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Abstract—The FEAST algorithm and eigensolver for interior
eigenvalue problems naturally possesses three distinct levels
of parallelism. The solver is then suited to exploit modern
computer architectures containing many interconnected proces-
sors. This paper highlights a recent development within the
software package that allows the dominant computational task,
solving a set of complex linear systems, to be performed with a
distributed memory solver. The software, written with a reverse-
communication-interface, can now be interfaced with any generic
MPI linear-system solver using a customized data distribution
for the eigenvector solutions. This work utilizes two common
“black-box” distributed memory linear-systems solvers (Cluster-
MKL-Pardiso and MUMPS), as well as our own application-
specific domain-decomposition MPI solver, for a collection of 3-
dimensional finite-element systems. We discuss and analyze how
parallel resources can be placed at all three levels simultaneously
in order to achieve good scalability and optimal use of the
computing platform.

I. INTRODUCTION

Eigenvalue problems are widely used across a diverse range
of high performance computing applications. A generalized
problem is defined by two n× n matrices A and B, with the
set (A, B) known as the matrix pencil. The eigenvalues Λ and
eigenvectors X are non-trivial solutions to

AX = BXΛ. (1)

The problem is called ‘standard’ if B reduces to the identity
matrix or ‘generalized’ otherwise. In spite of the enormous
progress that has been made over the last few decades in
algorithms and software packages that compute the solution
to large sparse eigenvalue problems, the current state-of-the-
art methods are facing new challenges for achieving ever
higher levels of efficiency, accuracy and performance on
modern parallel architectures. In particular, traditional methods
suffer from the orthogonalization of a very large basis when
many eigenpairs are computed. In this case, a divide-and-
conquer approach that can compute wanted eigenpairs by
parts, becomes mandatory since ‘windows’ or ‘slices’ of the
spectrum can be computed independently of one another and
orthogonalization between eigenvectors in different slices is
no longer necessary. In this framework, all the resulting sub-
intervals are called interior eigenvalue problems, in the sense
that they involve large blocks of eigenpairs located anywhere
inside the spectrum.

The FEAST algorithm [27] and associated software package
[28], [9] is an accelerated subspace iterative technique for

computing interior eigenpairs that makes use of a rational
filter obtained from an approximation of the spectral pro-
jector. FEAST can be applied for solving both standard and
generalized forms of Hermitian or non-Hermitian problems,
and belongs to the family of contour integration eigensolvers
[32], [33], [3], [14], [15], [4]. Once a given search interval
is selected, FEAST’s main computational task consists of
a numerical quadrature computation that involves solving
independent linear systems along a complex contour. The
algorithm can exploit natural parallelism at three different
levels: (i) search intervals can be treated separately (no over-
lap), (ii) linear systems can be solved independently across
the quadrature nodes of the complex contour, and (iii) each
complex linear system with multiple right-hand-sides can be
solved in parallel. Within a parallel environment, the algorithm
complexity becomes then directly dependent on solving a
single linear system.

The FEAST numerical library offers ‘black-box’ reverse
communication interfaces (RCI) which are both matrix format
and linear system solver independent, and can then be fully
customized by the end users to allow maximum flexibility for
their applications. In addition, FEAST offers the following set
of desirable features: (i) high-robustness and a well defined
convergence rate, (ii) all multiplicities naturally captured, (iii)
no explicit orthogonalization procedure on eigenvectors, and
(iv) a reusable subspace when solving a series of related
eigenproblems. Consequently, the software package has been
very well received by application developers, especially in
the electronic structure community. A common technique to
calculate the electronic structure and ground-state properties
of molecules is Density Functional Theory (DFT) [20], where
many eigenvalue problems must be solved within a self
consistent loop. The FEAST algorithm is an ideal candidate
to parallelize this step, speeding up the time-to-solution for
these calculations and allowing for the investigation of very
large molecules containing thousands of atoms.

So far, the FEAST software has been limited to the use
of shared-memory system solvers (at the third level of par-
allelism). In this paper we extend the software to operate on
distributed memory platforms and interface the fully parallel
version of FEAST (PFEAST) with three different MPI linear-
system solvers: (i) Cluster-MKL-Pardiso [17], (ii) MUMPS
[1], and (iii) our own custom domain-decomposition solver for
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electronic structure calculations [24]. Three separate levels of
communication must be managed within the software kernel
and the multilevel parallel capabilities of the eigensolver result
in a trade-off between memory and performance. Parallel re-
sources can be placed at all three levels simultaneously in order
to achieve good scalability and optimal use of the computing
platform. This paper aims to highlight the flexibility of the
eigensolver and describe how the new PFEAST kernel can
be interfaced with different MPI linear-system solvers using
specific data distributions for input matrices and right-hand-
side vectors. We then benchmark the eigensolvers performance
with the three different solvers, showcase its scalability at each
level of parallelism, and discuss how to optimally distribute
parallel resources.

II. THE FEAST ALGORITHM

The FEAST algorithm utilizes spectral projection and
subspace iteration to obtain selected interior eigenpairs. A
Rayleigh-Ritz procedure is used to project matrices A and
B onto a reduced search subspace to form matrices

Aq = QHAQ and Bq = QHBQ. (2)

Approximate eigenvalues Λ̃ and eigenvectors X̃ of the orig-
inal system (i.e. Ritz-values and Ritz-vectors) can then be
recovered from the solutions of the much smaller eigenvalue
problem

AqWq = BqWqΛq (3)

as

X̃ = QWq and Λ̃ = Λq. (4)

Initializing X̃m as a set of m random vectors and obtaining
Qm after QR factorization of X̃m, results in a standard
subspace iteration (i.e. power method) that converges linearly
toward the dominant eigenpairs [31]. Many other sophisticated
Krylov-based methods have also been developed to improve
the convergence rate for the calculation of selected smallest,
largest or interior eigenpairs [22], [19], [6], [36]. The subspace
iteration technique, in turn, can be efficiently used for solving
the interior eigenvalue problem when it is combined with
filtering which aims to improve the convergence by increasing
the gap between wanted eigenvalues and unwanted ones. It is
well known that Ritz-pairs (X̃m, Λ̃) converge toward the true
eigenpairs (Xm, Λ) at a rate determined by the filter [31],
[26], [38]. In theory, the ideal filter for the Hermitian problem
would act as a projection operator XmXH

mB onto the subspace
spanned by the eigenvector basis, which can be expressed via
the Cauchy integral formula:

XmXH
mB =

∮
Γ

dz(zB −A)−1B, (5)

where the eigenvalues associated with the B-orthonormal
eigenvectors Xm are located within a given search interval
delimited by any closed curve Γ.

Algorithm 1 The FEAST Algorithm
1: input: A, B, X̃m0 , {(zj , ωj)}1,...,ne , ε
2: while ( ||AX̃m −BX̃mΛm|| > ε ) do
3: Qm0 = 0

4: for ( j = 0; j < ne; j = j + 1 ) do
5: Q

(j)
m0 ← (zjB −A)−1BX̃m0

6: Qm0 ← Qm0 + ωjQ
(j)
m0

7: end for
8: Aq = QHAQ Bq = QHBQ

9: Solve AqWq = BqWqΛq

10: X̃m0 = Qm0Wq Λ̃ = Λq

11: end while
12: output: X̃m, Λ̃m

In practice, the spectral projector must be approximated
using a quadrature rule using ne integration nodes and weights
{(zj , ωj)}j=1,...,ne

i.e.

Qm0
=

ne∑
j=1

ωj(zjB −A)−1BX̃m0
, (6)

where we also consider a search subspace of size m0 ≥ m.
The computation of Qm0 amounts to solving a set of ne

complex shifted linear-systems

(zjB −A)Q(j)
m0

= BX̃m0 with Qm0 =

ne∑
j=1

ωjQ
(j)
m0

. (7)

This matrix Qm0 is then used as the Rayleigh-Ritz projec-
tion operator to form reduced matrices Aq and Bq of (2). If the
exact spectral projector was known, solving the reduced eigen-
problem in (3) will produce the exact eigenvalues Λ̃ = Λq = Λ
and eigenvectors X̃ = QWq = X . However, since it is only
approximated, the Ritz-values Λq and updated Ritz-vectors X̃
are only an approximation to the true eigenpairs. Subspace
iteration will then, in effect, tilt the subspace spanned by
columns of X̃ toward the desire eigenspace. At convergence
we will obtain X̃ = Q = X and Λ̃ = Λ. The general outline
can be seen in Algorithm 1 for computing m eigenpairs in a
given search interval. The input X̃ can be chosen as a set of
m0 random vectors or a previously calculated solution to a
closely related problem.

The purpose of this section is not to provide a thorough
understanding of the FEAST algorithm, but to give a general
idea of the algorithmic steps involved. A detailed numer-
ical analysis can be found in [38]. Additional information
regarding the application of FEAST to non-symmetric and
non-Hermitian systems is available in [18], [37], [21], [40].
In particular, we would like to emphasize that the main
computational procedure within the algorithm is solving the
set of complex linear-systems in (7).

III. THREE LEVELS OF MPI PARALLELISM

Inherent to the FEAST algorithm are three separate levels
of parallelism mentioned in Section I that we will from now
denote as L1, L2 and L3. The current release of the software

2



package - FEASTv3.0 - offers MPI [12] only for the first
two levels L1 and L2. The upcoming release - FEASTv4.0 -
will place MPI also at the third level L3, allowing the linear
systems solutions to be solved with a distributed memory
solver.

The first level L1 can be used to distribute the eigen-
value spectrum if a large number of eigenpairs are needed.
In practice, can be used to limit the search subspace size
m0 and hence the number of right-and-sides for the linear
systems. If m0 is composed of at most a thousand vectors,
the m0×m0 reduced eigenvalue problem in (3) can be solved
using standard dense methods on a single node using LAPACK
[2]. For larger values of m0 a parallel treatment of the reduced
system (e.g. with ScaLAPACK [5]) could also be possible, but
is not considered in this work. To efficiently utilizing the L1
level of parallelism one must ensure each interval contains
roughly the same number of eigenvalues (uniform slicing),
possibly by using the fast stochastic estimator [8] already
incorporated within FEASTv3.0. The Zolotarev quadrature can
then help to provide a uniform convergence rate between dif-
ferent contours [13]. Alternatively, an economical “augmented
subspace approach” has recently been proposed to achieve the
same goal [11].

For a given search interval, each linear system in (7) can be
calculated independently with the second level of parallelism
L2. This should result in close to linear scaling. However,
this level is constrained by the number of nodes used in the
quadrature rule. The addition of quadrature nodes will improve
the approximate integration and increase the convergence rate,
but with a direct solver FEAST usually converges in few
iterations (∼ 4) using only 8 to 16 nodes. This level of
parallelism is limited since the inclusion of more than 16 nodes
may not significantly improve the performance (i.e. decrease
the number of FEAST iterations).

At level L3, each linear system can be solved in parallel.
Parallelism for the linear system solutions has previously been
introduced via threading within LAPACK routines for dense
systems, PARDISO [34], [16] for sparse systems, and SPIKE-
SMP [25], [35] for banded ones. It is this level that we have
addressed in this work: upgrading the FEAST computational
kernel to allow for a distributed memory linear-system solver.
The additional level of threaded parallelism will now take
place within level L3 and it would be inherent to the specific
MPI system solver implementation.

The second and third levels of parallelism overlap and must
be managed. This results in two separate MPI-Communicators
shown in Figure 1. We refer to the collection of MPI processes
within an MPI communicator as a “Communication-World”.
At the second level, the L2 communicator (defining each
L2-Communication-World) is a carry-over from the previous
FEAST distribution and specifies the mapping between MPI
processes and quadrature nodes (i.e. linear systems). Each MPI
process in L2 maps directly to a set of quadrature nodes.
Ideally, the number of members within each L2 communicator
will be equal to the number of quadrature nodes and each
linear-system is solved in parallel. In this case, using a direct

solver, each matrix factorization (ziB−A) must be computed
only once since subsequent PFEAST iterations solve a linear
system at the same complex pivot, but with an updated set
of right-hand-sides. The set of processes at the third level
of parallelism (i.e. L3-Communication-World) is to be used
by the distributed memory solver. In Figure 1 there are six
total MPI processes P-0 through P-5. L2 communicator (MPI)
ranks F-0, F-1 and F-2 map to contour integration nodes z0,
z1 and z2, where a linear system (ziB−A)Q = BY must be
solved. Each integration node then owns exactly two L3 MPI
processes S-0 and S-1 to be used by the distributed memory
solver.

Dividing parallel resources among the second and third
levels of parallelism results in a trade-off between memory
and performance. The second level represents ideal linear
scaling, since each linear-system can be solved independently.
However, it also requires more memory. Each cluster of
L3 MPI processes (within an L3-Communication-World) will
require a copy of the matrix. Placing more MPI processes at
the third level of parallelism, in turn, will reduce the amount of
memory required to store the matrix and eigenvector solutions
(since they are distributed across the L3 processes), which
could become essential to many large-scale applications.

If the amount of memory required to store the matrix and
eigenvector solutions is too large, it can be reduced using the
first and third levels of parallelisms L1 and L3. The L1 level
of parallelism subdivides the FEAST search interval resulting
in fewer calculated eigenpairs per subinterval. As shown in
Figure 2, this reduces the number columns in the eigenvector
matrix per MPI process. Additional MPI processes at the L3
level will allow the matrix and eigenvector solutions to be
distributed by row. If both L1 and L3 are used each MPI
process will contain a subset of columns and rows as seen in
the bottom right of Figure 2.

All MPI solvers must adhere to a specific pre-defined data

Fig. 1. Overlapping MPI communicators for PFEAST. We refer to the collec-
tion of MPI processes within an MPI communicator as a “Communication-
World”. If the first level of parallelism was also used, this picture would then
represent a single L1-Communication-World.
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Fig. 2. Data distribution of input matrix A and eigenvector solutions X
for different configurations of parallel resources. Additional MPI processes
at the L1 and L3 levels reduce the memory required to store the matrix and
solution. The L1 level subdivides the PFEAST search interval and results in
fewer number of eigenvectors calculated per node. Likewise, the L3 level can
be used to distribute X by row and A (as well as B for generalized problems)
by the distributed memory solver format. MPI processes at the L2 level would
result in additional copies of both A and X .

distribution, which can differ for each implementation. The
solver defines a data distribution for both the matrix and
rhs/solution vectors. PFEAST will require a predefined data
distribution for its kernel as well. The distribution format for
PFEAST is defined for the eigenvectors X (as well as Q and
Ritz-vectors X̃), and is independent of the distribution format
of matrices A and B. The kernel then operates directly on the
distributed vectors.

The eigenvectors data distribution has been defined to be
1-dimensional and by row. Each MPI process within an L3
communicator stores and operates on a specific subset of rows
and all corresponding columns. The choice of a 1-dimensional
distribution can be justified by the fact that PFEAST calculates
only a subset of m0 eigenvectors; the number of rows n in
the eigenvector matrix will, in general, be much larger than
the number of columns (i.e. n >> m0). Additionally, the
eigenvector columns can be distributed independently of the
PFEAST kernel with the first level of parallelism L1. The data
distribution will be the same for the right-hand-side vector
supplied by PFEAST and linear-system solutions returned to
PFEAST as they are directly related to the eigenvectors and
have the same matrix dimensions. Since the MPI solver must
operate on rhs/solution vectors in its own format, a reordering
step with communication between the MPI processes within
each L3 communicator could be necessary.

The distribution of the eigenvectors is required to be the
same for each of the L3 communicators; i.e. the same num-
ber of MPI processes is applied to each linear-system and
equivalent processes for different L2 communicators must
correspond to the same eigenvector partition. Both the linear-
system and eigenvectors solutions are, in general, dense and
will be stored in a matrix using the following 1-dimensional

distribution:

Qk =
[
qT1 , qT2 , . . . , qTs

]T
. (8)

Here the kth L2 (MPI) rank has its solution vector distributed
across s L3 MPI processes.

The data distribution will match for the members of each L2
communicator and the distributed Ritz-vectors Q can be found
through an all-reduce operation; i.e. scaling each linear-system
solution by the corresponding integration weight and summing
the results. The PFEAST kernel then operates only on a local
subset of rows qi within Qk. This row range is specified in two
entries within the PFEAST parameter array and does not need
to be equal for each L3 MPI process. Users can implement
their own matrix multiplication routine or linear system solver
as long as the result is placed back into the correct position
within the 1-dimensionally distributed Qk matrix.

It happens that, if the second level of parallelism L2
is used, a copy of Q will be stored for each L2 (MPI)
rank. Subsequently, at convergence multiple copies of the
eigenvectors X = X̃ = Q will also be stored across the
L2 communicator (i.e. for each L3-Communication-World).
However, since PFEAST must compute two inner-products
of the form Aq = QHAQ and Bq = QHBQ further
parallelization can be achieved. Moreover, since all columns of
Q are known across the L2 (MPI) ranks, only a small m0×m0

communication is necessary.
After the contour integration has been evaluated to find Q,

all MPI processes from L2 and L3 become available. Both
matrix multiplications Y = {AQ,BQ} (outside kernel) and
{Aq, Bq} = QHY (inside kernel) can take advantage of addi-
tional L2 MPI processes. To make use of all MPI processes Q
is subdivided and given a 2-dimensional decomposition. The
matrix Q, which has already been distributed by row across the
s MPI processes within an L3 communicator, is now further
distributed by column across the f L2 processes. This results
in the 2-dimensional decomposition

Q =


q11 q12 . . . q1f

q21 q22 . . . q2f

...
...

. . .
...

qs1 qs2 . . . qsf

 . (9)

Each block qij of matrix Q matches to exactly one MPI
process. However, all columns of the matrix qi = [qi1, ..., qif ]
are known for each MPI rank in the L2 communicator. That is,
each MPI process within an L2 communicator has in memory
all the columns of the 1-dimensionally distributed qi, but will
only be performing the multiplication for one piece qij of the
2-dimensional distribution. The multiplication result for each
qij must be placed back into the correct location within the
matrix Y . After the multiplication is performed on all s × f
MPI processes, the matrix Y = {AQ,BQ} will have the same
decomposition as (9) except that each block is known only on
a single MPI process.

The matrix multiplication is needed for three separate stages
of the algorithm and the operations within the kernel, although
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transparent to the user, differ slightly. First, it is used to
compute the Rayleigh-Ritz projection for {Aq, Bq}. In this
case, the kernel leaves Y in its 2-dimensional distribution and
the matrix multiplication has the form

Aq = QHAX = QHY =

[
qH1 qH2 . . . qHs

]
×


y11 y12 . . . y1f

y21 y22 . . . y2f

...
...

. . .
...

ys1 ys2 . . . ysf

 , (10)

where each local chunk yij is known on a single MPI
process only. The vector qi, however, is known for all f MPI
processes with the L2 communicator. When performing the
dense multiplication {Aq, Bq} = QHY inside the kernel each
yi1, ..., yif must be multiplied with qHi . By storing the result
of each qHi yij to the correct location within {Aq, Bq}, only
a small m0 ×m0 communication is necessary. Additionally,
both AQ and BQ are needed in the computation of the
eigenvector residuals. The result Y = {AQ,BQ} is again left
in its 2-dimensional distribution. This result is independent
for each eigenvector and therefore for each MPI rank within
an L2 communicator. And, since the L1 norm is used, the
final residual for each vector can be found by summing the
scalar result within each of the L3-Communication-Worlds.
After the residuals are determined, the final (scalar) values are
communicated among all MPI processes. Also required is the
right-hand-side for the linear-systems, which must be updated
as Y = BQ at the beginning of each PFEAST iteration. Here
yi, the 1-dimensionally distributed piece of Y , is required for
each MPI process within the L2 communicator and a reduction
operations must be performed across the L2 communicator,
summing the results for each L3-Communication-World.

IV. FEAST WITH A DISTRIBUTED-MEMORY SOLVER

Solving the linear-systems in (7) will be the dominant com-
putational procedure performed in the eigenvalue calculation.
Different “black-box” direct distributed memory solvers have
been integrated with the PFEAST kernel. An interface has
been created for two sparse direct solvers: the cluster version
[17] of PARDISO [34] within the Intel Math Kernel Library
[16] and MUMPS [1]. A banded interface has also been
created for the SPIKE-MPI [30], although we do not present
any results for banded matrices. Additionally, we highlight
the versatility of the PFEAST kernel by describing how to
integrate a Schur complement type solver.

Each interface requires a matrix-matrix multiplication rou-
tine specific to the distribution format accepted by the
solver. To interface these solvers with the PFEAST ker-
nel, linear-system solution and matrix multiplication results
must be placed back into the correct row corresponding
to the PFEAST distribution for the eigenvectors. Cluster-
MKL-PARDISO offers multiple options for distributing the
matrix and rhs/solution vector. The matrix and vectors can
be distributed 1-dimensionally by row across the L3 MPI
processes or stored locally on the head node. We have chosen

to distribute both the matrix and the right-hand-side vector for
the linear-system solver in order to match the eigenvector dis-
tribution. There is then no need for a reordering step since the
PFEAST data distribution matches with the solver. MUMPS
also offers multiple options for the matrix distribution and
we have chosen to manually distribute the matrix by row
to be consistent. However, MUMPS requires the rhs/solution
to be fully constructed on the head node and an additional
communication is then needed before and after the solve stage.

The PFEAST kernel can also be integrated within a domain
decomposition framework. One approach is to divide the
matrix A using a graph partitioner. The reordering will create
a 2× 2 block matrix

A =

[
C E
ET D

]
, (11)

where C contains the independent blocks and E and D contain
the connections between them. Linear-systems possessing this
block form can be solved with a Schur complement approach.
The procedure arises by row reducing the matrix equation
AX = Y to an upper block format, resulting in the equation[

C E
0 S

] [
Xl

Xe

]
=

[
Yl

Ye − ETC−1Yl

]
, (12)

where Xl and Xe refer to “local” and “external” pieces of the
vector. The quantity S := (D − ETC−1E) is known as the
Schur complement. The solution to the linear-system can be
obtained in a three step process.

(i) Solve: CT = Yl

(ii) Solve: SXe = Ye − ETT
(iii) Solve: CXl = Yl − ETXe

The first and third steps can be trivially parallelized since
C has a block diagonal structure. The difficulty arises in
steps (ii). In particular the formation of the Schur complement
is non-trivial and requires an inversion of the C matrix, or
equivalently the solution to CT = E. Also, the Schur matrix
S is not block diagonal as was the case for C. Efficiently
solving the Schur complement equation of step (ii) in parallel
for Xe is much more demanding and requires communication
between MPI processes.

With PFEAST we are interested in a series of linear-systems
in (7). The matrix (zjB − A) can be reordered to posses a
block form in (11). The goal of domain-decomposition is then
to obtain the solution to this linear systems in parallel using
the Schur complement. The matrix reordering will implicitly
partition vectors Q and Y = BX̃ (PFEAST inputs/outputs)
into “local” and “external” pieces

Q ≡
[

Ql

Qe

]
and BX̃ = Y ≡

[
Yl

Ye

]
. (13)

It is then convenient to think of the “local” pieces Ql and Yl

separately from the “external” Qe and Ye.
The matrix C has a block diagonal form
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
C1

C2

. . .
Cp




q1
l

q2
l
...
qpl

 =


y1
l

y2
l
...
ypl

 , (14)

and the solution to the linear-system CQl = Yl can be
obtained in parallel. Each linear system Ciq

i
l = yil can be

solved independently on a different L3 MPI process. The
vectors Ql and Yl should also be distributed across the MPI
processes in the same manner so that Ci, qil and yil all exist
on the same node.

The Schur complement solve in step (ii) should also be com-
puted in parallel by distributing the vectors Qe and Ye among
the L3 MPI processes. The PFEAST kernel is independent of
the ordering. Each piece of Q (resp. Y ), local to the ith L3
MPI process would contain a subset of rows from both Ql

(resp. Yl) and Qe (resp. Ye):

qi =

[
qil
qie

]
with Q =

 q1

...
qs

 . (15)

The “local” components yl would be extracted from the
PFEAST work array and operated on for steps (i) and (iii).
The solution ql must then be placed back into the work array
at the correct location (i.e to match (15)). Step (ii) would also
have to extract a subset of the “external” points from the right-
hand-side vector and place the solution back into the correct
location.

V. ALL-ELECTRON DFT APPLICATION

This parallel version of FEAST has been integrated with
our own finite-element electronic-structure code [7], [24], [10]
used to compute ground-state and excited-state properties of
molecules through DFT and time dependent DFT (TDDFT).
Ground-state DFT calculations require many eigenvalue prob-
lems to be solved in a self consistent loop. This is, along
with the solution to the Poisson equation, the most computa-
tionally demanding step in the procedure. A highly parallel
eigensolver can significantly speed up the time-to-solution
for these problems and allow for the investigation of very
large molecules comprised of many thousands of atoms. The
results presented in the next section show the scalability
of the eigenvalue computation for a single iteration of the
self-consistent scheme used in DFT. The time-to-solution,
ignoring the Poisson equation, would then depend mainly on
the number of iterations required to reach convergence.

Our all-electron code does not use pseudopotentials and
explicitly includes the effect of core electrons. There are many
more points directly surrounding the atoms than in the region
between in order to capture high-frequency variation of the
core wave functions. A domain-decomposition approach is
used to separate dense regions of points directly surrounding
the atoms [39]. The idea is to create a separate distinct finite-
element mesh for each atom [23]. The atomic regions are
then connected through an additional “interstitial” mesh. This

Fig. 3. Example of the muffin-tin decomposition for a benzene molecule
(C6H6). The full mesh is composed of a mesh centered around each atom
(right) and the interstitial connecting mesh (left). The interstitial ,mesh has a
hole where each atom is located and shares interfaced points with each atomic
mesh.

gives rise to the muffin-tin overlapping (conformal) domain-
decomposition in Figure 3 where the atomic regions (right)
have been explicitly removed from the full mesh leaving be-
hind the interstitial region (left). This partitioning (by element)
results in a total of nat + 1 different matrices describing the
system. The interface nodes between an atomic and interstitial
region, however, will exist within both meshes (and matrix
systems). These nodes can only be formally defined to exist
at one spot within the global solution input to PFEAST and are
defined to exist within the interstitial mesh/matrix. The atomic
and interstitial regions are then related through a boundary
condition, which can be applied at each complex energy pivot
(quadrature node) within PFEAST. A detailed description can
be found in [24].

TABLE I
MAIN COMPUTATIONAL ASPECTS WITHIN THE SOLUTION PROCEDURE
FOR THE DOMAIN-DECOMPOSITION MPI SOLVER. THE FULL MATRIX

(AND RHS/SOLUTION) IS THE VECTOR-SPACE SUMMATION OF THE
INTERSTITIAL MATRIX AND ALL (NON-OVERLAPPING) ATOMIC MATRICES.

Solving HX = Y where

{H,X, Y } = {H,X, Y }it⊕
(

nat⋃
k=1

{H,X, Y }atk

)

1. Obtain boundary condition Σ and source term Z in parallel
Solve: Hat

k Xat
k = Y at

k ∀k
2. Obtain solution in interstitial region

Solve: (Hit + Σ)Xit = Y it + Z
3. Recover solution in atom regions in parallel

with known boundary values
Solve: Hat

k Xat
k = Y at

k ∀k
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Fig. 4. Structure of a six atom finite-element DFT matrix permuted for 2 L3 MPI processes (3 atoms per process). The left shows the matrix built from the
full mesh including interstitial and atomic regions. The points that correspond to atomic regions are labeled at1 − at6. The interstitial matrix can be seen on
the right, including boundary conditions Σ1 −Σ6 (in blue) that account for atomic points. The domain-decomposition approach compresses the large sparse
set of atomic point on the left into the 98× 98 dense blocks Σ on the right.

The idea for solving the linear system of equations in (7)
is similar to a Schur compliment approach and requires one
to obtain, from all atomic system {(Hat

k , Sat
k )}, a non-local

boundary condition (self-energy) Σk for the interstitial system
(Hit, Sit) and a source term Zk applied to the right-hand-side.
After solving the modified equation to obtain the final answer
for the interstitial points, the solution within the atomic regions
can be recovered by applying Dirichlet boundary conditions
at the interface points and solving again a linear system. The
three major computational aspects important to the rest of our
discussion can be seen in Table I.

We use MKL-PARDISO, a sparse direct solver, for each
computational aspect. Solutions for each atomic region (i.e.
Steps 1 and 3) can be obtained with perfect parallelism and re-
quire the solution to nat moderately sized (independent) sparse
systems. The interstitial matrix (of Step 2), however, will grow
linearly with the number of atoms in the molecular system
and must be solved in parallel using all L3 MPI processes
and a distributed memory solver. To compute the solution of
for interstitial points we use Cluster-MKL-PARDISO.

Interfacing our domain-decomposition solver (DD-Solver)
with PFEAST will be slightly more difficult than for Cluster-
MKL-PARDISO (acting on the full system) or MUMPS and
is similar to what is described in Section IV for the Schur
Complement. The solution vector in PFEAST contains points
from the interstitial and atomic regions and formally defines
the interface nodes to be within the interstitial region. In order
to operate on the atomic matrices in Steps 1 and 3 of Table
I, the corresponding points must be extracted from the right-

hand-side vector supplied by PFEAST. The same is true for
Step 2; the distributed piece of the interstitial vector must
be extracted for Cluster-MKL-PARDISO. Before returning
to the PFEAST kernel, the decomposed solutions must be
reconstructed into the representation for PFEAST defined in
equation (8), where the ith L3 MPI process is assigned a
collection of rows xi and yi of the global vectors. These
subsets then contain both atomic and interstitial points. The
full interstitial solution

Xit =
[

(xit
1 )T , (xit

2 )T , . . . , (xit
s )T

]T
(16)

is divided evenly among the L3 MPI processes in agreement
with Cluster-MKL-PARDISO, with the ith L3 process as-
signed a single piece xit

i . The atoms are then dealt out like a
deck of cards to each L3 MPI processes, with each owning a
collections (or possibly none). The PFEAST vector qi, local
to the ith L3 MPI process, contains the atomic points (with
the interface nodes removed) concatenated in order to the end
of the local interstitial points.

xi =
[

(xit
i )T , (xat

i1)T , (xat
i2)T , . . .

]T
. (17)

The data distribution within our finite-element code has
been optimized to minimize communication between MPI
processes. The interstitial mesh has been permuted so that each
local piece that is identified with a given MPI process is guar-
anteed to include the interface points associated with atoms
also assigned to that process. In this way, no communication
is needed when applying the boundary conditions.
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Figure 4 shows the matrix structure for a (unphysical) six
atom carbon ring system permuted specifically for 2 L3 MPI
processes. The plot on the left shows the full matrix including
the interstitial and atomic regions. The matrix elements associ-
ated with the atoms are the independent square blocks labeled
at1 − at6. The DD-Solver takes in a separate matrix for the
interstitial and atomic regions. The interstitial matrix is shown
on the right of Figure 4 and contains dense blocks (in blue) that
correspond to non-local boundary condition Σ and account for
effects within each atomic region. The domain-decomposition
approach acts to compresses large sparse atomic blocks within
the full matrix into the 98× 98 dense blocks (in blue) within
the interstitial matrix. This resulting interstitial system is of
much smaller size.

VI. RESULTS

The matrix systems used to gather results are a collection of
Hamiltonians representing carbon nanotube (CNT) molecules
of varying length (ranging from 54 to 246 atoms). These
finite-element systems use second degree polynomial refine-
ment and are generated from a 3-3 CNT unit cell. They are
terminated with six hydrogen atoms at each end and follow
a (Uh|UaUb| . . . |UaUb|Ua|Uh) pattern (see a 3 unit cell CNT
in Figure 5) with Uh representing the six hydrogen atoms and
Ua and Ub different configurations of six atom carbon rings.
Each carbon atom contains six electrons, which corresponds
to three eigenmodes (since the electron spin is not explicitly
taken into account). The number of sought eigenvalues m in
a CNT system with nu unit cells is given by

m ≈ 6 + 18 + 36× nu, (18)

where the first six modes correspond to the twelve terminating
hydrogen atoms, the next eighteen modes to the Ua carbon ring
and the additional factor of thirty-six modes to the |UaUb| unit
cells.

The experiments were performed on the Mesabi Linux
cluster at Minnesota Supercomputing Institute. The compute
nodes feature two sockets, each with a twelve core 2.5 GHz
Haswell E5-2680v3 processor. We define each MPI process
as a single socket and allow the distributed memory solver to

Fig. 5. 3-dimensional plot of a 3 unit cell CNT (3-CNT). The molecule is
composed of 3 |UaUb| units cells, includes an additional Ua ring, and is
terminated with hydrogen atoms Uh at each end.

use 12 openMP threads per MPI process. The nodes are also
equipped with 64 GB of system memory.

Although the PFEAST kernel could be interfaced with an
iterative or hybrid solver, we consider only the application
of three different sparse direct solvers. Both Cluster-MKL-
PARDISO and MUMPS have been tested with the full matrices
generated by stitching together the interstitial and atomic
meshes within our finite-element electronic structure code (as
seen in the left plot of Figure 4). Our application specific
domain-decomposition solver (DD-Solver) reorders the matrix
based on the number of L3 MPI processes, in order to
reduce communication. For consistency the matrices have been
permuted the exact same way for Cluster-MKL-PARDISO,
MUMPS and the DD-Solver. All tests have been run with
default parameters for the solvers operating in ‘in-core’ mode.
Both Cluster-MKL-PARDISO and MUMPS decompose the
full matrix by row over L3 MPI processes and contain
interstitial and atomic points. The inputs to PFEAST will
be consistent among the solvers with each L3 MPI process
assigned the exact same subset of the eigenvector solutions,
as long as the number of L3 MPI processes is divisible by the
number of atoms.

The scalability of PFEAST will mainly depend on solving
the complex linear systems and choosing how to distribute
the parallel resources. This results in the trade-off between
memory and performance mentioned in Section III. If enough
resources are available, it is advisable to place as many MPI
processes at the second level of parallelism as possible. This
level handles the independent linear systems and requires a
copy of the matrix and solution on each L3 MPI process.
It should result in close to ideal linear scaling. In contrast,
if the matrix or solution can not fit into memory, it may be
distributed using the third level of parallelism. The scalability
then depends on the distributed memory solver.

A. Strong Scalability of L2

The L2 scalability can be seen in Figure 6, where 3
MPI processes have been assigned to L3 and the number
of clusters of L3 MPI processes (i.e. the number of L2-
Communication-Worlds) is varied from 1 to 16 for a total of
3, 6, . . . , 48 MPI processes (i.e. a total of 36 to 576 cores).
These results have been gathered using the matrix system
CNT-5 comprised of five unit-cells with a total of 78 atoms
and a dimension of 302, 295. We note that the eigenvalue
and eigenvectors obtained for this example correspond the
true converged DFT solutions. The right graph in Figure
6 shows the ideal speedup in black that increases linearly
with the number of L2-Communication-Worlds. The actual
speedups (compared to a single L2-Communication-World)
for the three solvers are plotted as points below the line.
We see very close to linear scaling at this level. The total
time to solve the eigenvalue problem is plotted on the left.
Four PFEAST iterations were needed to reach the default
convergence criteria of 10−12 on the eigenvector residuals. The
factorization stage was only computed once for the case of 16
L2-Communication-Worlds, but did not result in super linear
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Fig. 6. Scalability of the second level of parallelism. The number of L2
processes is increased from 1 to 16 while keeping the number of L3 MPI
processes at a constant value of 3 (for a total of 36 to 576 cores). This level
is limited to 16 L2 MPI processes since 16 quadrature points were used. These
results are for the CNT-5 eigensystem with m0 = 600 (226 eigenvalues). The
left graph gives the total time to solve the eigenvalue problem. The speedup
compared to 1 cluster of L3 processes can be seen on the right.

scaling due the 20 total seconds spent in the PFEAST kernel
computing the solution to the reduced eigenvalue problem and
performing communication.

B. Strong Scalability of L3

The scalability of the third level of parallelism L3 is limited
by the properties of the eigensystem and linear-system solver.
The strong scalability of the DD-Solver, specifically, may be
limited by the number atoms. All L3 MPI processes can work
together in the solution to the interstitial matrix (i.e. Step 2
of Table I) regardless of the number of atoms. But, if the
number of L3 MPI processes exceeds the number of atoms,
Steps 1 and 3 in Table I can only be performed on a subset
of the MPI processes (some will not have been assigned an
atom). It can also be unbalanced if a different number of
atoms are assigned to each MPI process. However, problems
that require a distributed memory solver will usually target
nanostructures with many atoms; usually far outnumbering the
parallel resources. Figure 7 shows the strong scalability of the
L3 level of parallelism within PFEAST. The matrix system
from the CNT-5 molecule is used again with m0 = 600 and
the number of L3 MPI processes is varied from 1 to 32. We
report the total time required to solve the eigenvalue problem
(four PFEAST iterations to reach convergence) on the left.
The speedup compared to 2 L3 MPI process can be seen on
the right. Here we compare with 2 L3 MPI processes because
of the communication overhead associated with the distributed
memory solvers. The time should, ideally, drop by half each
time the number of MPI processes is doubled. As can be seen
in the graph, the efficiency of the L3 scaling is much worse
than for L2.

C. Fixed Number of Resources

Another situation common within the scientific computing
community is where parallel resources are limited to a specific
number processors. Here the three levels of parallelism within
PFEAST can help to optimally utilize all parallel resources and

Fig. 7. Scalability of the third level of parallelism for 5-CNT system with
m0 = 600 (226 eigenvalues). The left graph the total time to solve the
eigenvalue problem. Fully utilizing L2 (with a total of 12,288 cores) these
times could be reduced by a factor of 16. The scaling compared to 2 L3 MPI
processes can be seen on the right.

achieve good performance. We only consider the second and
third levels of parallelism L2 and L3. The question becomes
how to divide the resources among the two levels. If 64 nodes
are available on the system and 16 PFEAST contour points are
used there are then five ways to distribute the resources across
the L2 and L3 levels of parallelism. There is no restriction
for the number of MPI processes applied to the L3 level.
Each L2-Communication-World, however, should have the
same number of linear systems for load balancing. With 16
contour nodes, the possible values are 1, 2, 4, 8, 16. In order to
fully utilize the resources we choose the number of L3 MPI
processes as 64, 32, 16, 8, 4. Table II presents the total time
to solve the eigenvalue problem for a fixed number of MPI
processes, but different distributions of parallel resources over
the L2 and L3 levels. As we initially predicted, it is optimal
to place as many resources as possible at the L2 level and
the best performance happens for one linear system per L2-
Communication-World.

TABLE II
TIME (IN SECONDS) TO SOLVE THE 5-CNT EIGENVALUE PROBLEM WITH
m0 = 600. THE TOTAL NUMBER OF MPI PROCESSES IS HELD CONSTANT,

BUT CAN BE SPLIT BETWEEN THE SECOND AND THIRD LEVEL OF
PARALLELISM. MORE MPI PROCESSES AT THE L3 LEVEL WILL REDUCE
THE MEMORY REQUIRED BY EACH MPI PROCESS (I.E. THE NUMBER OF

ROWS OF THE EIGENVECTOR AND SYSTEM MATRICES ASSIGNED TO EACH
PROCESS).

# L2 # L3 # Rows DD-Solver PARDISO MUMPS

1 64 6260 639 982 923

2 32 10553 323 511 643

4 16 19139 172 315 332

8 8 38277 116 171 194

16 4 76554 104 115 125

D. L1 Scalability

With the first level of parallelism L1, multiple contours can
be solved in parallel to reduce m0 (the number of right-hand-
sides and projected eigenproblem dimension). If the reduced
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TABLE III
SCALING OF THE L1 LEVEL OF PARALLELISM. TOGETHER THE THREE

CONTOURS C1, C2 AND C3 - DEFINED BY (λmin λmax) - ARE
EQUIVALENT TO THE FULL CONTOUR C0. EACH CONTOUR CAN BE

TREATED INDEPENDENTLY (IN PARALLEL) AND CALCULATES ONLY A
SUBSET OF EIGENVALUES. SUB-DIVIDING THE CONTOUR RESULTS IN A

SPEEDUP FOR THE SOLVE STAGE SINCE THE RESULTING LINEAR-SYSTEMS
HAVE FEWER RIGHT-HAND-SIDES (m0). THE FACTORIZATION AND SOLVE
TIMES FOR A SINGLE PFEAST ITERATION ARE RECORDED IN THE TABLE.

RESULTS USE THE CNT-5 MATRIX SYSTEM WITH A TOTAL OF 13 MPI
PROCESSES (156 CORES), ALL PLACED AT THE L

¯
3 LEVEL.

λmin λmax m0 # Eig Fact (s) Solve (s)
C0 -500 -2 600 273 96 170
C1 -500 -100 200 66 94 59
C2 -100 -16 200 92 99 57
C3 -16 -2 200 115 96 56

eigenvalue problem becomes too large it can not be solved
with a traditional dense techniques and the contour must be
sub-divided. Also, the L2 and L3 will eventually saturate and
performance can not be improved placing resources at these
levels of parallelism. Multiple contours at the first level L1 can
then be used to increase performance by speeding up the solve
stage. For this example we have again used the CNT-5 system
with 78 atoms and present two separate cases. The first uses a
single contour C0 to calculate all eigenmodes with m0 = 600.
The next case sub-divides the entire search interval into three
separate pieces C1, C2 and C3 which can be calculated
in parallel. This first contour C1 targets the core electronic
modes within the system that are well separated from valance
states. Two contours C2 and C3 are then used to calculate
the valance modes, which are much more densely populated.
The total time to solve the eigenvalue problem using the
L1 level of parallelism would then depend on the slowest
sub-contour. Because the separation between eigenvalues is
small the second and third contours could exhibit slower
convergence than C1 and require more PFEAST iterations.
However, for the sake of comparison we only present the time
of a single PFEAST iteration. Here we report the factorization
time, which does not change much between the three contours,
and the solve time for a single PFEAST iteration. Because
m0 is small, the time spent in the kernel is minimal for this
example. Dividing the contour into three segments results in
a speedup of around three for the linear system solve.

E. Weak Scalability

To highlight the weak scalability of PFEAST, we present
results for a variety of CNT systems. We consider only the L3
level of parallelism and place six atoms on each MPI process
(each unit cell places an additional 12 atoms in the system).
We then gather results, varying the length of the CNT up to
19 unit cells, using 9, 17, . . . , 41 L3 MPI processes (up to 492
cores) to optimally utilize the solver. The weak scalability can
be seen in Figure 8. Large sparse eigenvalue problems usually
attempt to calculate a percentage of the eigenpairs. However,
with the L1 level of parallelism the number of eigenvalues
(and right-hand-sides) can be held constant. To showcase the
weak scalability we then use a constant value of m0 = 200

# MPI 9 17 25 33 41
# Atoms 54 102 150 198 246
System Size 211,110 392,650 575,760 757,934 942,157

Fig. 8. Weak scaling of factorization and solve stages (in seconds) for a
single PFEAST iteration using 16 contour points (16 linear-systems solved in
total using # L2=1) and 200 right-hand-sides. The matrix size is increased
proportionally to the number of MPI processes. Reported timings could be
reduced by a factor of 16 if L2 was fully utilized. MUMPS ran into memory
issues for more than 198 atoms (757,934 size, 33 MPI).

for all matrix systems. The number atoms and system size are
listed in the table for each molecule. The factorization and
solve times for a single iteration of PFEAST are then plotted
for all three solvers. We witness, for the factorization, a steeper
increase in the time for the smaller systems. The factorization
times then begin to taper off for larger systems. The solve time,
however continue to increase for larger systems. This behavior
is more pronounced for the DD-Solver and Cluster-MKL-
PARDISO and is due to communication. MUMPS, however,
ran out of system memory far before Cluster-MKL-PARDISO
or the DD-Solver. These results show that the DD-Solver is not
only faster (in total time), but has better weak scalability than
the “black-box” solvers. Much larger molecular systems can
then be handled through the domain-decomposition approach.

The total time to solve the eigenvalue problem will increase
by an additional multiplication factor depending on the number
of PFEAST iterations to reach convergence. However, if the
L2 level was fully utilized, resulting in a maximum of 7,872
cores, the absolute times could be reduced by a factor of 16
as discussed in Figure 6. In electronic structure applications,
the number of wanted eigenvalues should also grow linearly
with the size of the atomistic system. If the spectrum can
be sliced uniformly at level L1 as illustrated in Table III, and
assuming an access to ‘unlimited parallel resources’ where the
total number of L3 MPI processes (and then cores) can grow
linearly with the number of slices L1, the weak scalability and
absolute timing results (that can also be divided by the number
of L2) presented in Figure 8, shall then be preserved. Solving
for all the eigenpairs of the largest system in Figure 6 that
contains 246 atoms could use 5 slices each of block size 200,
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and result in (#L1)×(#L2)×(#L3)=3,280 total MPI processes
(using #L1=5, #L2=16, #L3=41) or 3280×12=39,360 total
cores (using 12 cores per MPI process).

VII. CONCLUSION

This paper outlined the multilevel parallel capabilities of
the new PFEAST eigensolver that comprises three full levels
of MPI parallelism and operates directly on 1-dimensionally
distributed (by row) eigenvector solutions. Due to the multiple
levels of parallelism, PFEAST is ideally suited to run on
large computing clusters. The three levels of parallelism can
work together to minimize time spent in all stages of the
algorithm. The third level can be used to reduce the memory
per node and to decrease the solution time of both the linear
system factorization and solve. The second level has close to
ideal scaling and, if fully utilized, can reduce the algorithmic
complexity to solving a single complex linear system per
PFEAST iteration. Finally, the first level can be used to reduce
the memory requirements for storing eigenvector solutions
and speed up the solve stage of the linear system solution.
Additionally it allows for the computation of a very large
number of eigenvalues by subdividing the full search interval.
The software is matrix-format independent and can be easily
interfaced with any distributed memory solver. Three different
solvers, including a custom domain-decomposition solver,
have been interfaced with the software kernel and highlight its
generality. This, along with its multilevel scalability, will make
PFEAST a valuable new tool for the HPC community [29].
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