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Abstract

In this work we consider the numerical solution of large nonlinear eigenvalue prob-
lems that arise in thermoacoustic simulations involved in the stability analysis of large
combustion devices. We briefly introduce the physical modelling that leads to a non-
linear eigenvalue problem that is solved using a nonlinear fixed point iteration scheme.
Each step of this nonlinear method requires the solution of a complex non-Hermitian
linear eigenvalue problem. We review a set of state of the art eigensolvers and dis-
cuss strategies to recycle spectral informations from one nonlinear step to the next.
More precisely, we consider the Implicitly Restarted Arnoldi method, the Krylov-Schur
solver and its block-variant as well as the subspace iteration method with Chebyshev
acceleration. On a small test example we study the relevance of the different ap-
proaches and illustrate on a large industrial test case the performance of the parallel
solvers best suited to recycle spectral information.

1 Introduction

The increasingly demanding modern pollutant regulations have led to the use of lean com-
bustion in gas turbine combustion chambers [3, 10]. Although this technology allows the
reduction of pollutant emissions such as NOx, it is prone to develop thermoacoustic insta-
bilities. This phenomenon results from the coupling between the combustion in the flame
zone and the acoustic modes of the combustion chamber, leading to high pressure and heat
release oscillations which can even provoke its destruction [6, 14]. Therefore, the study
and prediction of combustion instabilities during the design stage of aeronautical or indus-
trial gas turbine combustion chambers, is of first importance. The problem to be solved
arises from the discretization of a Helmholtz equation, which must be solved in order to
compute the thermoacoustic modes of 3D gas turbine combustion chambers that can their
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safe functioning. The modeling of the physics leads to the solution of a large nonlinear
eigenvalue problems and a only few tens smallest magnitude eigenvalues have to be com-
puted. The nonlinear solver based on a fixed point method requires to solve a large sparse
non-Hermitian linear eigenvalue problem at each iteration. In the framework of a few state
of the art linear eigensolvers we propose different techniques that aims at accelerating the
solution of each linear problem of the sequence by recycling spectral information from one
nonlinear iteration to the next.

The industrial and physical context of this work is described in the following. One
appropriate approach for the study of combustion instabilities, is the use of the linear wave
equation for the pressure fluctuations written for a non isothermal reacting flow [14]:

∂2p1(~x, t)

∂t2
−∇ · c20(~x)∇p1(~x, t) = (γ − 1)

∂q1(~x, t)

∂t
, (1)

where p1 and q1 are the fluctuating part of the pressure p and heat release q, respectively,
c0 is the mean sound speed and γ is the adiabatic index of the gas. Assuming an harmonic
form for both the pressure and heat release fluctuations

p1(~x, t) = Re(p̂(~x)e−iωt), q1(~x, t) = Re(q̂(~x)e−iωt),

leads to the non-homogeneous Helmholtz equation:

∇ · c20(~x)∇p̂(~x) + ω2p̂(~x) = iω(γ − 1)q̂(~x). (2)

The real part of the complex frequency ω = 2πf corresponds to the resonant frequency
of the mode while its imaginary part corresponds to its growth rate. The heat release is
modeled by means of Flame Transfer Functions (FTF), which allows to express the heat
release q̂(~x) in terms of the acoustic pressure p̂(~xref ) at a given reference point ~xref [4, 5, 12].
Since the FTF depends, in general, on the complex frequency ω, the resulting Helmholtz
equation is a functional nonlinear eigenvalue problem, which can be written as [12]:

∇ · c20(~x)∇p̂(~x) + ω2p̂(~x) =
(γ − 1)

ρ0(~x)
FTF(ω)∇p̂(~xref ) · ~nref , (3)

where ρ0(~x) is the density and ~nref is an unitary vector normal to the inlet surface at
the reference point ~xref . The solution of Equation (3) is the objective of the acoustic code
AVSP [12], developed at CERFACS. Its discretization on unstructured meshes using a finite
volume method leads to a nonlinear complex eigenvalue problem whose size n is equal to the
number of nodes in the mesh. Even when the combustion-acoustics interaction is not taken
into account, i.e., FTF = 0, the discretization of the homogeneous Helmholtz equation leads,
in general, to a nonlinear eigenvalue problem. Indeed, the boundary conditions accounting
for a reduced boundary impedance Z are represented by a Robin condition of the form

c0Z∇p̂ · ~n− iωp̂ = 0,

where ~n is the outgoing unit normal vector to the boundary. The general nonlinear nature
of the problem comes from the frequency-dependent value of the complex impedance Z =
Z(ω). Hence, the discretization of these boundary conditions introduces terms that depend
on the complex frequency ω [12]. The resulting discretized nonlinear eigenproblem reads as

Ap̄+ ωB(ω)p̄+ ω2p̄ = C(ω)p̄, (4)

where:
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• The nonlinear complex eigenvalue ω corresponds to the resonant frequency (real part)
and growth rate (imaginary part) of the mode. Experimental studies have revealed
that the combustion instabilities rise at low frequencies, which means that the interest
is in solving Equation (4) to obtain a few smallest magnitude nonlinear eigenvalues.

• The eigenvector p̄ represents the acoustic pressure at every mesh node: it describes
the mode structure.

• A is a n×n sparse real matrix, where n is the number of vertices of the unstructured
mesh. This matrix arises form the discretization of the operator ∇c20(~x)∇.

• B(ω) is a n× n complex diagonal matrix. Its nonzero entries are associated with the
vertices on the boundary where the Robin condition is applied.

• C is a low-rank sparse complex matrix that arises from the discretization of the
right-hand side term of Equation (3).

To the best of our knowledge, there are no available nonlinear eigensolvers for the solution
of general problems such as Equation (4). Therefore, in the present work, a fixed point
iteration procedure is used in order to obtain the desired nonlinear eigenpairs. This means
that the problem is linearized, obtaining a sequence of linear eigenproblems that have to be
solved iteratively in order to obtain one nonlinear eigenpair of Equation (4). In this paper
different strategies, depending on the chosen linear eigensolver, are considered in order to
accelerate the solution of each linear eigenproblem during the nonlinear fixed point iteration
process.

The paper is organized as follows. In Section 2 we describe the nonlinear scheme that has
been implemented in the AVSP simulation code. In the next section we review the state of
the art linear eigensolvers that have been considered in this study. The strategies to recycle
spectral information from one nonlinear step to the next are introduced in Section 4. The
numerical behaviors of the proposed approaches are investigated in Section 5, first on a
small test case representative of a simple combustion instability problem, then on a large
scale problem arising from the study of a complex tridimensional industrial combustor.
Somme concluding remarks are reported in Section 6.

2 Linearization of the eigenproblem: fixed point itera-
tion method

In this section we describe the numerical procedure considered for the solution of the nonlin-
ear Equation (4), where the nonlinearity is introduced by both the ωB(ω) and C(ω) terms.
The nonlinear solution scheme is based on a fixed point procedure. It consists in choosing a
linearization value referred to as ω̃(j) for the nonlinear terms, so that these terms become lin-
ear and can be merged with the linear termA. If we denoteA(j) = A+ω̃(j)B(ω̃(j))−C(ω̃(j)),
the resulting linear eigenvalue problem that must be solved at the jth nonlinear step reads

A(j)p̄+ ω(j)2p̄ = 0. (5)
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Unless the linearization value ω̃(j) is already a solution of Equation (4), all the linear
eigenvalues ω(j)

` solution of Equation (5) will differ from ω̃j. The procedure proceeds by
choosing ω(j)

i (1 ≤ i ≤ `) among the linear eigenvalues ω(j)
` , so that ω(j)

i is the closest to
ω̃j. Therefore ω(j)

i is the new linearization value, i.e., ω̃(j+1) = ω
(j)
i . Provided that the

procedure do not diverge, the sequence of linear solutions

ω̃(1), ω̃(2), . . . , ω̃(j)

will converge towards one nonlinear solution of Equation (4). If the problem is stiff, a
relaxation parameter can be introduced to ensure convergence. The nonlinear stopping
criterion is based on the relative distance between two successive linearization values. For
a prescribed threshold ε, the nonlinear iteration will be stopped when

|ω̃(j+1) − ω̃(j)|
|ω̃(j)|

< ε. (6)

3 Numerical methods: linear eigensolvers

At each fixed point iteration, a linear non-Hermitian eigenproblem must be solved. In this
section we briefly describe the eigensolvers we have considered for the solution of these linear
eigenproblems. For large eigenproblems, the computation of the whole spectrum is out of
question, and we can only expect to compute a few nev eigenvalues (several tens typically)
lying on a certain part of the spectrum (largest magnitude eigenvalues, smallest magnitude
eigenvalues, smallest real part, ...). Moreover, the methods considered for this purpose
must necessarily be iterative, as a consequence of the Abel’s famous theorem. The methods
presented below for the calculation of approximate eigenvalues of a complex non-Hermitian
n × n matrix A build iteratively a n × k (with k � n) search subspace spanned by the
column of Uk. The successive subspaces Uk contains an increasingly accurate approximation
to an invariant subspace of A.

For the sake of simplicity, in the present paper the search subspace U is considered
orthonormal, so that UHU = I. In order to extract the spectral information contained in
U , the Rayleigh-Ritz procedure is employed. It consists in computing the k × k matrix B,
known as Rayleigh quotient, as

B = UHAU. (7)

The method proceeds by computing the eigenpairs of the Rayleigh quotient B, so that we
can write BW = WD, being W the eigenvectors of B corresponding to the eigenvalues
that appear on the diagonal of the diagonal matrix D. Then, the pair (D,UW ) are the
approximate eigenpairs of the original matrix A and are called the Ritz pairs [20].

The Rayleigh-Ritz extraction is used in the subsequent methods for the calculation of the
Ritz pairs. As for any iterative method, a criterion is needed in order to stop the procedure.
In the present context, the methods iterate until the normalized residuals corresponding to
the Ritz pairs are smaller than a certain threshold ε. In this paper the considered stopping
criterion is:

‖Ax̃− λ̃x̃‖
|λ̃|

≤ ε, (8)
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where (λ̃, x̃) is the approximate eigenpair.

3.1 Implicitly Restarted Arnoldi method

This method, often referred to as IRA, is based on Arnoldi decompositions of a n × n
matrix A [1]. Starting from a single unitary vector v1, it builds an orthonormal basis
Vk = [v1 v2 . . . vk] of a Krylov subspace of dimension k [20]:

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}, (9)

for which the following Arnoldi decomposition is satisfied:

AVk = VkHk + αvk+1e
T
k (10)

where Hk is a k × k upper Hessenberg matrix that corresponds to the Rayleigh quotient
associated with A and Vk; eTk is the kth canonical vector of Rk.

When the Arnoldi decomposition proceeds, Vk will contain increasingly accurate spectral
information of A. Due to the limited amount of available memory, the maximum allowed
size of the factorization will be typically of a few hundreds for large problem sizes. For
this reason, in practice, the method is used prescribing a maximum decomposition size m.
When this limit is attained without having reach the demanded level of accuracy for the
Ritz pairs, the method has to be restarted, reducing the size of the decomposition to kmin

(nev ≤ kmin < m). The restart must be performed in a smart way, attempting to keep in the
resulting reduced Arnoldi factorization of size kmin the most valuable spectral information
contained in the original Arnoldi factorization of sizem. This is the purpose of the Implicitly
Restarted Arnoldi (IRA) algorithm, developed by Lehoucq and Sorensen in [9]. The parallel
Fortran library (P)ARPACK [8], considered as the definitive implementation of this method,
is used in the present work.

3.2 Krylov-Schur method and its block variant

The Krylov-Schur method [19], as the IRA algorithm, is based on Krylov subspaces. Under
certain conditions (use of exact shifts), it is mathematically equivalent to the Implicitly
Restarted Arnoldi method [20]. The restart part of the algorithm is much simpler, due to
the fact that, contrary to the Arnoldi factorization, no particular structure of the Rayleigh
quotient matrix must be preserved.

Starting from a single unitary vector u1, this method builds the Krylov decomposition
of size k of the matrix A:

AUk = UkBk + uk+1b
H
k+1, (11)

where the columns of Uk form an orthonormal basis of the search space, uk+1 is orthonormal
to Uk and the k × k matrix Bk = UH

k AUk is the Rayleigh quotient of A associated with
Uk. An important property of Krylov decomposition is that they are invariant to similarity
transformations. Indeed, let Q be nonsingular and post-multiplying Equation (11) we
obtain

A(UQ) = (UQ)Q−1BQ+ u(bHQ) that reads AŨ = ŨB̃ + ub̃H . (12)
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Both Krylov decompositions (11) and (12) are similar. This offers a natural way for restart-
ing the decomposition when the dimension of the search space reaches the maximum allowed
size m, referred to by Stewart [20] as Krylov-Schur restart:

1. Compute a sorted Schur decomposition of the Rayleigh quotient BmQ = QT , with
the diagonal elements of T sorted conveniently (from smallest to largest magnitude
in the present case). Then apply the similarity transformation based on Q, obtaining

AŨm = ŨmT + uk+1b̃
H
k+1.

2. The resulting Krylov decomposition can be written as

A(Ũ1 Ũ2) = (Ũ1 Ũ2)

(
T11 T12

0 T22

)
+ u(b̃H1 b̃H2 ),

where (T11, Ũ1) concentrates the most valuable spectral information. Then, AŨ1 =
Ũ1T11+ub̃H1 is also a Krylov decomposition, that can be used to restart the procedure.

3.2.1 Block Krylov-Schur method

The extension of the Krylov-Schur method to its block variant is straightforward. In [21],
the authors present a block Krylov-Schur method for symmetric eigenproblems. Inherent
issues associated with block methods such as the treatment of the rank deficiency in the
extending block are also discussed. The algorithm presented here is a generalization of
the algorithm proposed in [21] for general non-Hermitian matrices. It relies on the block
Arnoldi factorization of the matrix A: let p be the block size, then at each step of the block
Arnoldi procedure, the Arnoldi basis is extended with p new vectors. The block Arnoldi
factorization reads as:

AVk = VkHk + Vk+1Hk+1,kE
T
k = Vk+1Ĥk, (13)

where [Vk Vk+1] is an orthonormal basis of the block Krylov space of dimension (k+ 1)× p;
Ek is the matrix of the p last columns of the (kp)× (kp) identity matrix and Hk is a band
upper Hessenberg matrix with bandwith p.

The block Krylov-Schur method is implemented as described in the following main steps:

1. Given an initial n × p matrix V1 with orthonormal columns, Ruhe’s variant of block
Arnoldi block builds the decomposition

AVm = VmHm + Vm+1Hm+1,mE
T
m.

2. An unitary similarity transformation is used to compute the equivalent block Krylov-
Schur decomposition. In the diagonal of the Schur form Sm of the Rayleigh quotient
H appear the eigenvalues sorted according to the target part of the spectrum (from
smallest to largest magnitude in our application). Then we have

A(VmQ) = (VmQ)Sm + VpHm+1,mE
T
mQ ≡

AUm = UmSm + UpB
H ,
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where Um = VmQ, Up = Vp, BH = Hm+1,mE
T
mQ and Sm is the complex Schur form

of the band Hessenberg matrix Hm, with the nev wanted Ritz values in the leading
block. The compact form reads

AUm = Um+1Ŝm,

being Um+1 = [Um Um+1] and Ŝm =

(
Sm

UpB
H

)
.

3. Rayleigh-Ritz extraction is used to compute approximate eigenpairs, whose accuracy
is tested. Then the decomposition is reduced to size ` ≥ nev, just by truncating the
decomposition and keeping only the first ` columns:

AU` = U`S` + U`+1B
H = U`+1Ŝ`.

4. This decomposition is extended to size m using again Ruhe’s variant of block Arnoldi.

Steps 2 to 4 are repeated until the wanted eigenvalues have converged or the maximum
number of restarted iterations is reached. This procedure is completely equivalent to the
single-vector version of the Krylov-Schur method. Only the algorithm for the computation
of the block Krylov decomposition changes and ` and m have to be kept multiples of the
block size p.

During the restart phase, a single-vector Krylov method applies a filter polynomial of
degree m − k, i.e., the size of the extended Krylov decomposition minus the size of the
restarted one. For the block variant, assuming k ≡ ` and m are kept the same as for
the single-vector counterpart, the filter polynomial applied at restart is of lower degree
(m− `)/p.

The concern of rank loss is treated in our implementation by using a vector-wise con-
struction of the basis, known as Ruhe’s variant. This choice gives up on the better use
of the memory hierarchy (BLAS-3 efficiency) of block methods. We notice that our ther-
moacoustic code is based on a matrix free implementation where only single matrix-vector
computational kernel is available, which prevents us to benefit from matrix-matrix calcu-
lation speed. Consequently Ruhe’s variant does not incur any computational penalty.

3.3 Jacobi-Davidson method

The former methods extend the search basis by building Krylov subspaces. The Jacobi-
Davidson method extends the search space by solving the so-called correction equation.
The underlying idea is simple: starting from a given eigenpair approximation (µ, z), we
must find corrections η and v so that (µ+ η, z + v) is a better approximation to the actual
eigenpair. Being r = Az − µz the residual corresponding to the approximate eigenpair
(µ, z), the correction equation reads:

(I − zzH)(Ã − µI)(I − zzH)v = −r, v ⊥ z. (14)

The solution v of Equation (14) provides the new direction to append to the search space.
Further details about the Jacobi-Davidson method and the correction equations can be
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found in [7, 15, 17, 18, 20]. In this work, the selected implementation is the one presented
in [7], known as Jacobi-Davidson style QR algorithm. The main steps of the method, in
order to compute eigenpairs of A nearest to chosen target τ (in this case we take τ = 0 to
compute those of smallest magnitude) are:

1. Starting from an orthonormal basis of the search space Vk of dimension k, the
Rayleigh-Ritz procedure is used to extract the eigenpair approximation (µ, z) nearest
to the targeted value τ . The corresponding residual r = Az − µz is computed.

2. If the scaled residual is larger than the threshold ε, then the correction equation (14)
is solved to obtain w, orthogonal to z. The new vector v is normalized and orthogo-
nalized against Vk to produce vk+1, so that Vk+1 = [Vk vk+1].

3. If the scaled residual is larger than the threshold ε, then the correction equation (14)
is solved to obtain w, orthogonal to z. The new vector v is normalized and orthogo-
nalized against Vk to produce vk+1, so that Vk+1 = [Vk vk+1].

4. When the search basis reaches the maximal allowed size m, it is truncated keeping the
most relevant spectral information: Vm → V` and then the methods proceeds until
the allowed number of Jacobi-Davidson steps is exceeded. In this work, the solution
of the correction equation accounts for one Jacobi-Davidson step.

3.4 Subspace iteration with Chebyschev acceleration

The Subspace Iteration method is also considered in this work because of its ability to start
from a set of vectors (as a block method), instead of from a single vector. The simplest
version of the subspace iteration method is a block version of the power method, first
introduced by Bauer under the name of Treppeniteration (staircase iteration) [2]. Starting
with an initial block of m vectors arranged in the n × m matrix X0 = [x1, . . . , xm] the
block Xk = AkX0 is computed for a certain power k. The columns in Xk will loose their
linear independency for increasing values of k, so that the idea is to re-establish their
linear independence using, for instance, the QR factorization. Under a certain number of
assumptions [15], the columns of Xk will converge to the Schur vectors associated with the
m dominant eigenvalues of A: |λ1|> |λ2|> · · · > |λm|. Instead of using the columns of
Xk as approximations to the Schur vectors, using them in a Rayleigh-Ritz procedure will
produce in general better approximations.

This method is well suited for the computation of the largest magnitude eigenpairs, but
in the present case the interest is in those of smallest magnitude. Chebyshev polynomials
of first kind are used as filter polynomials to overcome this issue: applying them at each
iteration focuses the algorithm into a certain region of the spectrum. Details about Cheby-
shev polynomials and their properties are given in [15]. All that we need to know here is
that a Chebychev polynomial has associated an ellipse in the complex plane. The part of
the spectrum enclosed in this ellipse will be filtered. One realizes that, to build the filter
polynomial, a certain amount of information on the spectrum is needed, which constitutes
the main drawback of this method: we must be able to set an ellipse that encloses the
unwanted part of the spectrum. In that respect, we need the following a priori information
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on the spectrum: the largest magnitude eigenvalue, the largest imaginary part eigenvalue,
and the first wanted eigenvalue that is not enclosed in the ellipse. These values define the
ellipse eccentricity e and its center c. The good news is that, for our application, the spectra
of the sequence of matrices A(j) are very similar to each other, as shown for a small example
in Figure 1. We can then compute the needed information on the spectrum of A(1) using
any of the available methods, and the ellipse fitted according to the spectrum of A(1) can
be used for the subsequent nonlinear iterations.

Figure 1: Spectrum of test matrices A(1) (2), A(2) (2), A(3) (×) obtained from successive
nonlinear iterations when converging the smallest nonlinear eigenvalue ω1. In black, the ellipse
used for the Chebyshev polynomial, containing the unwanted part of the successive spectra.

The filter polynomial has the form:

pk(λ) =
Ck[(λ− c)/e]
Ck[(λ1 − c)/e]

, (15)

where Ck is the Chebyshev polynomial of degree k of the first kind and λ1 is an approxi-
mation of the first wanted eigenvalue that is not enclosed in the ellipse E. Therefore, the
successive applications of the polynomial defined by Equation (15) to a set of vectors U dur-
ing the subspace iterations, will make U converge to an invariant subspace corresponding
to the eigenvalues that lie out of the ellipse E.

The computation of zk = pk(A)z0 is performed iteratively thanks to the three-term
recurrence for Chebyshev polynomials [15] as:

1. Given the initial vector z0, compute

σ1 =
e

λ1 − c
,

z1 =
σ1
e

(A− cI)z0.
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2. Iterate for i = 1, . . . , k − 1:

σi+1 =
1

2/σ1 − σi
,

zi+1 = 2
σi+1

e
(A− cI)zi − σiσi+1zi−1.

4 Recycling strategies

For the thermoacoustic calculations in complex geometries, it has been observed that the
nonlinear fixed point iteration introduced in Section 2 often converges very quickly. An im-
mediate consequence is that the successive solutions of the sequence of linear eigenproblem
are close to each other so that the following quantities become smaller and smaller as the
nonlinear scheme converges:

• The relative Frobenius norm of the difference between two consecutive matrices

∆F =
‖A(j−1) −A(j)‖F
‖A(j)‖F

.

• The relative distance between the eigenvalues of two consecutive nonlinear iterations

δ =
|ω̃(j−1) − ω̃(j)|
|ω̃(j)|

.

• The angle between the subspaces formed by the eigenvectors between two consecutive
nonlinear iterations

6 (P (j−1), P (j)).

This suggests that the eigensolution of the (j−1)th iteration is, in fact, a good approximation
of the jth iteration, that should be used to define the initial guess to solve the jth linear
eigenproblem. In the following, depending on the eigensolver, different procedures are
proposed to exploit this a priori information and recycle eigenvectors from one step to
the next one in order to reduce the computational cost of the solution of the nonlinear
eigenproblem.

4.1 Recycling with IRA and Krylov-Schur methods

These methods can only start from a single vector, whereas we have a set of nev eigenvectors
that we would like to recycle from the previous nonlinear iteration. To take into account
all the available eigenvectors, we propose to use a normalized linear combination of them
as initial vector u1. In exact arithmetic, it is well known that starting from a vector
u1 that is a linear combination of k eigenvectors, then the Krylov sequence based on u1
terminates within k steps [20]. In terms of eigensolvers, it means that they would converge
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to the solution within the first iteration. In the same circumstances with finite precision,
these methods will not necessary converge within the first iteration but they will converge
much faster than if started from a random vector. Therefore, based on this property of
Krylov subspaces, by continuity one can expect that starting the Krylov solver from u1 the
normalized vector sum p̄

(j−1)
1 + p̄

(j−1)
2 + · · · + p̄

(j−1)
nev will improve the convergence for the

eigensolution of A(j), compared to starting from a random vector. The following simple
procedure is then considered:

1. The problem A(j−1)p̄ = −ω(j−1)2p̄ corresponding to the (j − 1)th nonlinear iteration
is solved and nev eigenpairs (ω(j−1), p̄(j−1)) are computed.

2. Form the vector p̄(j−1)1 + p̄
(j−1)
2 + · · ·+ p̄

(j−1)
nev and normalize it to define u1.

3. Using ARPACK or the Krylov-Schur solver, solve the problem A(j)p̄ = −ω(j)2p̄ using
u1 as initial vector.

4.2 Recycling using the Jacobi-Davidson method

The Jacobi-Davidson method can be used to build the search space solving iteratively the
correction equation from a single random vector. Nevertheless, if the initial vector does
not contain any particular information on the solution (which is the case in general), the
convergence of the method can be very erratic at the beginning, until the method gather
enough spectral information related to the region of interest around the target τ . It is a
general practice (adopted in this work as well) to build first an Arnoldi basis of a given size
k (here k = nev) from a random vector, before the Jacobi-Davidson method takes over from
the generated subspace and corresponding Rayleigh quotient. This is what we referred to
as a random initialization.

But in fact, much better than an Arnoldi subspace built from a random vector, is the sub-
space formed by the eigenvectors computed at the previous nonlinear fixed point iteration,
since it already contains useful information about the solution that has to be computed.
Therefore, the proposed strategy simply reads:

1. The problem A(j−1)p̄ = −ω(j−1)2p̄ corresponding to the (j − 1)th nonlinear iteration
is solved and nev eigenpairs (ω(j−1), p̄(j−1)) are computed.

2. An orthonormal basis Unev of P (j−1) = [p̄
(j−1)
1 , ..., p̄

(j−1)
nev ] is computed with its asso-

ciated Rayleigh quotient Cnev = UH
nev
A(j)Unev . Then the Rayleigh-Ritz procedure

extracts an approximate eigenpair (ω̃, p̃) closest to the target τ .

3. Then classical Jacobi-Davidson is used to go on with the computation of the desired
eigenpairs.

4.3 Recycling using block methods

By definition, the distinctive feature of block methods, as block Krylov-Schur or Subspace
Iteration schemes, is that they start the iterative process to compute the desired eigenpairs
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from a set of p vectors. Therefore, we can use the nev available eigenvectors from a nonlinear
step (actually an orthonormal basis of them), as initial block of vectors for the solution of
the next linearized problem. If they are a good approximation of the invariant subspace
that has to be computed, then the initial level of the residuals is expected to be much closer
to the demanded accuracy than starting from a block of random vectors.

5 Numerical Results

In this section several numerical experiments are performed in order to investigate the effec-
tiveness of the proposed recycling techniques. First, these techniques are used with the most
classical eigensolvers, i.e., the Krylov-based and the Jacobi-Davidson solvers, demonstrat-
ing their efficiency. Then, the block Krylov-Schur and the Chebyshev subspace iteration
methods are compared to the Krylov-Schur method. Although the different meaning of
the numerical parameters of each method does not allow an objective comparison between
the different techniques, this will not prevent us from extracting some general qualitative
conclusions within the present context.

We start considering a test problem of size n = 1480, with boundary conditions such as
B(ω) = 0. First, it is solved without combustion (i.e., C(ω) = 0), so that the associated
linear eigenproblemAp̄+ω2p̄ = 0 is solved to obtain nev = 5 smallest magnitude eigenvalues.
Then the nonlinear fixed point method is used to compute one eigensolution of the problem
with combustion Ap̄+ ω2p̄ = C(ω)p̄, using the smallest magnitude eigenvalue ω1 obtained
for the problem without combustion, as first linearization value. Note that the eigenvalues
are in fact λ = −ω2, with ω = 2πf . The results concerning the eigenvalues are given in
Hertz in Table 1, i.e., the provided values correspond to f .

In Table 1 are reported the results associated with the first three nonlinear iterations.
It can first be observed that the nonlinear scheme converges fairly fast. It can also be seen
that the eigenspaces computed at each iteration becomes quickly collinear, as illustrated by
the angle displayed in the last column of Table 1.. Consequently, the eigenspace computed
at a given iteration is a good approximation to initialize the eigensolver at the next one.

# nonlinear it. f (Hz) ∆F δ(%) 6 (P (j−1), P (j)) (degrees)

0 272.3000 – – –
1 159.6988 - 9.2850 i 6.7317e-2 70.6 13.72
2 159.6703 - 5.4399 i 4.7616e-3 2.41 0.3368
3 159.6703 - 5.4390 i 1.2049e-6 6.08e-4 8.5048e-5

Table 1: Results obtained using the nonlinear procedure when computing the smallest magnitude
nonlinear eigenfrequency with combustion.
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5.1 Krylov-based solvers

In Figure 2 is displayed the convergence history of the scaled residual ‖Ap̄−λp̄‖/|λ| associ-
ated with the five smallest magnitude eigenvalues of A(1), A(2) and A(3) as a function of the
number of restarts, when the calculation is performed using ARPACK and Krylov-Schur
with a demanded accuracy ε = 10−4. The continuous lines (—–) are the residuals when the
eigensolvers start from a random vector, whereas the lines with circles (–◦–) correspond to
the situation where the starting vector is the normalized sum of the nev eigenvectors com-
puted at the previous nonlinear iteration. As expected, we see that recycling the spectral
informations from one step to the next one significantly improves the convergence rate of
both eigensolvers. Furthermore, the benefit becomes larger as the nonlinear scheme con-
verges since the starting vector contains increasingly accurate information on the invariant
subspace to be computed. Finally, although mathematically equivalent, it can be seen that
the convergence histories of ARPACK and Krylov-Schur slightly, which is due due to finite
precision arithmetic effects.

ARPARCK
A(0) → A(1) A(1) → A(2) A(2) → A(3)

Krylov-Schur

A(0) → A(1) A(1) → A(2) A(2) → A(3)

Figure 2: Convergence history of the scaled residuals for the nev = 5 smallest magnitude eigen-
pairs of the sequence of linear problems A(1), A(2) and A(3) solved with ε = 10−4 for the computa-
tion of the smallest magnitude nonlinear eigenfrequency ω1. (–◦–): with recycling strategy; (—–)
without recycling strategy.

In Table 2 we report the sequential elapsed time required to perform the first three
nonlinear steps with and without the recycling strategy. It can be seen that the recycling
strategy allows to save about 40 % of overall computation time.
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without recycling with recycling Time savings (%)

ARPACK 18.24 s 11.09 s 39.2
KS 17.46 s 11.06 s 36.7

Table 2: Total elapsed time required by ARPACK and Krylov-Schur during the first three iter-
ations corresponding to Figure 2 for the computation of the smallest magnitude nonlinear eigen-
frequecny ω1, with and without the recycling strategy.

5.2 Jacobi-Davidson solver

The same experiments are performed using the Jacobi-Davidson method with and without
recycling of the nev = 5 eigenvectors associated with the smallest eigenvalues. Figure3
shows the convergence history using the same notation as for the Krylov solvers in the
previous section. As for the Krylov solvers, these results show that recycling the spectral
information yields a significant improvement in the convergence rate of the Jacobi-Davidson
solver.

Jacobi-Davidson

A(0) → A(1) A(1) → A(2) A(2) → A(3)

Figure 3: Convergence history of the scaled residuals for the nev = 5 smallest magnitude eigen-
pairs of the linear problems A(1), A(2) and A(3) solved with ε = 10−4. (–◦–): with recycling
strategy; (—–) without recycling strategy.

The convergence speed improvement directly translates into a computational time de-
crease as it can be observed in Table 3. For this particular case, the saving in time is around
70%.

without recycling with recycling Time savings (%)

Jacobi-Davison solver 13.0 s 3.9 s 70

Table 3: Elapsed for the first three nonlinear iterations for the calculation of the smallest magni-
tude nonlinear eigenvalue ω1 with and withouth the recycling strategy implemented in the Jacobi-
Davidson solver.
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5.3 The block Krylov-Schur method

In this section we compare the convergence history of the block Krylov-Schur algorithm
presented in Section 3.2.1 with its single vector counterpart when the spectral information
from one nonlinear iteration to the next one is re-injected. For a fair comparison from a
memory consumption viewpoint, we consider the same maximal dimension for the search
space m = 80 for the two solvers. For this comparison only the first two nonlinear iterations
are considered as they are enough to illustrate the main trends. For these experiments, we
compute the nev = 5 smallest eigenvalues with a target threshold accuracy ε = 10−5. As
presented in Section 4.3 for the block solvers, the initial block is formed by an orthonormal
basis of the nev eigenvectors computed at the previous nonlinear iteration (i.e., the ones
from A(1) to solve A(2) and the ones of A(2) to solve A(3)). To highlight the weakness of the
resulting block solver, the classical single vector Krylov-Schur solver starts from a random
vector, which can be considered as a penalty.

The convergence history of the two solvers is displayed in Figure 4. It can be seen
that the convergence speed is much slower for the block version due to the lower degree
of the equivalent filter polynomial applied at restart. This is particularly visible for the
convergence history displayed in the right plot. Although the initial residuals are much
smaller, thanks to the recycling mechanism implemented in the block version, this advantage
quickly vanishes because of the slow convergence rate.

Krylov-Schur versus block Krylov-Schur

A(1) → A(2) A(2) → A(3)

Figure 4: Convergence history of the scaled residuals for the nev = 5 smallest magnitude eigen-
pairs of the linear problems A(2), and A(3) solved with ε = 10−5.

The ratios between the computation times as well as the number of restarted iterations
are displayed in Table 4, they confirm the results suggested by the convergence histories in
Figure 4. The block Krylov-Schur solver is not well suited in the context of this application.
However, there are certain aspects that deserve to be mentioned:

1. The AVSP code does not enable to perform matrix-matrix product so that the Ruhe’s
variant of the block Arnoldi has been implemented. Such an implementation does
not permit to benefit from fast calculation thanks to a better data locality (BLAS-3
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# nonlinear iteration Time block
Time single

# restarts block
# restarts single

2 291s/36s = 8.01 297/40
3 47s/37s = 1.28 48/40

Table 4: Computation time comparison of block and single vector Krylov-Schur methods when
solving A(2) and A(3). The single vector solver uses a random initial vector, the block variant
implement the spectral recycling strategy.

effect). However, the gap in convergence rate makes hopeless to expect that this
computational benefit would compensate the poor numerical behavior.

2. The convergence rate is closely related to the block-size p (for a prescribed maximum
search space dimension the larger the block-size, the slower the convergence). For the
application considered in this work, the block-size can be large in general. Hence the
block method is not well suited for the sought purpose. However, the block Krylov-
Schur approach can be an interesting solver in other context where the block-size
remains small (2 or 3), as for example, cases where the multiplicity of eigenvalues is
known a priori [21].

5.4 Subspace Iteration with Chebyshev acceleration

We last investigate the idea of recycling eigenspaces in the framework of the Chebyshev
subspace iteration method. For this solver, recycling the available eigenspace is fairly
straightforward: the initial block used to start the iterations is an orthonormal basis of the
eigenspace computed at the previous nonlinear step. Similarly to the block Krylov-Schur
method, this approach is compared to the Krylov-Schur solver when computing the nev = 10
smallest magnitude eigenvalues of A(2) with ε = 10−4. In this case, both solvers recycle the
10 eigenvectors computed for A(1). Given the different nature of the numerical parameters
of the two solvers, the comparison cannot be performed keeping some of their common
key parameters identical. In that context, their parameters have been tuned individually
in an attempt to get their best performance. For the Krylov-Schur solver, the maximal
size of the search subspace is set to m = 60. For block Chebyshev, we set the degree of
the polynomial to k = 150 and the size of the search subspace is m = 15 > nev, which
improves the convergence of the method, as recommended in [15]. Indeed, completing the
initial subspace with a few additional random vectors yields a better convergence than just
keeping m = nev. Therefore, the initial subspace formed by an orthonormal basis of the
eigenvectors computed for A(1), is extended with 5 linearly independent random vectors.

The comparative study has been performed using both a Matlab and a Fortran imple-
mentation of both solvers, that enable to highlight some computational features that we
could not implement in the AVSP framework. The results are reported in Table 5. The row
entitled “Iteration" has different meaning for each solver. For the block Chebyshev method,
it represents the number of times the polynomial is applied; for the Krylov-Schur it corre-
sponds to the number of restarts. The row “Time ratio" gives the ratio between the elapsed
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time of the Krylov-Schur solver divided by the elapsed time of the block Chebyshev time.
The different number of subspace iterations that can be observed between the Fortran and
the Matlab implementation of the block Chebyshev solver are due to the different random
number generators used in the two languages; this difference leads to slightly different con-
vergence behaviors. The number of required matrix-vector products in the case of the block

Fortran Matlab
Krylov-Schur block Chebyshev Krylov-Schur block Chebyshev

Iteration 45 11 45 13
# matvec 2237 24915 2237 29445

Time ratio
3.50

17.48
= 0.2

22.9

4.32
= 5.3

Table 5: Computational cost for computing the ten smallest magnitude linear eigenpairs of
A(2)p̄ = −ω(2)2p̄ with Krylov-Schur and block Chebyshev solvers for both the Fortran and the
Matlab implementations. Both solvers implement the spectral recycling strategy.

Chebyshev method is more than 10 times the number of matrix-vector products required by
the Krylov-Schur solver. This difference translates differently in terms of computation time
between the two implementations, as the Chebyshev polynomial calculation is performed
differently. The AVSP code is based on a matrix-free approach, so that the Fortran imple-
mentation, only one matrix-vector product can be performed at a time. For the Matlab
implementation the matrices were extracted from the AVSP code and stored in a sparse
format compatible with Matlab. Consequently, the Matlab implementation performs sparse
matrix-matrix products so that the filter polynomial can be applied simultaneously to all
the m vectors. In Matlab, the matrix-vector products are very effective and their relative
cost compared to the other numerical kernels is lower; consequently the block Chebyshev
solver is more efficient than the Krylov-Schur solver. On the other hand, the situation is the
opposite in Fortran because the matrix-free matrix-vector product is much more expensive
than in Matlab.

5.5 Recycling eigensolutions for a 3D industrial application with
complex geometry

In this section we investigate the benefit of using recycling ideas for the parallel solution of
a large problem arising from an industrial case. The geometry considered for the experi-
ments corresponds to a full annular industrial gas turbine combustor, formed by 24 burners
circumferentially arranged. The mesh, displayed in Figure 5, is composed of n = 1, 782, 384
vertices. For these experiments, only the solvers that have shown themselves as best suited
for an efficient implementation in the matrix-free AVSP code are used, namely, P-ARPACK
for the IRA method and in-house implementations of the Krylov-Schur and Jacobi-Davidson
approaches. The nev = 10 smallest eigenvalues are computed with a demanded accuracy on
the scaled residual of ε = 10−4. The maximal size of the search subspace is set to m = 120
for the three eigensolvers, so that the study is roughly iso-memory. We mention that we do
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x 24

Figure 5: Mesh used for the discretization of an industrial gas turbine combustor. The number
of nodes is n = 1, 782, 384.

not account for the extra memory used in the Jacobi-Davidson method where the correction
equation is solved using a few full-GMRES [16] iterations.

48 72 96 120
500

1000

1500

2000

2500

3000

3500

Number of CPUs

C
PU

 ti
m

e 
(s

)

ARPACK
KS
JDQR

Figure 6: Scalability study: evolution of the computational cost as a function of the number of
cores for (P)ARPACK, KS and JDQR solvers (nev = 10, m = 120 and ε = 10−4 for the three
eigensolvers).

We first illustrate the parallel efficiency of these solvers. For the three approaches the
parallelism relies on a mesh-partitioning technique that allows to efficiently implement, on
top of MPI, the most time consuming kernel, that is matrix-free matrix-vector calculation.
All the numerical calculations performed on either the Hessenberg matrix or the Rayleigh
quotient are performed redundantly to reduce the communication among the MPI processes.
Figure 6 displays the strong scalability behavior of the three eigensolvers when the number
of cores is varied from 48 to 120. For this experiment, the most simple case is solved
(neither combustion nor complex boundary conditions are considered), leading to a linear
eigenproblem. Table 6 displays the efficiency for each number of cores (taking 48 cores as
the reference), the efficiency is computed as:

Efficiency =
time (48 cores)
time (p cores)

48

p
.
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In the ideal case where the algorithms would scale perfectly the efficiency should be constant
and equal to one. The results displayed in Table 6 show that the parallel implementations
of the three algorithms exhibit very strong scalability capabilities. We can even observe
some super-linear effect with efficiency larger than one, that are most likely due to memory
hierarchy effects.

72 cores 96 cores 120 cores

PARPACK 0.93 1.1 0.98
Krylov-Schur 0.97 1.05 0.97

Jacobi-Davidson 1.02 0.85 0.96

Table 6: Strong scalability efficiency of the three algorithms when the number of MPI processes
is varied.

For this example, the results of Figure 6 show that the implementations of the Krylov-
Schur solver is slightly faster than ARPACK while the Jacobi-Davidson solver is noticeably
more effective.

in what follows, we evaluate the benefit of recycling spectral information between the
nonlinear steps on this large real life problem. Consequently the problem with combustion
is considered, so that the nonlinear eigenproblem Ap̄ + ω2p̄ = C(ω)p̄ has to be solved.
Starting from the 6th smallest frequency obtained for the problem without combustion, the
linear eigenproblems corresponding to the first three nonlinear iterations are solved with
and without recycling the eigensolutions obtained at previous iterations. The convergence
history of the scaled residual obtained at each nonlinear step are displayed for the three
eigensolvers in Figure 7. In red are plotted the convergence history of the scaled residuals
obtained when the problem is solved starting from a random vector, while in blue appear
the convergence history when the recycling strategy is used.

The gain due to the recycling of solutions is obvious, looking at the convergence history
in Figure 7. For the sake of completeness, we report in Table 7 the parallel elapsed time
required for solving each problem on 72 cores, with (rec) and without (rand) recycling.
The amounts of time saved thanks to the recycling mechanism are remarkable. On this
test case, the comparison between the three solvers ends up with a clear winner : the
Jacobi-Davidson method is the fastest one. Furthermore, it is also the one that exploits
the spectral recycling in the most efficient way.

6 Conclusion

In this work, we have considered the solution of nonlinear eigenproblem arising from the
study of thermoacoustic instabilities using a Helmholtz solver is treated in the present work.
A fixed point iterative scheme is used for its solution, which results in a sequence of linear
eigenproblems that must be solved obtain one solution of the nonlinear one. For thermoa-
coustic simulations, the nonlinear iterations converge quickly so that the solutions obtained
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PARAPACK

A(0) → A(1) A(1) → A(2) A(2) → A(3)

Krylov-Schur

A(0) → A(1) A(1) → A(2) A(2) → A(3)

Jacobi-Davidson

A(0) → A(1) A(1) → A(2) A(2) → A(3)

Figure 7: Convergence history of the scaled residuals for three nonlinear iterations with nev = 10,
m = 120 and ε = 10−4 - Blue witth recycling, Red without recycling.

A(1) A(2) A(3) Total
rand rec rand rec rand rec rand rec

PARPACK 6040 4842 5162 3802 5988 2625 17190 11269

Krylov-Schur 6874 5122 7152 4057 7044 3852 21070 13031

Jacobi-Davidson 3150 2788 3067 1128 3079 130 9296 4046

Table 7: Parallel elapsed time on 72 cores to perform 3 nonlinear iterations for nev = 10, m = 120
and ε = 10−4
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for each linear problems are good approximations to the solution of the next one. This
paper concentrates on recycling techniques allowing to reuse the eigensolutions obtained at
previous nonlinear iterations to accelerate the solution of the next one, when using different
state of-the-art eigensolvers: the Implicitly Restarted Arnoldi (IRA) method, the Krylov-
Schur method and its block variant, the Jacobi-Davidson solver and the Subspace Iteration
method with Chebyshev acceleration. The main features of these eigensolvers have been
described, allowing to understand how eigensolutions are recycled depending on the chosen
eigensolver.

A small eigenproblem has been used to illustrate which combinations of recycling tech-
nique and eigensolver are the best suited in the present numerical context. The retained
eigensolvers, namely, the IRA method (implemented in ARPACK), the Krylov-Schur solver
and Jacobi-Davidson are then used on a realistic industrial case to compute the thermoa-
coustic modes of a full annular gas turbine combustion chamber. The size of the associated
eigenproblem is about n = 2 · 106, which requires parallel implementations of the said
eigensolvers, whose efficiency is also studied. The results concerning this industrial exam-
ple are clear: the use of the simple recycling techniques here proposed allow reduced the
computation time up to the to 50%, highlighting the computational savings that one can
expect to attain by recycling the spectral information during the fixed point procedure. An
exhaustive presentation of the numerical experiments and detailed description of the dif-
ferent algorithms can be found in [13]. Although the spectral recycling has been described
in a nonlinear framework, the ideas introduced in this work can obviously be extended to
other contexts. A good example may be the case of parametric studies where an important
amount of eigenproblems close to each other has to be solved, as in [11].
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