector v ∈ R
bn. Unless otherwise noted, there is no as-

sumption that the weights are nonnegative, just like the case that the weights of LLE can
be negative. With the weights wij available, we can compute pij by

pij =





1, i = j;

0, i 6= j, i ∈ V̂ ;

wij/
∑

k∈bV
wik, i ∈ V \ V̂ .

(24)
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This formula (24) has been used by Wang and Zhang (2006) in the context of multilevel semi-
supervised clustering, where they constrain the weights to be symmetric and nonnegative,
which is not a restriction in our case.

In both LLE and diffusion maps, the weights satisfy
∑

k∈V wik = 1. We further assume

that V \ V̂ is self-repellent. Then wik = 0 for i, k ∈ V \ V̂ . Therefore we have
∑

k∈bV
wik = 1

for i ∈ V \ V̂ , which implies that in (24), pij = wij for i ∈ V \ V̂ .
There are manifold learning algorithms that do not require forming edge weights, e.g.,

LTSA. For these methods, we consider another approach. Let X = [xi]i∈V and X̂ = [xi]i∈bV
.

The following program is considered.





minimize
P∈Rn×bn

‖XT − PX̂T ‖2F
subject to

∑
bn
j=1 pij = 1 ∀i = 1, . . . , n;

pij = 0 ∀(i, j) /∈ E ∧ i 6= j.

(25)

This formulation (25) was adopted by Weinberger et al. (2005) for their L-SDE method,
in the setting where edge weights wij are not available. The justification is as follows. We

approximate each xi with i ∈ V \ V̂ by a weighted average of its neighbors in V̂ , i.e., xj

with (i, j) ∈ E and j ∈ V̂ . For i ∈ V̂ , the best approximation of xi is xi itself. In other
words,

∀i ∈ V̂ , pii = 1 and ∀i, j ∈ V̂ and i 6= j, pij = 0. (26)

Since we have reordered the vertex indices such that V̂ = {1, . . . , n̂}, the upper n̂-by-n̂
submatrix of P is an identity Ibn. The rest is to determine pij for i = n̂+1, . . . , n and
j = 1, . . . , n̂.

Let N̂i = {j : j ∈ V̂ ∧ (i, j) ∈ E}. We divide the program (25) into the following
subproblems for i ∈ V \ V̂ .

{
minimize

pij

‖xi −
∑

j∈ bNi
pijxj‖2

subject to
∑

j∈ bNi
pij = 1.

(27)

The program (27) is in the same form as that used in LLE to determine the weights, and
the minimizer can be found from solving a linear system. Aggregating the results from (26)
and (27), we obtain the minimizer P ∈ R

bn×n of (25).
If V \ V̂ is self-repellent, then all neighbors of vertex i are in V̂ for i ∈ V \ V̂ , in which

case (27) gives exactly the LLE weights, and therefore the solution to (25) is identical to
the weight formula (24).

Now we describe how to form a weight matrix Ŵ = [ŵij ] ∈ R
bn×bn for the coarse graph

Ĝ = (V̂ , Ê) with a given weight matrix W = [wij ] ∈ R
n×n of the fine graph G = (V, E)

using a prolongation matrix P ∈ R
n×bn. Denote by wi the row vector formed by the row

i of W , and by ŵi the row vector formed by the row i of Ŵ . By restriction, we compute
ŵi = wiP for i = 1 . . . , n̂. Equivalently, Ŵ ∈ R

bn×bn is formed by dropping the last n − n̂
rows of WP . To write this succinctly, we partition W and P as

W =
n̂ n−n̂

n̂
n−n̂

[
W11 W12

W21 W22

]
,

P =
n̂

n̂
n−n̂

[
Ibn

P2

]
.

(28)
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Then Ŵ = W11 + W12P2. Three properties should be noted.

1. If there is no edge between vertices i and j, then we would like the corresponding
weight to be zero. Since we constrain the prolongation matrix P = [pij ] to have

pij = 0 for i ∈ V \ V̂ and (i, j) /∈ E, this property is inherited in the weight matrix

Ŵ = [ŵij ] of the coarse graph Ĝ = (V̂ , Ê). That is, (i, j) /∈ Ê implies ŵij = 0, under
the assumption that (i, j) /∈ E implies wij = 0.

2. In both LLE and diffusion maps, the weight matrix W ∈ R
n×n satisfies Wen = en.

Since we impose the constraint Pebn = en, this property is also inherited in Ŵ , i.e.,
Ŵebn = ebn if Wen = en.

3. The diagonal of Ŵ may not be zero even if W has a zero diagonal. In other words,
the corresponding Ĝ = (V̂ , Ê) may contain self-edges. Definition 1 is still valid, but
Algorithm 1 should be revised to handle self-edges for the next level of coarsening.

4.1.2 Coarsening by Restriction

Given the input high dimensional data, LLE constructs an affinity graph, forms a weight
matrix W ∈ R

n×n which satisfies Wen = en, and eventually computes the bottom eigen-
vectors of (I −W )T (I −W ) for a low dimensional embedding. With a prolongation matrix
P ∈ R

n×bn, it is a natural attempt to treat P T (In−W )T (In−W )P as a coarse presentation
of (In −W )T (In −W ), and use the bottom eigenvectors of P T (In −W )T (In −W )P for an
embedding of the coarse level. The procedure is inspired by the algebraic multigrid methods
(AMG), and it can also be justified from the graph point of view as follows.

Recall that the weight matrix Ŵ of the coarse graph Ĝ = (V̂ , Ê) is obtained from
dropping the last n− n̂ rows of WP . We partition W and P into the form (28), and then
write (In −W )P as

(In −W )P = P −WP =

[
Ibn

P2

]
−

[
Ŵ

W21 + W22P2

]
=

[
Ibn − Ŵ

P2 −W21 −W22P2

]
. (29)

Now assume that V \ V̂ is self-repellent. Then there is no edge between vertices in
V \ V̂ , and hence W22 = 0. In addition, if P is from (24) and Wen = en, then P2 = W21.
Therefore, P2 −W21 + W22P2 = 0 in (29). That is, (In −W )P is essentially the same as

Ibn − Ŵ , except that the bottom n − n̂ rows of (In −W )P are zero. We conclude that if
V \ V̂ is self-repellent and the prolongation matrix P is obtained by (24), then

P T (In −W )T (In −W )P = (Ibn − Ŵ )T (Ibn − Ŵ ).

Thus, using the bottom eigenvectors of P T (In−W )T (In−W )P for embedding is equiv-

alent to applying LLE to the coarse graph Ĝ = (V̂ , Ê) with edge weights Ŵ . Even if V \ V̂
is not self-repellent, we can still use the eigenvectors of P T (In − W )T (In − W )P for an
embedding, ignoring the interpolation deviation P2 −W21 + W22P2 in (29).

Unlike LLE which uses a directed affinity graph, LE uses an undirected affinity graph
Ḡ = (V̄ , Ē) and forms a symmetric matrix W̄ ∈ R

n×n consisting of edge weights. We have
intentionally added a bar on the top of each symbol, to distinguish it from the notation
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used for LLE. As outlined in Appendix B.3, the embedding of LE is formed by the bottom
(generalized) eigenvectors of the Laplacian matrix L̄ = D̄ − W̄ , where D̄ is the diagonal
matrix formed by the elements in W̄en. Hence L̄ of LE plays the role of (In−W )T (In−W )
of LLE. The graph Ḡ of LE is intrinsically different from the graph G of LLE. Hence we
propose the following coarsening scheme for LE.

We use Algorithm 1 to find a representation V̂ of V , but do not use the edge set
Ê in Algorithm 1. The prolongation matrix P ∈ R

n×bn is obtained by (24). Since the
sparsity pattern of the Laplacian matrix L̄ is canonically associated with a graph, we use
P T L̄P to define the coarse graph and its edge weights, which are used for the next level of
coarsening. The idea of using the sparsity pattern to define a coarse graph has been utilized
in the multilevel semi-supervised clustering (Wang and Zhang, 2007).

4.2 The Dimensionality Reduction Phase

The manifold learning methods considered in this section use the bottom eigenvectors of a
symmetric positive semidefinite matrix, denoted by M , for embedding. To be specific, these
methods minimize trace(Y MY T ) subject to certain constraints. Three such examples are
listed below.

1. LLE minimizes trace(Y (In −W )T (In −W )Y T ) subject to Y Y T = In and Y en = 0,
where W is a generally asymmetric weight matrix which satisfies Wen = en.

2. LE minimizes trace(Y (D̄ − W̄ )Y T ) subject to Y D̄Y T = In and Y D̄en = 0, where W̄
is a symmetric weight matrix, D̄ is the diagonal matrix formed by elements in W̄en.

3. LTSA minimizes trace(Y (SHHT ST )Y T ) subject to Y Y T = In and Y en = 0, where
H is an aggregated transformation matrix and S is an aggregated boolean selection
matrix.

More information of these manifold learning methods can be found in Appendix B.
Using the multilevel coarsening scheme in Section 4.1, we obtain a succession of smaller
graphs G(1), . . . , G(r) which approximate the original affinity graph G(0). A sequence of
prolongation matrices P (1), . . . , P (r) are also generated concurrently. The corresponding
coarse versions of matrix M can be obtained by

M (l) = (P (l))T M (l−1)P (l), l = 1, . . . , r, (30)

where the base case is M (0) = M . Note that M (l) is symmetric positive semidefinite and
M (l)e = 0 for l = 0, . . . , r, where e is a column vector of ones of appropriate size.

In addition to (30), an alternative to obtain M (l) is to apply the original manifold
learning algorithm to X(l) = [xi]i∈V (l) with the affinity graph G(l) = (V (l), E(l)). We use
this way for multilevel LTSA since we found that it usually yields better embedding quality
than (30) in our experiments. On the other hand, we simply use (30) for multilevel LLE
and multilevel LE, since none of the two methods showed significant advantage over the
other.

At the bottom level, we compute the embedding using the coarsest M (r). To be more
specific, if the matrix M (0) at the top level is from LLE or LTSA, the embedding at the
bottom level is formed by the d eigenvectors corresponding to the second to the (d+1)st
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smallest eigenvalues of M (r). If M at the top level is from LE, we solve the generalized
eigenvalue problem M (r)v = λD(r)v, where D(r) is the diagonal matrix formed by the
diagonal of M (r). Then the embedding is formed by the d eigenvectors corresponding to
the second to the (d+1)st smallest generalized eigenvalues.

4.3 The Uncoarsening Phase

We present three schemes for uncoarsening the low dimensional embedding at the bottom
level. The first scheme follows the standard AMG approach (Saad, 2003; Trottenberg et al.,
2000). The other two schemes are inspired by the semi-supervised manifold learning (Ham
et al., 2005).

4.3.1 Refining by Prolongation

For simplicity, we first consider one level of coarsening and refining. A prolongation matrix
P can be obtained from solving (25), which approximates X by X̂P T . Hence it is natural
to apply the prolongation matrix P for refining, i.e., Y = Ŷ P T .

We have a sequence of prolongation matrices P (1), . . . , P (l) and the coarse embedding
Y (r) at the coarsest level. The uncoarsening is performed level by level via

Y (l−1) = Y (l)(P (l))T , l = r, r−1, . . . , 1, (31)

where Y (0) at the top level is an embedding of all input high dimensional points.

This refining method is generic, and can be used with a wide variety of manifolding
learning algorithms. Indeed, it is also applicable in the geometric multilevel framework
given in Section 3. The prolongation matrix can still be determined using the affinity
graphs in adjacent levels. If the edge weights are available, we can use the formula (24).
Otherwise, we can solve (25) with the high dimensional data. In both cases, we do not need
have to form a symmetric matrix used for spectral embedding at the top level. Hence (31)
can be incorporated in the framework in Section 3.

Note that (31) is a linear method. Chaining all the prolongation matrices across all
levels, the embedding at top level is Y (0) = Y (l)(P (l))T · · · (P (1))T , a linear projection of
the embedding at the bottom level. What follows are two nonlinear methods which aim
to minimize the same objective function of the manifold learning algorithm applied at the
bottom level.

4.3.2 Landmark-based Refining

Consider one level of refining for Y . Without loss of generality, we permute the columns
of Y ∈ R

d×n such that Y can be written as Y = [Y1, Y2], where the columns of Y1 ∈ R
d×bn

are the points in the lower dimensional space already embedded at the coarse level, and
Y2 ∈ R

d×(n−bn) contains the points to be determined. We also perform the corresponding
symmetric permutation and partition of M . The partitioned M and Y can be written as

M =
n̂ n−n̂

n̂
n−n̂

[
M11 M12

M21 M22

]
,

n̂ n−n̂
Y =

[
Y1 Y2

]
.

(32)
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Using the notation in (30) and (31), Y is Y (l−1), Y1 is Y (l), and M is M (l−1) at level l.

In LLE, LTSA, or LE, the objective function to minimize can be written as

trace(Y MY T ) = trace

([
Y1 Y2

] [
M11 M12

M21 M22

] [
Y T

1

Y T
2

])
(33)

= trace(Y1M11Y
T
1 ) + 2 trace(Y1M12Y

T
2 ) + trace(Y2M22Y

T
2 ).

We use the determined Y1 as landmarks, and set the gradient of trace(Y MY T ) in terms
of Y2 to be zero and obtain

∂

∂Y2
trace(Y MY T ) = Y1M12 + Y2M22 = 0 ⇒ Y2M22 = −Y1M12. (34)

The matrix M is symmetric positive semidefinite. Therefore so is M22, which implies
that the quadratic optimization problem is convex. Hence (34) implies that Y2 is a global
minimizer and vice versa. In LE, M is the graph Laplacian, which is a discrete version of
the continuous Laplacian operator, and the condition (34) means that the corresponding
continuous function y is harmonic in the unsupervised part (Zhu et al., 2003).

In the proposed multilevel framework the matrix M in (33) and (34) is substituted by
the coarse M (l) defined in (30) at each uncoarsening level l = r−1, r−2 . . . , 0, where we have
M (0) = M at the top level. Note that the prolongation matrix P (l) has full column rank
for l = 1, . . . , r. Recall that the positive semidefiniteness of M is inherited by all coarsened
matrices M (1), . . . , M (r).

Sometimes the matrix M can be written as AAT and therefore trace(Y MY T ) = ‖Y A‖2F .
For example, we have A = (I −W )T in LLE and A = SH in LTSA. See Appendix B for
more information. In such cases, we can simply minimize

‖Y A‖2F =

∥∥∥∥
[

Y1 Y2

] [
A1

A2

]∥∥∥∥
2

F

= ‖Y1A1 + Y2A2‖2F , (35)

where we partition the rows of A corresponding to to the column partition of Y . Note that
minimizing (35) in terms of Y2 is a standard least square problem, which is equivalent to
solving the following linear system for Y2

Y2(A2A
T
2 ) = −Y1A1A

T
2 . (36)

This in turn is equivalent to (34), since A2A
T
2 = M22 and A1A

T
2 = M12.

Note that this strategy can be extended to a multilevel version. More precisely, at level
l, we use A(l) = (P (l))T A(l−1) to replace A in (35) and (36) for l = 1, . . . , r. At the top level
we have A(0) = A.

4.3.3 Regularized Regression Refining

In the landmark-based refining, once a point is embedded in the low dimensional space,
it is fixed. Here we consider a related alternative which allows to alter existing embedded
points in the uncoarsening phase. Let Y = [yi]i∈V be the embedding of the fine level to
be determined, and Ŷ = [ŷi]i∈bV

be the embedding from the coarse level which has been
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determined, where V̂ ⊂ V . We also let Y1 = [yi]i∈bV
. With the embedded points ŷi for

i ∈ V̂ ⊂ V from the coarse level, we minimize in terms of Y ,

trace(Y MY T ) +
∑

i∈bV

ci‖yi − ŷi‖2 = trace(Y MY T ) + ‖(Y1 − Ŷ )C1/2‖2F , (37)

where ci > 0 is a preset penalty parameter and C ∈ R
bn×bn is the diagonal matrix formed

by ci for i ∈ V̂ . The first term of (37) corresponds to the smooth constraint and the second
term corresponds to the fitting constraint in semi-supervised learning (Ham et al., 2005;
Zhou et al., 2003).

Setting the gradient of (37) to be zero, we obtain

Y M + (Y1 − Ŷ )
[

C Z
]

= 0 ⇒ Y

[
M11 + C M12

M21 M22

]
=

[
Ŷ C Z

]
, (38)

where Z is the zero matrix of size n̂-by-(n−n̂), and we have partitioned M as that in (32).
Driving min{ci : i ∈ V̂ } → ∞, then there is no tolerance of the fitting constraint; hence

Y1 = Ŷ and the solution to (38) converges to a solution to (33). In practice, we set the
fitting parameter ci = c > 0 straight for i ∈ V̂ for simplicity.

5. Embedding Quality Assessment

The quality of the nonlinearly mapped data can be evaluated in various ways, e.g., the
measurement of isometric error and the conformal error (Goldberg and Ritov, 2009; Sibson,
1978). For a proximity preserving embedding, we can use a rank-based method to assess
the quality (Lee and Verleysen, 2009; Venna and Kaski, 2006).

5.1 Isometric Measurement

Given X = [x1, . . . , xn] ∈ R
m×n and Y = [y1, . . . , yn] ∈ R

d×n, the Procrustes static (Gold-
berg and Ritov, 2009; Sibson, 1978) is defined as

G(X, Y ) = min
Q,γ; QT Q=Id

n∑

i=1

‖xi −Qyi − γ‖2 = min
Q,γ; QT Q=Id

‖X −QY − γeT
n‖2F . (39)

The minimization can be transformed to solving a singular value problem. See, for example,
Appendix A.1. If X and Y consist of close sample points on two manifolds Ω ⊂ R

d and
M ⊂ R

n, respectively, then (39) measures the local isometric error. See Appendix A.4 for
a discussion.

A manifold learning algorithm maps the input X = [x1, . . . , xn] ∈ R
m×n to the output

Y = [y1, . . . , yn] ∈ R
d×n. Let N1, . . . ,Nn be the neighborhood sets of the n points. We

define Xi = [xj ]j∈Ni
and Yi = [yj ]j∈Ni

as matrices consisting of the neighborhood points
of xi and yi, respectively. We consider the isometric-preserving algorithms, such as Isomap
and SDE, and define the isometric measure by

R(X, Y, {Ni}ni=1) =
1

n

n∑

i=1

G(Xi, Yi), (40)
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and the normalized isometric measure by

RN (X, Y, {Ni}ni=1) =
1

n

n∑

i=1

G(Xi, Yi)/‖XiJ|Ni|‖F , (41)

where Jk = Ik − 1
keke

T
k is the centering matrix. Both (40) and (41) measure the isometric

errors. They were introduced by Goldberg and Ritov (2009).

5.2 Conformal Measurement

For conformal measurement, we add a scale factor c ≥ 0 into (39) and obtain

GC(X, Y ) = min
c≥0, Q,γ; QT Q=Id

n∑

i=1

‖xi−c Qyi−γ‖2 = min
c≥0, Q,γ; QT Q=Id

‖X−c QY −γeT
n‖2F . (42)

Appendix A.5 provides a solution to (39) which, to our knowledge, was first given by Sibson
(1978). If X and Y consist of close sample points on two manifolds Ω ⊂ R

d and M⊂ R
n,

respectively, then (39) measures the local conformal error.
Relying on (42), Goldberg and Ritov (2009) introduced the normalized conformal mea-

sure

RC(X, Y, {Ni}ni=1) =
1

n

n∑

i=1

GC(Xi, Yi)/‖XiJ|Ni|‖F , (43)

where Jk = Ik− 1
keke

T
k is the centering matrix. This measure (43) is essentially the conformal

error, which is used to access the embedding quality of a manifold learning algorithm which
aims to preserve local angles, e.g., C-Isomap.

5.3 Rank-based Criteria

We describe two rank-based evaluation metrics, the trustworthiness and continuity of the
proximity relationships of data entries (Venna and Kaski, 2006). Other rank-based criteria
can be found in Lee and Verleysen (2009).

Let x1, . . . , xn be the points in the high dimensional space, and y1, . . . , yn be the mapped
points in the low dimensional space. Denote by r(i, j) the rank of xj in the ordering
according to the distance from xi. The longest vertex xj from xi has r(i, j) = 1, and the
shortest vertex xj from xi has r(i, j) = n−1. Likewise, denote by r̄(i, j) the rank of yj

in the ordering according to the distance from yi. In the case of ties in rank ordering, all
compatible rank orders are assumed equally likely. The trustworthiness is defined by

T (h) =
2

nh(2n− 3h− 1)

n∑

i=1

∑

j∈Uh(i)

(r(i, j)− h), (44)

where Uh(i) contains the indices of h nearest neighbors of yi in the low dimensional space.
The continuity is defined by

C(h) =
2

nh(2n− 3h− 1)

n∑

i=1

∑

j∈Vh(i)

(r̄(i, j)− h), (45)
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where Vh(i) contains the indices of h nearest neighbors of xi in the high dimensional space.
Note that we have modestly assumed the parameter h < N/2.

The higher the trustworthiness or continuity, the better the manifold mapping. Both
T (h) and C(h) are bounded above by 1. The upper bound 1 is reached if and only if
Uh(i) = Vh(i) for i = 1, . . . , n, which means that the h nearest neighbors for each data entry
in the high dimensional space coincide with those in the low dimensional space.

The larger the number of neighbors h, the lower the value of the trustworthiness T (h)
and the continuity C(h). In practice, it is typical to use a kNN graph in a manifold learning
algorithm. Hence we set h as k, the number of nearest neighbors for each vertex in the
kNN graph. In general, Uh(i) in (44) and Vh(i) in (45) can be replaced by Ni, the set of
neighbors of vertex i.

6. Experiments

This section illustrates the application of the proposed multilevel manifold learning methods.
We incorporate the following nonlinear dimensionality reduction methods into the multilevel
framework: Isomap, C-Isomap, LLE, LE, LTSA, SDE, and C-SDE. Note that C-SDE is a
conformal variant of SDE described in Section 2.2.3, whereas the other 6 methods are from
the literature. See Table 1.

All experiments were performed in Matlab on a PC equipped with a four-core Intel
Xeon E5504 @ 2.0GHz processor and 4GB memory. The kNN graph construction is by a
brute-force algorithm, which can be improved by an approximation algorithm (Chen et al.,
2009). We used a C/C++ implementation of Dijkstra’s algorithm (Dijkstra, 1959) by John
Boyer to solve the all-pair shortest path problem, which arises in Isomap and C-Isomap. We
used the software package CSDP (Borchers, 1999) to solve the semidefinite programming
problems in SDE and C-SDE, where we set the maximum number of iterations to 50.
We use the same setting when these manifold learning methods are incorporated into the
multilevel frameworks. In addition, in the geometric framework, if the alternating isometric
or conformal refining method is used, we set the number of iterations to 8. See Section 3.3.2.
In the algebraic framework, if the regularized regression refining method is used, we set the
fitting parameter c = 1. See Section 4.3.3.

The results using 4 synthetic data sets are displayed in Section 6.1. Sections 6.2 and 6.3
report the experiments on Sculpture Face images and Frey Face video frames, respec-
tively. The primary goal here is to show the effect of the multilevel schemes in the embedding
rather than the computational savings. The intrinsic dimension is assumed known in all
experiments. In Section 6.4 we illustrate an application of the multilevel techniques to
intrinsic dimension estimation.

6.1 Synthetic Data

We experimented on 4 synthetic data sets: Swissroll, Swisshole, Conformal Fishbowl,
and Uniform Fishbowl. They are all two-dimensional manifolds in three-dimensional space.
Each data set contains n = 800 sample points on the manifold M = f(Ω), as shown in
the first row of Figure 4. The second row gives the plots of the corresponding points in
the parameter space Ω. The results of applying the 7 manifold learning methods are also
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displayed in Figure 4. In all we used a kNN graph with k = 7, except for that in LLE the
kNN graph was with k = 12. We have also included PCA for comparison purposes.

We refer to Figure 4. Compared to Swissroll, Swisshole has a hole made in it. There
exists an isometry for each of them, and the isometric mapping is successfully discovered by
SDE. The Swissroll has a convex parameter space Ω, whereas Swisshole does not. Recall
that Isomap assumes the parameter space is convex. This explains that Isomap performs
well on Swissroll but generates a distorted image using Swisshole. We will show that
multilevel Isomap relaxes the convexity assumption to some degree. PCA is a linear method
and hence cannot unfold Swissroll or Swisshole. LTSA uses local tangent subspaces and
preserves certain geometric information. LLE and LE, both relying on the proximity of
points, reveal the topology of Swissroll or Swisshole.

The Conformal Fishbowl and Uniform Fishbowl data sets are both generated with
the manifold mapping f : Ω ⊂ R

2 →M⊂ R
3 defined by

f(s, t) =

(
s

1 + s2 + t2
,

t

1 + s2 + t2
,

s2 + t2

1 + s2 + t2

)
.

One can verify that its Jacobian Jf satisfies

JT
f Jf =

1

(1 + s2 + t2)2
I2.

Hence the condition (8) in Section 2.1.3 is satisfied and the mapping f is conformal. This
mapping f has non-negotiable Gaussian curvature; therefore a corresponding isometry does
not exist. As a result, it is inappropriate to seek an isometric embedding.

The Conformal Fishbowl has y1, . . . , yn uniformly distributed in the parameter space
Ω. Therefore it satisfies the assumption of C-Isomap, which is followed by C-SDE. See the
discussion in Section 2.2.3. As one can expect, both C-Isomap and C-SDE nicely discover
the conformal mapping of Conformal Fishbowl.

On the other hand, the Uniform Fishbowl has x1, . . . , xn uniformly distributed in the
manifold foldM = f(Ω). As exhibited in Figure 4, the mappings obtained by C-Isomap and
C-SDE do not really match the conformal parameterization, since the assumption discussed
in Section 2.2.3 does not hold. We will show that multilevel C-Isomap and multilevel C-SDE
can recover the conformal mapping to some extent.

Figures 5 to 8 demonstrate some results of multilevel methods. In all we used a kNN
graph with k = 7, except for that in LLE and multilevel LLE, the kNN graph was with k =
12. In both geometric and algebraic multilevel frameworks, we set the degree of dependency
p = k − 1 and did not impose the self-repellent complement constraint. See Definition 1.
In the geometric multilevel framework, we used the alternating refining techniques in the
uncoarsening phase. See Section 3.3. In the algebraic multilevel framework, we used the
landmark-based refining method in the uncoarsening phase. See Section 4.3.

We use the embedding quality measures described in Section 5. For Isomap and SDE
which aim for an isometric embedding, we use the normalized isometric measure RN defined
in (41). For C-Isomap and C-SDE which aim for a conformal embedding, we use the normal-
ized conformal measure RC defined in (43). For LTSA, LLE, and LE, we use the rank-based
measures trustworthiness T and continuity C, defined in (44) and (45), respectively. The
objectives of these manifold learning methods are followed while they are incorporated into
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Figure 4: Results using 4 synthetic data sets.
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multilevel framework. Hence we still the corresponding embedding quality measure. The
measurement, as well as the number of sample points nr at the bottom level r, is shown in
each plot in Figures 5 to 8.

Figure 5 shows some two-dimensional mappings of Swisshole. The embedding by
Isomap is unsatisfactory, due to the fact that the parameter space of Swisshole is not
convex. The multilevel Isomap represents a substantial improvement over standard Isomap,
since the isometric refining techniques aim directly to preserve local shapes. See Sec-
tions 3.3.1 and 3.3.2 for details. On the other hand, SDE does not require a convex
parameter space and works very well on Swisshole, and the embedding quality of mul-
tilevel SDE is somewhat worse. However, recall that SDE resorts to the computationally
expensive semidefinite programming which dominates the whole computation. The gain of
multilevel SDE is the computational savings. In this example, CSDP (Borchers, 1999) took
462.44 seconds to solve the semidefinite program of SDE, whereas it took 290.09, 76.49, and
7.39 seconds to solve the semidefinite programs of multilevel SDE with the number of levels
r = 1, 2, 3, respectively.
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Figure 5: 2D mappings of Swisshole by multilevel Isomap & multilevel SDE.

Figure 6 shows some two-dimensional mappings of Uniform Fishbowl. In this case
the sample points are uniformly distributed on the manifold instead of in the parameter
space. Hence the conformal assumption in Section 2.2.3 is not satisfied. As one can expect,
multilevel C-Isomap is a better scorer than C-Isomap. Indeed, the mappings by multilevel
C-Isomap are visually similar to the parameter plot of Uniform Fishbowl in Figure 4.
Compared to C-SDE, multilevel C-SDE improved the conformal measurement at a reduced
cost. However, the rim of the embedding by multilevel C-Isomap or multilevel C-SDE is
prone to be bent, since the conformal refining strategies in Section 3.3.3 preserve local angles
rather than the global structure.

For LLE, LE, and LTSA, the multilevel schemes did not necessarily improve the mea-
surements with respect to the rank-based criteria trustworthiness (44) and continuity (45).
However, in the multilevel framework the eigenvalue problem at the bottom level can be
much smaller. The computational savings can be significant with an efficient C or Fortran
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Figure 6: 2D mappings of Uniform Fishbowl by multilevel C-Isomap & multilevel C-SDE.

implementation of the multilevel techniques. Figure 7 and 8 show some two-dimensional
mappings of Swissroll and Conformal Fishbowl, respectively.
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Figure 7: 2D mappings of Swissroll by multilevel LLE & multilevel LE.

In Section 3, we present two uncoarsening strategies for the geometric multilevel frame-
work: greedy isometric or conformal refining and alternating isometric or conformal refining.
The latter is more expensive but improves the embedding quality significantly. In Section 4,
we present three refining strategies for the algebraic multilevel framework: prolongation re-
fining, landmark-based refining, and regularized regression refining. Here we displayed only
the results from the landmark-based refining. The prolongation refining and regularized
regression refining also generated comparable results and there is no significant difference
in the embedding quality. In the following experiments, we will give more details of com-
parison.
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Figure 8: 2D mappings of Conformal Fishbowl by multilevel LTSA & multilevel LLE.

Note that in all experiments reported, we did not impose the self-repellent complement
constraint. The self-repellent complement is a strong constraint which results in slow and
damped coarsening. For example, if we impose the constraint for a self-repellent comple-
ment, using Swissroll with a directed kNN graph with k = 7 and degree of dependency
p = 1, the numbers of vertices at level l = 0, . . . , 5 are 800, 658, 578, 527, 493, 466, respec-
tively. The numbers are unchanged for p = 2, . . . , 6.

6.2 Sculpture Face Images

The Sculpture Face data set (Tenenbaum et al., 2000) contains 698 images of size 64-by-64
in grayscale of a sculpture face rendered with different poses and lighting directions2. Within
the 4,096-dimensional input space, all of the images lie on an intrinsically three-dimensional
manifold, that can be parameterized by three variables: left-right pose, up-down pose, and
the lighting direction.

Table 2: Quality assessments of 2D mappings of Sculpture (k = p = 6), Part I.
# # Isomap (RN ) SDE (RN ) LE

levels points greedy alter. greedy alter. # pts. regress. refining
r nr refining refining refining refining nr trust. conti.

0 698 0.695 0.695 0.474 0.474 698 0.977 0.988
1 501 0.688 0.516 0.546 0.516 501 0.978 0.987
2 298 0.704 0.514 0.568 0.514 248 0.978 0.987
3 131 0.739 0.514 0.651 0.514 50 0.982 0.989

Tables 2 and 3 report the quality measurements of the results using a kNN graph with
k = 6 and embedding dimension d = 3. The best scores in each column are in boldface. In
the multilevel frameworks, we set the degree of dependency to p = 6 and did not impose the

2. http://isomap.stanford.edu/datasets.html
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Table 3: Quality assessments of 2D mappings of Sculpture (k = p = 6), Part II.
# # LLE LTSA

levels points eval. prolong. landmark. regress. prolong. landmark. regress.
r nr refining refining refining refining refining refining

0 698
trust. 0.909 0.909 0.909 0.874 0.874 0.874
conti. 0.971 0.971 0.971 0.968 0.968 0.968

1 555
trust. 0.920 0.920 0.920 0.951 0.950 0.949
conti. 0.972 0.972 0.972 0.987 0.987 0.987

2 367
trust. 0.948 0.948 0.948 0.980 0.979 0.980
conti. 0.984 0.984 0.984 0.983 0.983 0.983

3 200
trust. 0.932 0.933 0.935 0.986 0.985 0.986
conti. 0.985 0.985 0.985 0.985 0.985 0.986

self-repellent complement constraint. See Definition 1. The number of levels r = 0 means
that the original manifold learning method was applied without being multilevel.

Note that both multilevel Isomap and multilevel SDE use an undirected affinity graph
and the same graph coarsening method; therefore the number of vertices at each level is the
same in Table 2. both multilevel LLE and multilevel LTSA use an directed affinity graph
and the same graph coarsening method; therefore the number of vertices at each level is
the same in Table 3. As discussed in Section 4.1, multilevel LE uses the sparsity pattern
of the coarse weight matrix to determine the coarse graph. This is different from the other
methods.

We use the normalized isometric measure RN , defined in (41), for multilevel Isomap
and multilevel SDE. Both methods rely on the geometric framework in Section 3 with
two uncoarsening strategies: greedy refining and alternating refining. Both strategies were
tested. From Tables 2 it is clear that the alternating refining improved the result with
greedy refining. While multilevel Isomap with alternating isometric refining outperformed
Isomap, the advantage of multilevel SDE, compared to SDE, was the computational savings.

The evaluation criteria we used for multilevel LE, multilevel LLE, and multilevel LTSA
are trustworthiness and continuity, defined in (44) and (45), respectively. These meth-
ods utilize the algebraic framework with three refining strategies: prolongation refining,
landmark-based refining, and regularized regression refining. As shown in Table 3, the
embedding quality is insensitive to the refining strategy applied in multilevel LLE and mul-
tilevel LTSA, which improved the results of LLE and LTSA, respectively. This remark still
holds for multilevel LE. Due to the limit of space, we report only the measurements with
the regularized regression refining for multilevel LE in Table 2.

Figure 9 illustrates the two-dimensional mappings using Isomap and multilevel Isomap,
where we set the number of neighbors per vertex in the kNN graph to k = 6 and the degree
of dependency to p = 6 in the multilevel coarsening, and used the greedy isometric refining
method in multilevel uncoarsening. Observe that in these plots, each coordinate axis of
the embedding correlates highly with one degree of freedom underlying the original data:
left-right pose is correlated with the x axis, and the up-down pose with the y axis.
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Figure 9: 2D mappings of Sculpture Face images by Isomap and multilevel Isomap.
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6.3 Frey Face Video Frames

The Frey Face data set (Saul and Roweis, 2003) contains 1,965 face images of a single
person, Brendan Frey, taken from sequential frames of a small video3. Each image is of size
20-by-28 in grayscale, and hence in 560-dimensional space after vectorization.

Table 4: Quality assessments of 2D mappings of Frey Face (k = p = 6), Part I.
# # Isomap (RN ) SDE (RN ) LE

levels points greedy alter. greedy alter. # pts. regress. refining
r nr refining refining refining refining nr trust. conti.

0 1965 0.784 0.783 0.666 0.666 1965 0.946 0.981
1 1326 0.782 0.676 0.719 0.673 1326 0.948 0.981
2 653 0.796 0.669 0.748 0.671 514 0.951 0.981
3 231 0.875 0.666 0.828 0.665 83 0.955 0.983

Table 5: Quality assessments of 2D mappings of Frey Face (k = p = 6), Part II.
# # LLE LTSA

levels points eval. prolong. landmark. regress. prolong. landmark. regress.
r nr refining refining refining refining refining refining

0 1965
trust. 0.899 0.899 0.899 0.796 0.796 0.796
conti. 0.964 0.964 0.964 0.927 0.927 0.927

1 1517
trust. 0.900 0.988 0.899 0.901 0.896 0.899
conti. 0.954 0.964 0.964 0.964 0.960 0.961

2 896
trust. 0.948 0.948 0.949 0.925 0.907 0.912

conti. 0.980 0.980 0.980 0.964 0.953 0.957

3 441
trust. 0.944 0.945 0.947 0.883 0.868 0.866
conti. 0.974 0.974 0.975 0.954 0.942 0.947

Our experimental setting is much the same as that for the Sculpture Face data set. We
used a kNN graph with k = 6 and embedding dimension d = 3. The quality measurements
are reported in Tables 4 and 5, in the same format of Tables 2 and 3, respectively.

The conclusion from Tables 4 and 5, summarized as follows, is also much similar to
that of the experiments on the Sculpture Face images. For multilevel Isomap and mul-
tilevel SDE, the alternating refining method improved the greedy refining method at an
extra cost. In addition, multilevel Isomap with alternating isometric refining outperformed
Isomap. Compared to SDE, multilevel SDE can hardly generate a better embedding but
the computational savings are significant. The multilevel techniques improved LLE, LE and
LTSA, no matter whether the uncoarsening strategy prolongation refining, landmark-based
refining, or regularized regression refining was applied.

Figure 10 illustrates the two-dimensional mappings of the these images obtained by
LTSA and multilevel LTSA, where we set the number of neighbors per vertex in the kNN
graph to k = 20 and the degree of dependency to p = 12 in the multilevel coarsening,

3. http://cs.nyu.edu/~roweis/data.html
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Figure 10: 2D mappings of Frey Face images by LTSA and multilevel LTSA.
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and used the landmark-based refining method in multilevel uncoarsening. We can observe
that all plots exhibits two intrinsic attributes, i.e., pose (left-right) and expression (serious-
happy), which are correlated with the coordinate axes.

6.4 Application to Intrinsic Dimension Estimation

Both Isomap and SDE form a kernel matrix K and use a rank-d positive semidefinite matrix
Kd to approximate K. The eigen-spectrum of K, or more precisely the ‘significant’ rank of
K, provides a good estimate of the intrinsic dimension (Tenenbaum et al., 2000; Weinberger
and Saul, 2006).

We plot ‖K−Kd‖F /‖K‖F as a function of d, and find the ‘elbow’ point as an indicator of
the intrinsic dimension. When Isomap or SDE is incorporated into the multilevel framework,
we have a coarse version of the kernel at the bottom level. By abuse of notation, we also
denote this coarse kernel by K. The elbow point of ‖K−Kd‖F /‖K‖F with the coarse K can
still be useful for intrinsic dimension estimation. The proposed method is very inexpensive,
since at the bottom level the coarse kernel can be much smaller and therefore cheaper to
obtain.

To verify whether this strategy works in practice, we used the Sculpture Face and Frey

Face data sets for experiments. The results are shown in Figures 11 and 12, respectively.
In both cases, we used a kNN graph with k = 6, and set the degree of dependency p = 6 in
the multilevel framework.
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Figure 11: Intrinsic dimension estimation of Sculpture Face images.

In both plots of Figure 11, the elbow point is clearly at d = 3 in all cases, with the
kernel K from Isomap, multilevel Isomap, SDE, or multilevel SDE. This confirms that the
intrinsic dimension is 3. Note that the indicator from SDE or multilevel SDE is sharper
than that from Isomap or multilevel Isomap. On the other hand, SDE is computationally
more expensive because it involves semidefinite programming. The same conclusion can be
drawn from Figure 12, except for that the elbow is getting ambiguous when the number of
levels reaches r = 3.
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Figure 12: Intrinsic dimension estimation of Frey Face images.

7. Conclusion

We present two multilevel frameworks for nonlinear dimensionality reduction; one is geo-
metric and the other is algebraic. The coarsening method can be applied to both directed
graphs and undirected graphs. It relies on the dependency between vertices, a parameter
that can be used to control the coarsening speed.

The geometric framework propagates the geodesic information in the coarsening phase
and allows isometric refining or conformal refining level by level in the uncoarsening phase.
It is especially suitable to incorporate the manifold learning algorithms which aim to find
an isometric or conformal embedding, such as Isomap, C-Isomap, and SDE.

The uncoarsening phase minimizes isometric or conformal error. It relaxes the convexity
assumption in Isomap and the assumption of uniformly distributed samples in C-Isomap to
some extent. Our experiments exhibit remarkable improvements by multilevel Isomap and
multilevel C-Isomap when these assumptions do not hold.

The algebraic framework is useful for manifold learning algorithms which minimizes
a function in the form Y MY T for an embedding Y , subject to certain constraints. The
embedding can be obtained from solving a symmetric eigenvalue problem. Examples include
LLE, LE, and LTSA. In our experiments, multilevel LLE, multilevel LE, and multilevel
LTSA often improved the embedding quality with appropriate parameters.
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Appendix A. Orthogonal Procrustes Problem, PCA, and MDS

We study the orthogonal Procrustes problem in a general form, establish a relation to the
principal component analysis (PCA), and show the equivalence between the PCA and the
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classical multidimensional scaling (MDS). Applications to isometric analysis and extensions
for conformal analysis are also presented. Similar results can be found in the literature
(Goldberg and Ritov, 2009; Golub and Van Loan, 1996; Schonemann, 1966; Sibson, 1978;
Zhang and Zha, 2004). Here we give a unified view.

A.1 Orthogonal Procrustes Problem

The orthogonal Procrustes problem and its variants have been well studied with wide ap-
plications. We consider the general form, called the Procrustes static (Goldberg and Ritov,
2009; Sibson, 1978) as follows.

{
minimize

Q, γ
‖X −QY − γeT

n‖2F
subject to QT Q = Id, Q ∈ R

m×d, γ ∈ R
m,

(46)

where X = [x1, . . . , xn] ∈ R
m×n and Y = [y1, . . . , yn] ∈ R

d×n (d ≤ n) are input data and
en ∈ R

n is a vector of ones. In practice, it happens often that d = n and/or the term γeT
n

is dropped. At first glance, the goal is to find a matrix Q for rotation and a vector γ for
translation such that xi ≈ Qyi + γ for i = 1, . . . , n.

Let Z = X − QY . We treat Z as a constant and minimize ‖Z − γeT
n‖2F in terms of γ.

The objective function can be written as F(γ) = trace
(
(Z − γeT

n )T (Z − γeT
n )

)
, which is a

strictly convex function. The minimum of F is reached if and only if its gradient is zero.
That is, ∇F = −2(Zen − nγ) = 0. Therefore, the minimizer is γ = 1

nZen. Substituting it
back to (46), we obtain

{
minimize

Q
‖X̄ −QȲ ‖2F

subject to QT Q = Id, Q ∈ R
m×d,

(47)

where X̄ = XJn and Ȳ = Y Jn, with Jn = In − 1
neneT

n the centering matrix, which rigidly
translates the columns of a matrix such that the mean is at the origin, i.e., X̄en = 0 and
Ȳ en = 0.

We rewrite the objective function of program (47) as:

‖X̄ −QȲ ‖2F = trace(X̄T X̄) + trace(Ȳ T Ȳ )− 2 trace(QȲ X̄T ).

Since trace(X̄T X̄) and trace(Ȳ T Ȳ ) are constant, we maximize trace(QȲ X̄T ). Let Ȳ X̄T =
UΣV T be the singular value decomposition of Ȳ X̄T in reduced form, where UT U = Id,
V T V = Id, and Σ = diag(σ1, . . . , σd). Then we have

trace(QȲ X̄T ) = trace(QUΣV T ) = trace(V T QUΣ) ≤
d∑

i=1

σi.

Let W = QU . Then W T W = Id, along with V T V = Id, gives the property that V T W has
all elements bounded by 1, which implies the last inequality.

The maximizer of trace(QȲ X̄T ) is

Q = V UT , Ȳ X̄T = UΣV T , (48)
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which makes trace(V T QUΣ) =
∑d

i=1 σi. This Q = V UT is also the minimizer of (47), no
matter whether the columns of X̄ and the columns of Ȳ are centered at the origin or not.
In other words, the solution still works for (46), if the term γeT

n for translation is dropped.
The orthogonal projection matrix Q ∈ R

d×m and the translation vector γ ∈ R
m which

form the minimizer of (46) can be used to map the out-of-sample data. This property is
utilized in RML (Lin and Zha, 2008) and GP (Goldberg and Ritov, 2009). To be specific,
given an additional y ∈ R

d, we can map it to x = Qy + γ. Given an additional x ∈ R
m, we

can map it to y = QT (x−γ), which minimizes ‖x−Qy−γ‖, where QT is the Moore-Penrose
pseudo-inverse of Q because QT Q = Id. Instead, one may use (47) to remove the freedom
of translation.

A.2 Relation to PCA

A relation of (46) to the principal component analysis (PCA) can be established as follows.
We relax Y ∈ R

d×n in (46) and consider:
{

minimize
Y,Q, γ

‖X −QY − γeT
n‖2F

subject to Y ∈ R
d×n, QT Q = Id, Q ∈ R

m×d, γ ∈ R
m.

(49)

We assume d < n or the problem is trivial. In a similar vein to (47), we can get rid of the
term γeT

n in (49) and rewrite the objective function as ‖X̄−QY Jn‖2F , where X̄ = XJn and
Jn = In − 1

neneT
n . The difference is that now Y is a variable. Hence the only constraint

to QY is that the rank is at most d. This is a standard low rank approximation problem
except for the factor Jn in ‖X̄ −QY Jn‖2F . However, this factor Jn has no effect in the low
rank approximation, since X̄en = 0 and Jn is a projector which deflates only en.

To be precise, we minimize ‖X̄ − A‖ subject to rank(A) ≤ d, where X̄en = 0. The
minimizer is A = UdΣdV

T
d , where UdΣdV

T
d is the rank-d truncated SVD of A (Golub

and Van Loan, 1996). This A = UdΣdV
T
d is also the minimizer of ‖X̄ − AJn‖ under the

same constraint rank(A) ≤ d, since X̄en = 0 implies UdΣdV
T
d Jn = UdΣdV

T
d . Note that

here A plays the role of QY in (49). Hence Q = Ud and Y = ΣdV
T
d , along with γ =

1
n(X − UdΣdV

T
d )en, constitute a minimizer of (49), where UdΣdV

T
d is the rank-d truncated

SVD of XJn.
The solution to (49) is equivalent to applying PCA to X = [x1, . . . , xn] ∈ R

m×n for a
low dimensional embedding Y = [y1, . . . , yn] ∈ R

d×n. To be specific, PCA projects xi ∈ R
m

to yi ∈ R
d by yi = QT xi for i = 1, . . . , n, where QT Q = Id. The goal is to maximize the

variance of y1, . . . , yn:

n∑

i=1

‖yi−
1

n

n∑

j=1

yj‖2 =
n∑

i=1

‖yi−
1

n
Y en‖2 = ‖Y − 1

n
Y eneT

n‖2F = ‖QT X(In−
1

n
eneT

n )‖2F , (50)

where X(In − 1
neneT

n ) = XJn = X̄. Denote by UdΣdV
T
d the rank-d truncated SVD of X̄.

The minimizer of (50) is Q = Ud, yielding Y = UT
d X = ΣdV

T
d . The equivalence is clear.

A.3 Equivalence between PCA and MDS

PCA projects given x1, . . . , xn ∈ R
m to y1, . . . , yn ∈ R

d. On the other hand, MDS takes a set
of dissimilarities δij and returns a set of points y1, . . . , yn ∈ R

d such that ‖yi− yj‖ ≈ δij for
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i, j = 1, . . . , n. The two methods are seemingly different but essentially equivalent (Gower,
1966). The discussion is as follows.

Let D ∈ R
n×n be the matrix whose (i, j) entry is δ2

ij . Image that there are points

x1, . . . , xn in a high dimensional space such that δij = ‖xi − xj‖. Let B = −1
2JnDJn.

Then with some algebra, it can be verified that the (i, j) entry of B is (xi − x̄)T (xj − x̄),
where x̄ = 1

n

∑n
i=1 xi is the mean of x1, . . . , xn. Using the notation in Appendix A.2, we

have B = X̄T X̄. The embedding Y = [y1, . . . , yn] ∈ R
d×n is obtained from minimizing

‖B−Y T Y ‖2F . That is, Y = Λ
1/2
d V T

d , where Λd ∈ R
d×d is a diagonal matrix formed with the

d largest eigenvalues of B, and the columns of Vd ∈ R
n×d are the corresponding eigenvectors.

Since B = X̄T X̄, the eigenvectors of B is the same as the right singular vectors of X̄,
and the eigenvalues of B is the squared singular values of X̄. Therefore, MDS is equivalent
to PCA, when each dissimilarity dij in MDS is the same as the distance ‖xi − xj‖ between
points xi and xj in PCA.

A.4 Application to Isometric Analysis

Consider a mapping f : Ω→M between two manifolds Ω ⊂ R
d and M⊂ R

m, where Ω is
open. Assume that we are given a small neighborhood N ⊂ Ω containing some point ȳ ∈ N .
Suppose there are sample points y1, . . . , yn ∈ N and x1, . . . , xn ∈ f(N ), such that xi = f(yi)
for i = 1, . . . , n. The Taylor series gives f(yi) = f(ȳ) + Jf (ȳ)(yi − ȳ) + O(‖yi − ȳ‖2), where
Jf (ȳ) is the Jacobian. Substituting xi for f(yi), we have

‖xi − Jf (ȳ)yi − γ‖ = O(‖yi − ȳ‖2), (51)

where γ = f(ȳ)− Jf (ȳ)ȳ. Aggregating (51) into one matrix form, we obtain

‖X − Jf (ȳ)Y − γeT
n‖F /‖Y − ȳeT

n‖F = O(‖Y − ȳeT
n‖F ), (52)

where X = [x1, . . . , xn] ∈ R
m×n and Y = [y1, . . . , yn] ∈ R

d×n. When
∫
N dy → 0, the

right-hand side of (52) is driven to 0, and therefore so is the left-hand side. This changes
the goal into one of minimizing ‖X − Jf (ȳ)Y − γeT

n‖F .
The squared factor ‖X−Jf (ȳ)Y −γeT

n‖2F matches the objective function of (46) and (49),
where Q = Jf (ȳ). Assuming that f is an isometry, Jf (ȳ)T Jf (ȳ) = Id, which is the constraint
of both (46) and (49). There are three scenarios. First, if both X and Y are known, then
we can use (46) to estimate the Jacobian Jf (ȳ). Second, if only X is known, then we use
(49) to estimate Y and Jf (ȳ). Computationally, this is equivalent to PCA as shown in
Appendix A.2. Third, if we do not know any of X and Y , but instead we know ‖xi−xj‖ for
i, j = 1, . . . , n, then we can still use MDS to estimate Y , via the equivalences discussed in
Appendices A.2 and A.3. Even better, if N is convex and we have the approximate geodesic
distance between xi and xj for i, j = 1, . . . , n, then we can exploit (5) and use Isomap to
estimate Y . Since the data points in the computation are in a neighborhood instead of the
global manifold, we call them local PCA, local MDS, and local Isomap, respectively.

A remark concerning the second and third cases is as follows. Consider (52). Since

X − Jf (ȳ)Y − γeT
n = X − (Jf (ȳ)P T )(PY + ξeT

n )− (γ − Jf (ȳ)P T ξ)eT
n

for any orthogonal matrix P ∈ R
d×d and any vector ξ ∈ R

d. It means that the estimated
y1, . . . , yn are subject to rotation and translation.
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A.5 Extension for Conformal Analysis

To measure the satisfaction of angle preservation, we add a scalar c ≥ 0 to (46) and have

{
minimize

c, Q, γ
‖X − c QY − γeT

n‖2F
subject to c ≥ 0, QT Q = Id, Q ∈ R

m×d, γ ∈ R
m,

(53)

where the newly added c ≥ 0 corresponds to the scale function c(y) of a conformal mapping
in (6). In a similar discussion leading to (47), we transform the program (53) into:

{
minimize

c, Q
‖X̄ − c QȲ ‖2F

subject to c ≥ 0, QT Q = Id, Q ∈ R
m×d,

(54)

where X̄ = XJn and Ȳ = Y Jn, with Jn = In − 1
neneT

n the centering matrix.

With a little thought, as long as c ≥ 0, (48) still gives an optimal Q = V UT for (54),
where U and V come from the singular value decomposition Ȳ X̄T = UΣV T , independent
of the scale factor c. The objective function of (54) can be written as:

trace((X̄ − c QȲ )T (X̄ − c QȲ )) = trace(X̄T X̄)− 2c trace(QȲ X̄T ) + c2 trace(Ȳ T Ȳ ), (55)

which is a quadratic function in terms of c. The minimum of (55) is reached when c =
trace(QȲ X̄T )/trace(Ȳ T Ȳ ). Substituting Ȳ X̄T = UΣV T and the optimal Q = V UT , we
obtain

c = trace(V UT UΣV T )/trace(Ȳ T Ȳ ) = trace(Σ)/‖Ȳ ‖2F , (56)

which is naturally nonnegative. We conclude that (48) and (56) constitute the minimizer
of (54). Similar discussions can be found in Goldberg and Ritov (2009) and Sibson (1978).

Note that like (47), the program (54) is it own place, and the minimizer does not rely
on the property X̄en = 0 and Ȳ en = 0. In other words, the solution still works for (53), if
the last term of the objective function γeT

n is dropped.

If we relax Y ∈ R
d×n in (53), then the free factor c ≥ 0 can be incorporated into

Y , and hence the solution is equivalent to the PCA as discussed in Appendix A.2. The
interpretation of how (53) and (54) are related to a conformal mapping is similar to that
for an isometry discussed in Appendix A.4. The details are omitted.

Appendix B. Manifold Learning Algorithms

This appendix reviews 5 manifold learning algorithms, namely Isomap, LLE, LE, LTSA,
and SDE. All these methods use an affinity graph to model the neighborhood of each sample
point. In practice, it is typically (but not limited to) a kNN graph. See Section 2.2.1 for a
discussion on affinity graphs.

In what follows, it is assumed that an affinity graph G = (V, E) has been obtained,
where the vertex set V = {1, . . . , n} consists of indices of points, and (i, j) ∈ E if vertex
j is a neighbor of vertex i. The graph is either directed or undirected, depending on the
manifold learning method.
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B.1 Isomap

Isomap (Tenenbaum et al., 2000) is a nonlinear generalization of the classical multidimen-
sional scaling (MDS). It replaces the Euclidean distances in MDS by the geodesic distances
approximated by an affinity graph. The length of the shortest path between two points
in the graph is the approximate geodesic distance between them. The algorithm can be
summarized in the following steps.

1. Construct an undirected affinity graph G = (V, E) of the input data x1, . . . , xn ∈ R
m,

where the edge length δ̃ij = ‖xi − xj‖ for (i, j) ∈ E. With this, the all-pair shortest

path problem is solved and all the squared approximate geodesic distances δ̃2
ij are

saved in a symmetric matrix D̃ ∈ R
n×n.

2. Compute the Grammian matrix B̃ = −1
2JnD̃Jn ∈ R

n×n, where Jn = I − 1
neneT

n ∈
R

n×n with In ∈ R
n×n the identity matrix and en ∈ R

n a column vector of ones.

3. Then Isomap maps X = [x1, . . . , xn] ∈ R
m×n nonlinearly to Y = [y1, . . . , yn] ∈ R

d×n

by minimizing ‖B̃ − Y T Y ‖F . To be specific, we compute Y = Σ
1/2
d V T

d , where Σd ∈
R

d×d is the diagonal matrix consisting of the d largest eigenvalues of B̃, and the

columns of Vd ∈ R
n×d are the corresponding eigenvectors. This Y = Σ

1/2
d V T

d ∈ R
d×n

minimizes ‖B̃ − Y T Y ‖F .

The relation between the metric MDS and Isomap is worth noting. The metric MDS
uses a distance matrix D whose (i, j) entry is ‖xi − xj‖2. Without loss of generality,
we assume the inputs are translated so that the centroid is at origin, i.e.,

∑n
i=1 xi = 0.

Then the (i, j) entry of the Grammian matrix B = −1
2JDJ is xT

i xj . The linear mapping
Y = [y1, . . . , yn] ∈ R

d×n is obtained from minimizing ‖B − Y T Y ‖F . On the other hand,
Isomap minimizes ‖B̃ − Y T Y ‖F for the low dimensional embedding Y ∈ R

d×n, where
B̃ = −1

2JD̃J , with D̃ formed by the squared approximate geodesic distances rather than
the squared Euclidean distances in MDS.

B.2 Locally Linear Embedding

Locally linear embedding (LLE) (Roweis and Saul, 2000; Saul and Roweis, 2003) maps the
high dimensional input data x1, . . . , xn ∈ R

m to y1, . . . , yn ∈ R
d in a lower dimensional

space (i.e., d < n) by three steps.

1. Construct an affinity graph of the input data x1, . . . , xn. This graph can be directed.

2. The reconstruction weights in W = [wij ] ∈ R
n×n are obtained by minimizing the cost

function:

E(W ) =
n∑

i=1

‖xi −
n∑

j=1

wijxj‖2, (57)

subject to that wij = 0 if xj is not one of k nearest neighbors of xi, and
∑n

j=1 wij = 1

for i = 1, . . . , n. Minimizing ‖xi−
∑n

j=1 wijxj‖2 in (57) requires solving a constrained
least squares problem for each i = 1, . . . , n.
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3. The low dimensional data Y = [y1, . . . , yn] ∈ R
d×n is formed by the d right singular

vectors v2, . . . , vd+1 of (In −W ) corresponding to the second to the (d+1)st smallest
singular values, i.e., Y = [v2, . . . , vd+1]

T , where In ∈ R
n×n is the identity matrix.

The last step minimizes the embedding cost function:

Φ(Y ) =
n∑

i=1

‖yi −
n∑

j=1

wijyj‖2 = ‖Y − Y W T ‖2F = trace[Y (In −W )T (In −W )Y T ],

where two constraints are imposed, namely
∑n

i=1 yiy
T
i = Y Y T = In and

∑n
i=1 yi = Y en = 0,

with en ∈ R
n the column vector of ones. The program can be written as:

{
minimize
Y ∈Rd×n

trace(Y (In −W )T (In −W )Y T )

subject to Y Y T = In, Y en = 0.
(58)

Then the problem is transformed to computing the d eigenvectors v2, ..., vd+1 of (In −
W )T (In−W ) corresponding to the second to the (d+1)st smallest eigenvalues. The minimizer
of (58) is Y = [v2, . . . , vd+1]

T . The condition Y en = 0 drops the bottom eigenvector
en which cannot be used to discriminate the embedded points y1, . . . , yn. Note that the
eigenvalues of (In−W )T (In−W ) are the singular values of (In−W ), and the eigenvectors
of (In −W )T (In −W ) are the right singular vectors of (In −W ).

B.3 Laplacian Eigenmaps

In Laplacian Eigenmaps (Belkin and Niyogi, 2001, 2003), an affinity graph G = (V, E)
of the input data x1, . . . , xn ∈ R

m is constructed. The graph is undirected, since the
weighting scheme is a radical basis function. To obtain the low dimensional embedding
Y = [y1, . . . , yn] ∈ R

d×n, we minimize the cost function:

Ψ(Y ) =
∑

i,j

wij‖yi − yj‖2 = 2 trace(Y (D −W )Y T ) = 2 trace(Y LY T ), (59)

where W = [wij ] is a symmetric weight matrix, and D is a diagonal matrix with dii =∑n
j=1 wij , and L = D −W is the Laplacian matrix.

A popular weighting scheme is the Gaussian weights:

wij = exp(−‖xi − xj‖2/t) (60)

for (i, j) ∈ E and otherwise wij = 0, where t > 0 is a preset parameter. This weighting
scheme is also called heat kernel. In our experiments we set t equal to the median of
‖xi − xj‖2 of all (i, j) ∈ E. Driving σ →∞ in (60), we obtain the induced binary weights.

To make the minimization of (59) well-posed, the constraints Y DY T = In and Y Den = 0
are imposed, where en ∈ R

n is the column vector of ones. The resulting program is:

{
minimize
Y ∈Rd×n

trace(Y LY T )

subject to Y DY T = In, Y Den = 0.
(61)
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The minimizer of (61) can be obtained from solving the generalized eigenvalue problem Lz =
λDz. The low dimensional embedding is formed by the d generalized eigenvectors v2, ..., vd+1

corresponds to the second to the (d+1)st smallest eigenvalues, i.e., Y = [v2, . . . , vd+1]
T ,

which minimizes (61). The condition Y Den = 0 drops the bottom generalized eigenvector
en, which has no discrimination power.

B.4 Local Tangent Space Alignment

The method of local tangent space alignment (LTSA) (Zhang and Zha, 2004) maps given
x1, . . . , xn ∈ R

m to y1, . . . , yn ∈ R
d by the following steps.

1. Construct an affinity graph G = (V, E) of the input data x1, . . . , xn. This graph can
be directed. Each vertex i is associated with a neighborhood Ni = {j : (i, j) ∈ E}∪{i}
including the vertex i itself. We denote ni = |Ni|, the size of the neighborhood Ni.

2. For i = 1, . . . , n, perform PCA on Xi = [xj ]j∈Ni
to obtain the low dimensional local

coordinates Θi = [θ
(i)
j ]j∈Ni

. Here Θi ∈ R
d×ni is the optimal estimate of the local

isometric embedding. See Appendix A.4.

3. Let Y = [y1, . . . , yn] ∈ R
d×n be the low dimensional global coordinates to compute,

and denote Yi = [yj ]j∈Ni
. It is assumed that for i = 1, . . . , n, there is a Li ∈ R

d×d

which is related to the Jacobian of the manifold mapping x = f(y) at y = yi, such
that YiJni

≈ LiΘi, where Jni
= Ini

− 1
ni

eni
eT
ni

is the centering matrix. The reason for
centering is discussed in Appendix A.1. Note that we do not have to center Θi, since
Θi comes from PCA and therefore Θieni

= 0 and ΘiJni
= Θi.

4. The goal of LTSA is to minimize the sum of ‖YiJni
− LiΘi‖2F for i = 1, . . . , n. When

the minimum is reached, Li = YiJni
ΘT

i = YiΘ
T
i , where ΘT

i is the Moore-Penrose
pseudo-inverse of Θi because ΘT

i Θi = Id, and Jni
ΘT

i = ΘT
i comes from the property

Θieni
= 0. Let Yi = Y Si, where Si ∈ {0, 1}n×ni is the boolean selection matrix.

Substituting Yi = Y Si and Li = YiΘ
T
i , we obtain

‖YiJni
− LiΘi‖2F = ‖Y SiJni

(Ini
−ΘT

i Θi)‖2F = ‖Y SiHi‖2F ,

where Hi = Jni
(Ini
− ΘT

i Θi) = Ini
− [

eni√
ni

, Θi]
T [

eni√
ni

, Θi]. Let S = [S1, . . . , Sn] and

H = diag(H1, . . . , Hn). The objective function to minimize is:

n∑

i=1

‖YiJni
− LiΘi‖2F =

n∑

i=1

‖Y SiHi‖2F = ‖Y SH‖2F = trace(Y SHHT ST Y T ).

Hence we consider the program:
{

minimize
Y ∈Rd×n

trace(Y (SHHT ST )Y T )

subject to Y Y T = In, Y en = 0.
(62)

The constraint Y Y T = In is to make the problem well-posed. The minimizer of
(62) consists of bottom eigenvectors. It turns out that en is the bottom eigenvec-
tor of SHHT ST , since eT

nSiHi = eT
ni

Hi = 0 for i = 1, . . . , n. Hence we add the
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constraint Y en = 0 to remove en in the embedding. (62) is equivalent to a sym-
metric eigenvalue problem with the bottom eigenvector en, which is removed from
the embedding by Y en = 0. The low dimensional embedding, the minimizer of (62),
is Y = [v2, . . . , vd+1]

T , where v2, ..., vd+1 are the d eigenvectors of SHHT ST , corre-
sponding to the second to the (d+1)st smallest eigenvalues.

B.5 Semidefinite Embedding

Given input data X = [x1, . . . , xn] ∈ R
m×n, semidefinite embedding (SDE) (Weinberger

and Saul, 2004, 2006) consists of three steps for an embedding Y = [y1, . . . , yn] ∈ R
d×n:

1. Construct an undirected affinity graph G = (V, E) of the input data x1, . . . , xn ∈ R
m.

2. Build a kernel K = [kij ] ∈ R
n×n, such that kij = zT

i zj , where z1, . . . , zn is some
‘conceptual’ embedding which preserves the local distances ‖zi − zj‖ = ‖xi − xj‖
for (i, j) ∈ E. At the same time, we maximize the variance

∑n
i=1 ‖zi‖2, under the

assumption that centroid of z1, . . . , zn is at origin, i.e.,
∑n

i=1 zi = 0. At the end, we
solve the semidefinite program (Vandenberghe and Boyd, 1996):





maximize
K∈Rn×n

trace(K)

subject to K � 0, eT
nKen = 0;

kii − 2kij + kjj = ‖xi − xj‖2 for (i, j) ∈ E.

(63)

3. With the minimizer K of (63), we obtain the embedding Y = [y1, . . . , yn] ∈ R
d×n

from minimizing ‖K −Y T Y ‖F . In this respect, y1, . . . , yn ∈ R
d constitute the best d-

dimensional approximation of the conceptual z1, . . . , zn. The solution is a symmetric

eigenvalue problem. More precisely, the embedding is Y = Λ
1/2
d V T

d , where Λd ∈ R
d×d

is a diagonal matrix formed with the d largest eigenvalues of B, and the columns of
Vd ∈ R

n×d are the corresponding eigenvectors.

A few remarks on the semidefinite program (63) are as follows. The positive semidefi-
niteness K � 0 is because K ∈ R

n×n is the kernel matrix of the conceptual z1, . . . , zn. Since
it is assumed that

∑n
i=1 zi = 0, we have Ken = 0, which is equivalent to eT

nKen = 0 due to
K � 0. The constraints kii − 2kij + kjj = ‖xi − xj‖2 for (i, j) ∈ E come from the standard
‘kernel trick’ to preserve the local distances. The variance

∑n
i=1 ‖zi‖2 can be presented

with the kernel K, as trace(K). As a result, the program (63) can be written in terms of a
semidefinite kernel K � 0. An interesting property is that

∑n
i,j=1 ‖zi−zj‖2 = 2n

∑n
i=1 ‖zi‖2.

Hence maximizing
∑n

i=1 ‖zi‖2 is equivalent to maximizing
∑n

i,j=1 ‖zi − zj‖2.
Note that in practice, if the distances are inaccurate, then it is unrealistic to expect that

the program (63) is feasible. Therefore, we can replace the equality constraint kii − 2kij +
kjj = ‖xi − xj‖2 by the inequality constraint kii − 2kij + kjj ≤ ‖xi − xj‖2 for (i, j) ∈ E.
It is important in the geometric multilevel framework presented in Section 3, where the
propagated geodesic information contains approximation errors.
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