
DOMAIN DECOMPOSITION APPROACHES FOR ACCELERATING CONTOUR
INTEGRATION EIGENVALUE SOLVERS FOR SYMMETRIC EIGENVALUE

PROBLEMS

VASSILIS KALANTZIS∗, JAMES KESTYN†, ERIC POLIZZI‡, AND YOUSEF SAAD∗

Abstract. This paper discusses techniques for computing a few selected eigenvalue-eigenvector pairs of large
and sparse symmetric matrices. A recently developed powerful class of techniques to solve this type of problems
is based on integrating the matrix resolvent operator alonga complex contour that encloses the interval containing
the eigenvalues of interest. This paper considers such contour integration techniques from a domain decomposition
viewpoint, and proposes two schemes. The first scheme can be seen as an extension of domain decomposition
linear system solvers in the framework of contour integration methods for eigenvalue problems, such as FEAST. The
second scheme focuses on integrating the resolvent operator primarily along the interface region defined by adjacent
subdomains. A parallel implementation of the proposed schemes is described and results on distributed computing
environments reported. These results show that domain decomposition approaches can lead to reduced runtimes and
improved scalability.

Key words. Domain decomposition, symmetric eigenvalue problem, Cauchy integral formula, parallel comput-
ing, FEAST.

AMS subject classifications.15A18, 65F10, 65F15, 65F50

1. Introduction. This paper addresses the problem of computing all eigenvalues located
in an interval[α, β] and their associated eigenvectors of a sparse real symmetric matrixA of
sizen × n. A common approach for solving this type of problems is via a Rayleigh-Ritz
(projection) process on a well-selected low-dimensional subspaceU . In an ideal situation,U
spans an invariant subspace associated with the sought eigenvalues.

Much interest has been generated in recent years by techniques in which the subspace
U is extracted via an approximation of the spectral projectorobtained by numerically inte-
grating the resolvent(ζI − A)−1, ζ ∈ C on a closed complex contourΓ that encloses the
desired eigenvalues. The core of the method is then to compute the action of the matrix
contour integral

∫

Γ
(ζI − A)−1dζ on a set of vectors. From a numerical viewpoint, contour

integration eigenvalue solvers (eigensolvers) can be viewed as rational filtering techniques
that convert the solution of the original eigenvalue problem into the solution of a series of
complex symmetric linear systems with multiple right-handsides. Popular algorithms of the
class of contour integration-based eigensolvers are the FEAST method of Polizzi [32,45] and
the SS method of Sakurai and Sugiura [40,41].

We focus on distributed computing environments, possibly with a large number of pro-
cessors, and study contour integration eigensolvers from adomain decomposition (DD) view-
point [43,46]. In a domain decomposition approach the (discretized) computational domain
is partitioned into a number of subdomains, each assigned toa different processor group. Do-
main decomposition techniques for the solution of eigenvalue problems have been studied in
the past, see for example [4,9,10, 20, 27,28, 31], but to our knowledge these methods have
not yet been considered within a contour integration framework.

∗Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
(kalantzi@cs.umn.edu, saad@cs.umn.edu). This work supported jointly by NSF under award CCF-1505970 (the-
oretical aspects) and by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced ScientificComputing Research and Basic Energy Sciences
under award number DE-SC0008877 (Implementations, application to DFT).

†Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
(kestyn@ecs.umass.edu, polizzi@ecs.umass.edu). This work supported by NSF under award CCF-1510010.

1

mailto:kalantzi@cs.umn.edu
mailto:saad@cs.umn.edu
mailto:kestyn@ecs.umass.edu
mailto:polizzi@ecs.umass.edu

Contour integration eigensolvers have been mostly associated with the use of sparse di-
rect solvers to solve the linear systems which arise from thenumerical approximation of the
contour integral. This approach, however, is not always feasible due to the possible large
amount of fill-in in the triangular factors, e.g., when factorizing matrices that originate from
discretizations of 3D computational domains. One of the goals of this paper is to fill part
of the gap that exists between contour integration approaches and the use of hybrid iterative
solvers within their context. In particular, we would like to accelerate iterative solutions of
the linear systems encountered in the FEAST algorithm, by utilizing domain decomposition
preconditioners to solve the complex linear systems with multiple right-hand sides.

Even when direct solvers are the most practical way to solve the linear systems encoun-
tered in a FEAST approach, domain decomposition based approaches can lead to faster and
more scalable computations. This will be illustrated by comparing the FEAST algorithm
implemented with a domain decomposition-based direct solver, with an implementation of
FEAST that uses a standard parallel sparse direct solver.

Domain decomposition type methods naturally lend themselves for parallelization in
multi-core and/or many-core environments. The paper discusses practical aspects of an im-
plementation of the proposed numerical schemes in distributed computing environments.

Finally, we discuss a modified contour integration scheme which approximates only cer-
tain parts of the contour integral of the matrix resolvent. This leads to a numerical scheme that
can be computationally more efficient than following the standard approach of numerically
integrating the entire resolvent.

The organization of this paper is as follows. In Section 2 we describe the main idea be-
hind contour integration eigensolvers, and FEAST algorithm in particular. In Section 3 we
describe the domain decomposition framework. In Section 4 we present two computational
schemes within the context of domain decomposition. Section 5 focuses on the solution of
the linear systems during the numerical integration phase,and discusses the use of domain
decomposition-based preconditioners, as well as their implementation in distributed comput-
ing environments. In Section 6 we present computational experiments. Finally, in Section 7,
we state a few concluding remarks.

2. Contour integration-based eigenvalue solvers.For simplicity, throughout this pa-
per we will assume that the sought eigenpairs ofA lie inside the interval[−1, 1]. The above
assumption is not restrictive since the eigenvalues ofA located inside any real interval[α, β]
can be mapped to the interval[−1, 1] by the following linear transformation:

A := (A− cI)/e, c =
α+ β

2
, e =

β − α

2
. (2.1)

Now letA haver eigenvalues, denoted byλ1, . . ., λr, located in the interval[−1, 1],
and letX = [x(1), . . . , x(r)] be then × r orthonormal matrix formed by the associated
eigenvectors. Then, the spectral projectorP = x(1)(x(1))T + . . .+x(r)(x(r))T = XXT can
be expressed via the Cauchy integral [36]:

P =
1

2iπ

∫

Γ

(ζI −A)−1dζ, (2.2)

whereΓ is a smooth, counter-clockwise oriented curve that encloses only the sought eigen-
valuesλ1, . . .,λr. The invariant subspace associated with the eigenvectorsx(1), . . ., x(r) can
be then captured by multiplyingP by some full-rank matrixV ∈ Rn×r̂, where it is assumed
that V TX has rankr. The span ofPV can then exploited by a Rayleigh-Ritz projection
procedure to extract eigenpairs(λ1, x(1)), . . . , (λr , x(r)).

2

In practice, the spectral projector in (2.2) is approximated by numerical quadrature, e.g.,
anNc-point Gaussian quadrature rule. A basis of the approximateinvariant subspace then
takes the form:

PV ≈ P̃V =

Nc∑

j=1

ωj(ζjI −A)−1V, (2.3)

where{ζj, ωj}1≤j≤Nc
are theNc quadrature node-weight pairs of the quadrature rule. The

numerical integration scheme in (2.3) approximates the exact spectral projectorP in (2.2) by
the approximate projector̃P = ρ(A), where

ρ(ζ) =

Nc∑

j=1

ωj
ζj − ζ

. (2.4)

The rational functionρ(ζ) can be interpreted as a “spectral” filter function which mapsthe
eigenvaluesλ1, λ2, . . . , λn of A to the eigenvaluesρ(λ1), ρ(λ2), . . ., ρ(λn) of ρ(A). In an
ideal situationρ(ζ) ≈ 1, for ζ ∈ [−1, 1] andρ(ζ) ≈ 0, for ζ /∈ [−1, 1].

If the accuracy of the approximate eigenpairs computed by a Rayleigh-Ritz projection
on the subspace created by (2.3) is not satisfactory, the procedure can be repeated using the
most recent approximate eigenvectors as the new matrixV to multiply P̃ . If direct solvers
are used to solve the complex linear systems in (2.3), this approach essentially amounts to
subspace iteration with matrixA replaced byρ(A). This approach has been implemented
in the FEAST package introduced by Polizzi [22,32,45]. The subspace iteration viewpoint
relaxes the requirement for a highly accurate approximation of the exact spectral projector
P . It is also possible to consider contour integrals of other rational functions, e.g., the scalar
functionu∗(ζI−A)−1v, with u, v, ∈ Cn, as proposed by Sakurai and Sugiura (SS) [40,41].
The poles of this scalar function are the eigenvalues ofA.

This paper focuses on the FEAST framework, i.e., on an approach based on a filtered
subspace iteration.

3. The domain decomposition framework. In a domain decomposition framework,
we typically begin by subdividing the computational domaininto P partitions (subdomains)
using a graph partitioner [21,29]. The partitioning can be either recursive, using nested dis-
section [16], or P -way, where the domain is partitioned inP subdomains directly. Through-
out this paper, we assume a non-overlappingP -way partitioning of the domain, where each
vertex is a pair equation-unknown (equation numberi and unknown numberi) and the parti-
tioner subdivides the vertex set intoP partitions, i.e.,P non-intersecting subsets whose union
is equal to the original vertex set (the aforementioned is also known either as vertex-based or
edge-separator partitioning).

Once the graph is partitioned, we can identify three different types of unknowns: (1)
interior unknowns that are coupled only with local equations; (2) local interface unknowns
that are coupled with both non-local (external) and local equations; and (3) external interface
unknowns that belong to other subdomains and are coupled with local interface variables.
Within theith subdomaini = 1, . . . , P , a local reordering is applied in which interior points
are listed before the interface ones. With this, the local eigenvectorxi can be split into two
parts: the subvectorui of internal components followed by the subvectoryi of local interface
components. Let now subdomaini havedi interior variables andsi interface variables, i.e.,
the length of vectorsui andyi is di andsi respectively. We denote byBi ∈ Rdi×di the matrix
that represents the couplings between the interior variables, i.e., between variables inui. Sim-
ilarly, we denote byÊi ∈ Rdi×si the matrix that maps interface variables of subdomaini to

3

interior variables of subdomaini, and byCi ∈ Rsi×si the matrix that represents the couplings
between the interface variables of subdomaini, i.e., between variables inyi. Finally, we let
Eij ∈ Rsi×sj be the matrix representing the couplings between external interface unknowns
from subdomainj and local interface variables of subdomaini.

When block partitioned according to the above splitting, the equation(A − λI)x = 0
can be written locally as

(
Bi − λI Êi
ÊTi Ci − λI

)

︸ ︷︷ ︸

Ai

(
ui
yi

)

︸ ︷︷ ︸
xi

+

(
0

∑

j∈Ni
Eijyj

)

= 0. (3.1)

Matrix Ai and vectorxi are local in theith subdomain, andNi is the set of indices of the
subdomains that are neighbors to theith subdomain. The termEijyj is a part of the product
which reflects the contribution to the local equation from the neighboring subdomainj. Note
thatEij (i 6= j) is non-zero only if subdomainsi andj are nearest neighbors. The second
block of rows in (3.1) contains the couplings between the local variables of theith subdo-
main and external interface variables from neighboring subdomains, and gives the following
equation:

ÊTi ui + (Ci − λI)yi +
∑

j∈Ni

Eijyj = 0.

The action of the operation on the left-hand side of the aboveequation on the vector of all
interface variables, i.e., the vectoryT = [yT1 , y

T
2 , · · · , y

T
P], can be accomplished into the

following matrixC ∈ Rs×s:

C =

C1 E12 . . . E1P

E21 C2 . . . E2P

...
...

. ..
...

EP1 EP2 . . . CP

. (3.2)

whereEij = 0 if j /∈ Ni, ands = s1 + s2 + · · ·+ sp.
Thus, if we stack all interior variablesu1, u2, · · · , uP into a vectoru, in this order, and

we reorder the equations so that theui’s are listed first followed by theyi’s, we obtain a
reordered global eigenvalue problem that has the followingform:

B1 E1

B2 E2

. . .
...

BP EP
ET1 ET2 . . . ETP C

︸ ︷︷ ︸

PAPT

u1
u2
...
uP
y

= λ

u1
u2
...
uP
y

, (3.3)

The matrixEi, i = 1, . . . , p, Ei ∈ Rdi×s, in (3.3) is an expanded version of the cor-
responding matrixÊi defined earlier and used in (3.1). More specifically, we haveEi =
[0di,ℓi , Êi, 0di,νi], whereℓi =

∑j<i
j=1 sj , νi =

∑j=P
j>i sj, and0χ,ψ denotes the zero matrix of

sizeχ× ψ. Note in particular that we haveEiy = Êiyi.
Figure3.1shows an example of a Laplacian operator discretized in two dimensions (2D)

using finite differences. The left subfigure shows the sparsity pattern after local reordering,

4

0 200 400 600 800

0

200

400

600

800

nz = 4380
0 200 400 600 800

0

200

400

600

800

nz = 4380

FIG. 3.1.An example of a 2D Laplacian matrix partitioned inP = 4 subdomains and reordered according to
(3.1) (left) and (3.3) (right).

while the right subfigure shows the sparsity pattern if we assume that interior variables across
all subdomains are ordered before the interface ones. The coefficient matrix of the system
(3.3) can be also written in a more compact form as

A =

(
B E
ET C

)

, (3.4)

where we kept the original symbolA for the permuted matrix as well. For the rest of this
paper we will assume that the matrixA is represented as in (3.4).

4. Contour integration in the domain decomposition framework. In this section we
present two numerical schemes which utilize contour integration approaches from a domain
decomposition perspective. Both schemes start with the expression of the resolvent operator
(ζI −A)−1 under the domain decomposition framework.

4.1. Full integration of the matrix resolvent. For ζ ∈ C consider the complex shifted
matrixA− ζI written through its block LU factorization [14]:

A− ζI =

(
I 0

ET (B − ζI)−1 I

)(
B − ζI E

0 S(ζ)

)

, (4.1)

where

S(ζ) = C − ζI − ET (B − ζI)−1E (4.2)

is a matrix-valued rational function known as the Schur complement matrix. Then, the
negated resolvent operator−(ζI−A)−1 = (A−ζI)−1 can be expressed through the identity

(A− ζI)−1 =

(
(B − ζI)−1 −(B − ζI)−1ES(ζ)−1

0 S(ζ)−1

)(
I 0

−ET (B − ζI)−1 I

)

, (4.3)

where both(B − ζI) andS(ζ) are assumed to be non-singular (this assumption is trivially
satisfied for any complexζ with non-zero imaginary part).

Multiplying the two block triangular matrices in (4.3), and definingF (ζ) = (B −
ζI)−1E, we get:

(A− ζI)−1 =

(
(B − ζI)−1 + F (ζ)S(ζ)−1F (ζ)T −F (ζ)S(ζ)−1

−S(ζ)−1F (ζ)T S(ζ)−1

)

. (4.4)

5

Let nowΓ be a counter-clockwise oriented smooth Jordan curve, e.g.,a circle, that encloses
only the eigenvalues ofA inside [−1, 1], and letP denote the associated spectral projector
defined in (2.2). Then, the spectral projectorP can be written in a2 × 2 block form, by
integrating each block of(A− ζI)−1 separately:

P =
−1

2iπ

∫

Γ

(A− ζI)−1dζ ≡

(
H −W

−WT G

)

(4.5)

with

H =
−1

2iπ

∫

Γ
[(B − ζI)−1 + F (ζ)S(ζ)−1F (ζ)T]dζ

G =
−1

2iπ

∫

Γ S(ζ)
−1dζ

W =
−1

2iπ

∫

Γ
F (ζ)S(ζ)−1dζ.

(4.6)

In order to extract an eigenspace from the expression ofP in (4.5), we consider the product
PV , whereV hasr̂ columns, written as

P

(
Vu

Vs

)

=

(
HVu −WVs

−WTVu + GVs

)

≡

(
Zu

Zs

)

, (4.7)

whereV = [V Tu , V
T
s]T , andVu ∈ Rd×r̂, Vs ∈ Rs×r̂ are the parts ofV that correspond to

the local and interface variables, respectively. We finallyget

Zu =
−1

2iπ

∫

Γ(B − ζI)−1Vudζ −
−1

2iπ

∫

Γ F (ζ)S(ζ)
−1[Vs − F (ζ)TVu]dζ

Zs =
−1

2iπ

∫

Γ S(ζ)
−1[Vs − F (ζ)TVu]dζ.

(4.8)

Assuming thatV ∈ R
n×r̂ is chosen such thatXTV has rankr, (4.8) captures the ex-

act invariant subspace ofA associated with the eigenvalues located inside[−1, 1]. Then,
Z ≡ PV is used in a Rayleigh-Ritz projection to recover the actual eigenpairs ofA. Because
the above discussed scheme considers all blocks ofP , we will refer to it as “Domain Decom-
position Full Projector” (DD-FP). In the following, we summarize the practical details of the
DD-FP scheme.

4.1.1. Practical aspects of the DD-FP scheme.In practice, the integrals in (4.8) will
have to be approximated numerically. Once a quadrature ruleis selected, with quadrature
nodes and weights{ζj, ωj}, j = 1, . . . , Nc, the integrals are approximated by the following
summations (the scaling−1/2iπ is omitted):

Z̃u =

Nc∑

j=1

ωj(B − ζjI)
−1Vu −

Nc∑

j=1

ωjF (ζj)S(ζj)
−1[Vs − F (ζj)

TVu], (4.9)

Z̃s =

Nc∑

j=1

ωjS(ζj)
−1[Vs − F (ζj)

TVu]. (4.10)

Different quadrature rules can be used to perform the numerical integration, e.g., the Gauss-
Legendre [32] or the trapezoidal [40] rules. Using a rule in which the quadrature nodes appear

6

in conjugate pairs, i.e.,ζj = ζ̄j+Nc/2, j = 1, . . . , Nc/2, reduces the cost of the numerical
approximation of the contour integral by a factor of two, since

B − ζjI = B − ζj+Nc/2I, S(ζj) = S(ζj+Nc/2), j = 1, . . . , Nc/2,

and thus numerical integration must be carried out only on one of the two semi-circles. For
the rest of this paper,Nc will denote the number of quadrature nodes used to integratealong
the positive semi-circle only. Viewing contour integration as a form of rational filtering,
other integration rules become possible, e.g., Zolotarev rational filters [18], or least-squares
filters [47], however, we do not explore these options in this paper.

For each quadrature nodeζj , j = 1, . . . , Nc, and each column inV , we must solve two
linear systems withB − ζjI and one linear system withS(ζj). The calculation takes four
steps that accumulate the sums (4.9)-(4.10) into Z̃u, Z̃s, and is shown in Algorithm4.1:

ALGORITHM 4.1. DD-FP
0. Start with randomV ∈ Rn×r̂ andZ̃s = Z̃u = 0
1. Do until convergence
2. Forj = 1, . . . , Nc:
3. Wu := (B − ζjI)

−1Vu
4. Ws := Vs − ETWu

5. Ws := S(ζj)
−1Ws, Z̃s := Z̃s + ℜe(ωjWs)

6. Wu :=Wu − (B − ζj)
−1EWs, Z̃u := Z̃u + ℜe(ωjWu)

7. End
8. Rayleigh-Ritz: solve the eigenvalue problem̃ZTAZ̃Q = Z̃T Z̃QΘ

-. If not satisfied, repeat withVu = Z̃uQ, Vs = Z̃sQ
9. EndDo

The factorization of eachB − ζjI, j = 1, . . . , Nc is decoupled into factorizations of the
matricesBi− ζjI, i = 1, . . . , P , each one being local to theith subdomain. Moreover, since
A is symmetric, only the real parts of̃Zs andZ̃u have to be retained. The DD-FP scheme can
be cast as an iterative scheme in which approximate eigenvectors are improved in a straight-
forward manner by using their most recent approximation as the new setV to multiply the
approximate spectral projectorP . Step 8 of Algorithm4.1 extracts the approximate eigen-
pairs and also checks whether all eigenpairs inside[−1, 1] are approximated up to a sufficient
accuracy (this part is omitted from the description of the algorithm).

If a direct solver is utilized to solve the linear systems with S(ζj), j = 1, . . . , Nc then
the DD-FP scheme is practically a straightforward application of the domain decomposi-
tion viewpoint applied to the computation of an approximation of PV , and can be seen as
equivalent to the FEAST algorithm tied with a domain decomposition solver to compute the
products(A − ζjI)

−1V, j = 1, . . . , Nc. However, a factorization ofS(ζ) is not always
feasible (see Section5). In such scenarios, the DD-FP scheme can leverage hybrid iterative
solvers which might be more practical.

4.2. Partial integration of the matrix resolvent. In this section we describe an alter-
native scheme, also based on domain decomposition, which attempts to extract approximate
eigenpairs at a lower cost than the DD-FP scheme developed inthe previous section.

Let the spectral projectorP defined in (4.5), be expressed in the formP = XXT , X ∈
R
n×r, whereX is written asX = [XT

u , X
T
s]
T with Xu ∈ R

d×r, Xs ∈ R
s×r. Then,P can

be also expressed in a block-partitioned form:

X ≡

(
Xu

Xs

)

, P = XXT → P = [P1,P2] =

(
XuX

T
u XuX

T
s

XsX
T
u XsX

T
s

)

. (4.11)

7

Under the mild assumption thatr ≤ s, i.e., the number of interface variabless is greater than
the number of eigenvaluesr of A lying inside[−1, 1], the range ofP can be captured by the
range ofP2 = XXT

s = [XT
u , X

T
s]
TXT

s , sinceP2 is also of rankr and spans the same space
asP . By equating (4.11) with (4.5), it is clear thatXsX

T
s ≡ G andXuX

T
s ≡ −W , and

thus, in contrast with the DD-FP scheme we only need to compute the contour integrals−W
andG, and ignore the blockH. As discussed in Section4.3, and confirmed via experiments
in Section6, avoiding the computation ofH can lead to considerable savings in some cases.
Because this scheme approximates the spectral projectorP only partially, we will refer to it
as “Domain Decomposition Partial Projector” (DD-PP).

Further insight in the above scheme can be given if we consider the representation of
x(λ), the eigenvector ofA corresponding to eigenvalueλ, in a domain decomposition frame-
work. It can be easily shown that for any eigenvalueλ ofA that does not belong toΛ(B) (the
spectrum ofB), S(λ) is singular and vice versa, i.e.,

λ /∈ Λ(B), λ ∈ Λ(A) ⇔ det [S(λ)] = 0. (4.12)

Let y(λ) ∈ Rs be the eigenvector associated with the zero eigenvalue ofS(λ). The eigenvec-
tor x(λ) associated with eigenvalueλ can then be written as:

x(λ) =

(
−F (λ)y(λ)

y(λ)

)

. (4.13)

Comparing equations (4.11) and (4.13) shows thatspan(Xs) ≡ span(y(λ1), . . . , y(λr)) and
span(Xu) ≡ span(−F (λ1)y(λ1), . . . ,−F (λr)y(λr)).

4.2.1. The DD-PP scheme.The range ofG and−W can be approximated as:

GR =
−1

2iπ

∫

Γ

S(ζ)−1Rdζ, −WR =
1

2iπ

∫

Γ

(B − ζI)−1ES(ζ)−1Rdζ. (4.14)

for anyR ∈ Rs×r̂, (r̂ ≥ r) whose columns have a non-trivial projection along the direction
of each eigenvectory(λi), i = 1, . . . , r of the nonlinear eigenvalue problemS(λ)y(λ) = 0.

In practice, bothG and−W will be approximated numerically as in (4.15). Approximat-
ing the two integrals by a quadrature rule results in

G̃R =
−1

2iπ

Nc∑

j=1

ωjS(ζj)
−1R, −W̃R =

1

2iπ

Nc∑

j=1

ωj(B − ζjI)
−1ES(ζj)

−1R. (4.15)

Combining the contribution of all quadrature nodes together, the final subspace accumulation
proceeds as in Algorithm4.2, which we abbreviate as DD-PP. Note that because we are actu-
ally interested in an approximation of an invariant subspace ofX , the signs are not important
(the signs in Steps 2 and 3 in Algorithm4.2could be reversed).

ALGORITHM 4.2. DD-PP
0. Start with a randomR ∈ Rs×r̂ andZ̃s = Z̃u = 0
1. Forj = 1, . . . , Nc:
2. Ws := S(ζj)

−1R, Z̃s := Z̃s + ℜe(ωjWs)

3. Wu := −(B − ζj)
−1EWs, Z̃u := Z̃u + ℜe(ωjWu)

4. End
5. Perform a Rayleigh-Ritz projection and extract approximate eigenpairs

8

TABLE 4.1
Number of linear system solutions withB − ζI andS(ζ), and Matrix-Vector multiplications withE/ET

performed by the DD-FP and DD-PP schemes per quadrature node.

Scheme/OperationB − ζI S(ζ) E/ET

DD-FP 2× r̂ r̂ 2× r̂
DD-PP r̂ r̂ r̂

Because there is no straightforward way to improve the eigenvalue approximations pro-
duced by the DD-PP scheme, we have to either use a large numberof quadrature nodesNc to
obtain a sufficiently accurate approximation for the spectral projector, or use a large value of
r̂.

Figure4.1 shows the average residual norm of the approximate eigenpairs obtained by
the DD-FP and DD-PP schemes for a small 2D discretized Laplacian of sizen = 51× 50 in
the interval[α = 1.6, β = 1.7] (more details on matrices of this form will be given in Section
6.2). Because of the iterative nature of the DD-FP scheme we can use a small number of

1 2 3 4
10

−5

10
−4

10
−3

10
−2

Iterations

A
ve

ra
ge

 r
el

at
iv

e
re

si
du

al

2D Laplacian 51 × 50 in [1.6,1.7]

DD−PP, Nc=4
DD−PP, Nc=8
DD−PP, Nc=12
DD−FP, Nc=4

1 2 3 4
10

−15

10
−10

10
−5

10
0

Iterations

A
ve

ra
ge

 r
el

at
iv

e
re

si
du

al

2D Laplacian 51 × 50 in [1.6,1.7]

FIG. 4.1. Average residual norm for a51 × 50 2D Laplacian in the interval[1.6, 1.7]. Left: r̂ = r. Right:
r̂ = 2r. The Gauss-Legendre quadrature rule was used [2].

quadrature nodes and correct the approximate eigenpairs byrepeating the numerical integra-
tion phase using the most recent approximate eigenvectors as the new set of right-hand sides.
Indeed, after four iterations, the DD-FP scheme withNc = 4 quadrature nodes achieves an
accuracy similar to that of the DD-PP scheme utilizingNc = 12 quadrature nodes.

4.3. Computational comparison of the DD-FP and DD-PP schemes. From a numer-
ical viewpoint the DD-PP and DD-FP schemes can perform similarly but, from a computa-
tional viewpoint, there are some notable differences. Algorithm 4.2 has a lower computa-
tional complexity per quadrature node than Algorithm4.1 since it avoids the first two steps
of Algorithm 4.1. Table4.1 shows the number of solves with matricesB − ζI andS(ζ),
as well as the number of Matrix-Vector operations withE/ET introduced per quadrature
node by each one of the two schemes. Furthermore, a straightforward calculation reveals
that for each quadrature node, the DD-FP scheme also introducesn × r̂ more floating-point
operations than the DD-PP scheme (the block matrix subtractions in Steps 3 and 5 in Algo-
rithm 4.1). Accounting for allNc quadrature nodes together, the DD-FP scheme introduces
Nc × r̂ × [cost_solve(B − ζI) + cost_MV (E) + n] additional floating-point operations
compared to the DD-PP scheme. Here,cost_solve(B − ζI) andcost_MV (E) denote the
costs to multiply(B − ζI)−1 (by solving the linear system) andE/ET by a single vector,
respectively.

9

Given a distributed computing environment, in which each subdomain is assigned to a
different processor group, the actual extra cost introduced by theith subdomain (processor)
when using Algorithm4.1compared to Algorithm4.2, amounts toNc× r̂×[cost_solve(Bi−
ζI) + cost_MV (Ei) + di]. Thus, ifdi is large and/or many eigenvalues ofA lie in [−1, 1]
(and thuŝr is large), the dense matrix operations in Steps 3 and 5 of Algorithm 4.1 become
noticeable. The extra operations performed by Algorithm4.1 are entirely local within each
subdomain. On the other hand, as Algorithm4.2 is a one-shot method, we need a rather
accurate projector for the entire approximation to work well. This is not a constraint for
Algorithm 4.1since it is an iterative scheme.

5. Solving linear systems with the spectral Schur complement matrix. From a com-
putational viewpoint, the major computational procedure in both Algorithm4.1 and Algo-
rithm 4.2, is the solution of linear systems with the Schur complementmatricesS(ζj), j =
1, . . . , Nc, where each linear system hasr̂ ≥ r right-hand sides.

Assuming that the computational domain is partitioned inP non-overlapping subdo-
mains, with each subdomain assigned to a different processor, S(ζj) is distributed by rows
among the different processors and has a natural block structure of the form

S(ζj) =

S1(ζj) E12 . . . E1P

E21 S2(ζj) . . . E2P

...
...

. . .
...

EP1 EP2 . . . SP (ζj)

, j = 1, . . . , Nc, (5.1)

where

Si(ζj) = Ci − ζI − ETi (Bi − ζI)−1Ei, i = 1, . . . , P,

is the “local” Schur complement that corresponds to theith subdomain and is a dense matrix
in general. The off-diagonal blocksEik, i, k = 1, . . . , P, i 6= k, account for the coupling
among the different subdomains and are sparse matrices of size si × sk (they are identical
with those of the local system in (3.2)).

The standard approach to solve the distributed linear systems with the Schur comple-
ment in (5.1) would be to explicitly formS(ζj) and compute its LU factorization by a call
to a parallel sparse direct solver, e.g., MUMPS [3] or SuperLU_DIST [25]. This approach,
however, requires that the diagonal blocksSi(ζj), i = 1, . . . , P be formed explicitly. For
problems issued from discretizations of 2D domains, forming and factorizingS(ζj) explic-
itly is an attractive option since the size of the Schur complement is small even for a large
number of subdomains (the interface region between any two subdomains is a 1D object).
Schur complements that originate from discretizations of 3D computational domains [34]
typically require much more memory since in the 3D case the size of the Schur complement
can become exceedingly large (the interface region now is a combination of planes).1 An
alternative discussed next is to solve the linear systems with S(ζj), j = 1, . . . , Nc using a
preconditioned iterative method (e.g., GMRES [37]). Iterative methods avoid formingS(ζj)
explicitly and only require a routine that is able to accomplish the multiplication between
S(ζj) and a vector (details will be given in Section5.2).

1For example, the memory requirements to storeS(ζj) when discretizing the Laplacian operator on the unit
cube withn1/3 discretization points along each direction scales asO(n4/3) if nested dissection [16] is used to
reorder(A− ζjI).

10

5.1. Preconditioning the Schur complement.Schur complement preconditioning re-
lies on two procedures: a) approximation ofS(ζ) by a matrixŜ(ζ), and b) a mechanism
to applyŜ(ζ)−1 on a vector. One of the first specialized libraries to offer distributed Schur
complement preconditioners is the pARMS library [26,38,39] which implements a multilevel
partial elimination of the Schur complement. In this paper we consider sparsified approxima-
tions ofS(ζj) which are based on sparsity and/or numerical constraints [11,17,33].

5.1.1. Building and applying the preconditioner. Since theith processor holds theith

block of rows ofS(ζ), a straightforward approach is to solve the linear systems in (5.1) by
applying a block-Jacobi preconditioner, i.e., to utilize apreconditioner of the form:

SBJ(ζ) =

S1(ζ)
S2(ζ)

. . .
SP (ζ)

. (5.2)

The LU factorization of each on-diagonal blockSi(ζ), i = 1, . . . , P can be obtained directly
from the LU factorization of

Ai(ζ) =

(
Bi − ζI Êi
ÊTi Ci − ζI

)

, (5.3)

which can be written asAi(ζ) = LAi
UAi

, with

LAi
=

(
LBi

0

ÊTi U
−1
Bi

LSi

)

, UAi
=

(
UBi

L−1
Bi
Êi

0 USi

)

, (5.4)

and noticing thatSi(ζ) = LSi
USi

[26,35]. The block-Jacobi preconditioner is applied in a
completely parallel fashion, with each processor performing a forward/backward triangular
substitution withLSi

/USi
.

Extending the block-Jacobi preconditioner we can take the couplingEik, i, k = 1, . . .,
P, i 6= k, among the different subdomains also into account, which then leads to a precondi-
tionerSG(ζ) that approximatesS(ζ) more accurately. The matrixSG(ζ) is distributed among
the different groups of processors and thus communication among the processors is necessary
when the preconditioner is applied. To formSG(ζ) we use two levels of dropping based on
numerical constraints. The first level of dropping concernsthe LU factorization ofB − ζI
which is performed inexactly, by dropping all entries in theLU factorization whose real or
imaginary part is below a threshold valuedrop-B. Then, theith subdomain forms its local
Schur complement

Ŝi(ζ) = Ci − ζI − (Û−T
i Ei)

T (L̂−1
i Ei), (5.5)

while dropping any entry whose real or imaginary part is below a threshold valuedrop-S.
MatricesL̂i andÛi denote the LU factors of the incomplete factorization of eachBi−ζI, i =
1, . . . , P . Overall, the preconditioner takes the form:

SG(ζ) =

Ŝ1(ζ) E12 . . . E1P

E21 Ŝ2(ζ) . . . E2P

...
...

. . .
...

EP1 EP2 . . . ŜP (ζ)

, (5.6)

11

where matricesEik are identical with those in (5.1). The construction of preconditioner
SG(ζ) is summarized in Algorithm5.1.

ALGORITHM 5.1. Schur complement preconditionerSG(ζ)
0. Givenζ ∈ C, drop-B, drop-S
1. Fori = 1, . . . , P :
2. Obtain a factorization[L̂i, Ûi] = Bi − ζI with drop tolerancedrop-B
3. FormŜi(ζ) = Ci − ζI − (Û−T

i Ei)
T (L̂−1

i Ei) and
-. drop any entry smaller thandrop-S
4. End
5. FactorizeSG(ζ) by a distributed sparse solver.

A few details regarding Algorithm5.1. When formingSG(ζ), we form Ŝi(ζ) a few
columns at a time and immediately sparsify (for each incomplete factorization ofBi− ζI we
must solve a linear system withsi sparse right-hand sides). In this paper, by default we form
Ŝi(ζ) two hundred columns at a time, where all right-hand sides aresolved simultaneously
using the Pardiso software package [24,30]. More details will be given in Section6. Small
values ofdrop-B, drop-S might generally lead to more robust preconditioners, but, on
the other hand, will also introduce larger computational and memory overheads during the
formation and factorization ofSG(ζ).

Before we conclude this section, we note that preconditioned iterative methods to solve
the linear systems with matricesS(ζj), j = 1, . . . , Nc can still be computationally expensive
in certain cases. First, depending on the number of sought eigenpairs, we might have to
solve systems with hundreds or thousands of right-hand sides for eachS(ζj), j = 1, . . . , Nc.
Second, using larger values forNc will bring some of the quadrature nodes close to the real
axis. As a result, the iterative solution scheme will typically be slower. We will quantify this
behavior in Section6.

5.2. Matrix-Vector products with S(ζ). To solve a linear system with matrixS(ζ)
(hereζ can take any value), each iteration of a Krylov subspace preconditioned iterative
solver requires at least one Matrix-Vector (MV) product withS(ζ) and linear system solution
with the preconditioner matrix, as well as a few vector dot-products and vector updates.

The MV product betweenS(ζ) and a vectorv ∈ R
s can be computed as:

S(ζ)v = (C − ζI)v − ET (B − ζI)−1Ev. (5.7)

An important property from domain decomposition with edge-separators is that the second
term on the right-hand side of (5.7) is entirely local, as can be easily seen from the structure
of S(σ) in (5.1). MatricesBi andEi, i = 1, . . . , P are entirely local in each processor and
no communication is required when we perform operations with them. On the other hand,
performing operations withC demands communication between processors which handle
neighboring subdomains. In summary, the computations involved in (5.7) are:

1. ComputeET (B − ζI)−1Ev (local),
2. Distribute (exchange) the necessary parts ofv and perform(C − ζI)v (global),
3. Subtract the vector in 1) from the vector in 2) (local).

Communication in step 2) might overlap with computations instep 1). Using more subdo-
mains (larger values forP) will reduce the computational cost per processor, but, on the other
hand, will increase the communication cost. Each local solve with the block-diagonal matrix
B − ζI is carried out by using a sparse solver.

The linear system solution between the preconditioner and the current residual vector
can be performed either by a direct or an iterative solver. Inthis paper we consider the

12

preconditioners,SBJ(ζ) andSG(ζ), discussed in Section5.1.1, and we always apply them
using a direct method.

6. Experiments. In this section we analyze the performance of the proposed domain
decomposition schemes by reporting experiments performedin distributed computing envi-
ronments. The numerical schemes discussed were implemented in C/C++ and built on top of
the PETSc [6–8] and Intel Math Kernel scientific libraries [1]. For PETSc, we used a com-
plex build.2 The source files were compiled with the Intel MPI compilermpiicpc, using
the -O3 optimization level. The computational domain was partitioned inP non-overlapping
subdomains with the help of the METIS graph partitioner [21]. Each subdomain was as-
signed to a distinct processor group and communication between different processor groups
was achieved by means of the Message Passing Interface standard (MPI) [44]. Each subdo-
main was handled by a separate MPI process and the number of subdomains,P , will be also
denoting the number of MPI processes. The LU factorizationsand linear system solutions
associated with matricesB− ζjI, j = 1, . . . , Nc, were performed using the shared-memory,
multi-threaded version of the Pardiso library (version 5.0.0) [24,30]. Unless stated otherwise,
the default number of threads per MPI process, as denoted by variableT , will be equal to one.
Whenever we computed an incomplete factorization of matricesB−ζjI, j = 1, . . . , Nc, that
was obtained by the UMFPACK [12] library,3 and the resulting triangular factors were then
passed to Pardiso. We followed this approach in order to takeadvantage of the multi-threading
capability of Pardiso, as well as of the fact that Pardiso hasthe ability to solve linear systems
with multiple right-hand sides simultaneously.

The quadrature nodes and weightsζj , ωj, j = 1, . . . , Nc used for the numerical ap-
proximation of the contour integrals were computed by the Gauss-Legendre quadrature rule
of order2 ·Nc [2], retaining only theNc quadrature nodes (and their associated weights) with
positive imaginary part.

Since the multiple right-hand sides for each linear system solution are available at the
same time, it is possible to utilize block Krylov subspace solvers [19], e.g., block GMRES
[42]. While we explored this option, using our custom implementation of block GMRES, we
do not report results using block Krylov subspace methods inthis paper. Throughout the rest
of this section, the multiple right-hand sides are solved one after the other.

6.1. Computational system.The experiments performed at theMesabi Linux cluster
at Minnesota Supercomputing Institute.Mesabi consists by 741 nodes of various configura-
tions with a total of 17,784 compute cores provided by Intel Haswell E5-2680v3 processors.
Each node features two sockets, each socket with twelve physical cores at 2.5 GHz. Each
node is also equipped with 64 GB of system memory. In total,Mesabi features a peak
performance of 711 Tflop/s and 67 TB of memory.

Each MPI process will be paired with a single socket of eachMesabi node.

6.2. The model problem. The model problem test matrices originate from discretiza-
tions of elliptic PDEs on 2D and 3D computational domains. More specifically, we are inter-
ested in solving the eigenvalue problem

−∆u = λu (6.1)

on a rectangular domain, with Dirichlet boundary conditions (∆ denotes the Laplacian dif-
ferential operator). Using second order centered finite differences withnx, ny andnz dis-
cretization points along each corresponding dimension, weobtain matrixA, the discretized
version of∆, of sizen = nxnynz.

2The complex version of PETSc was built using the option-with-fortran-kernels=generic
3Using the routinesumfpack_zi_XXX

13

TABLE 6.1
Average time spent on a single quadrature node using the DD-PP and DD-FP schemes to approximate the

eigenvaluesλ1001, . . . , λ1200 and associated eigenvectors for three discretized 2D Laplacians. The number of
right-hand sideŝr as well as the number of subdomainsP were varied.

P = 16 P = 32 P = 64

DD-PP DD-FP DD-PP DD-FP DD-PP DD-FP

n = 5002

r̂ = r + 10 12.6 14.7 8.13 9.20 6.62 7.25
r̂ = 3r/2 + 10 15.5 18.2 12.1 13.0 8.87 9.77
r̂ = 2r + 10 18.7 22.9 13.3 15.3 11.4 12.6

n = 10002

r̂ = r + 10 75.2 85.7 43.5 48.7 26.7 30.9
r̂ = 3r/2 + 10 86.0 101.1 51.1 58.6 33.0 39.1
r̂ = 2r + 10 98.1 118.8 59.6 69.9 40.4 48.5

n = 15002

r̂ = r + 10 267.1 290.2 116.9 121.1 66.4 74.8
r̂ = 3r/2 + 10 295.0 328.6 134.1 140.4 79.7 91.9
r̂ = 2r + 10 326.9 370.0 153.3 161.5 93.4 109.1

6.3. A comparison of the DD-FP and DD-PP schemes.We begin by reporting a com-
parison of the DD-FP and DD-PP schemes on a set of discretized2D Laplacian matrices,
where the Schur complement matricesS(ζj), j = 1, . . . , Nc were formed and factorized
explicitly (drop-B=drop-S=1e-16) by MUMPS. In order to perform a fair comparison
between the two schemes, only one iteration of the DD-FP scheme was allowed.

We used three different discretizations of the 2D Laplacianoperator on the unit plane to
obtain three different matrices of sizen = 5002, n = 10002, andn = 15002. The interval
of interest was arbitrarily set to[α, β] = [(λ1000 + λ1001)/2, (λ1200 + λ1201)/2], including
r = 200 eigenvalues. We usedNc = 4, Nc = 8 andNc = 12 quadrature nodes, while the
number of right-hand sides,r̂, was varied. Table6.1reports the average wall-clock time spent
on a single quadrature node for the caseNc = 8. By the term total wall-clock timing we mean
the total timings to perform all factorizations and linear system solutions, as well to perform
the Rayleigh-Ritz projections and check convergence. Per quadrature node timings for the
other choices ofNc were basically identical. The DD-PP scheme was always faster than the
DD-FP scheme, especially asP andr̂ obtained smaller and larger values, respectively. The
above lies in agreement with the discussion in Section4.3.

Figure6.1plots the maximum (dashed) and average (solid) residual norm of the approx-
imate eigenpairs for all different combinations ofNc andr̂ reported in Table6.1. The relative
residual errors were of the same order for both the DD-FP and DD-PP schemes and we report
results only for the DD-PP scheme. Thex-axis runs across the different number of right-
hand sideŝr while curves with different markers represent the different number of quadrature
nodes used and are indexed as “•”: Nc = 4, “N”: Nc = 8, “�”: Nc = 12. Naturally, as we
increaseNc and/orr̂, the accuracy of the approximate eigenpairs improves.

The last experiment of this section discusses the case wherethe DD-FP scheme is allowed
to perform more than one outer iterations, until all eigenpairs of then = 15002 Laplacian
located inside the interval[α, β] = [(λ1000+λ1001)/2, (λ1200+λ1201)/2] are approximated to
at least eight digits of accuracy each. We compared the DD-FPscheme against a PETSc-based

14

200 250 300 350 400 450
10

−10

10
−8

10
−6

10
−4

10
−2

A
ve

ra
ge

−
M

ax
im

um
 r

es
id

ua
l n

or
m

of right−hand−sides
200 250 300 350 400 450

10
−8

10
−6

10
−4

10
−2

A
ve

ra
ge

−
M

ax
im

um
 r

es
id

ua
l n

or
m

of right−hand−sides

FIG. 6.1.Maximum (dashed) and average (solid) residual norm of the eigenpairs inside the interval[α, β] =
[(λ1000 + λ1001)/2, (λ1200 + λ1201)/2]. Left: n = 5002. Right: n = 10002 . Legend: “•”: Nc = 4, “ N”:
Nc = 8, “ �”: Nc = 12.

TABLE 6.2
Time elapsed to compute eigenvaluesλ1001, . . . , λ1200 and corresponding eigenvectors of then = 15002

Laplacian by the CI-M and DD-FP schemes, using different choices ofNc andr̂. “Its” denotes the number of outer
iterations.

P = 64 P = 128 P = 256

Its CI-M DD-FP CI-M DD-FP CI-M DD-FP

Nc = 2

r̂ = 3r/2 9 3,922.7 2,280.6 2,624.3 1,242.4 1,911.2 859.5
r̂ = 2r 5 2,863.2 1,764.5 1,877.7 998.5 1,255.5 615.3

Nc = 4

r̂ = 3r/2 5 4,181.5 2,357.0 2,815.7 1,280.2 1,874.1 877.5
r̂ = 2r 4 4,330.3 2,571.4 2,869.5 1,462.9 2,023.2 1,036.2

Nc = 6

r̂ = 3r/2 3 3,710.3 2,068.2 2,504.1 1,122.1 1,790.8 766.5
r̂ = 2r 3 4,774.8 2,798.5 3,177.7 1,595.2 2,743.6 1,125.1

Nc = 8

r̂ = 3r/2 3 4,911.6 2,722.2 3,318.7 1,476.1 2,367.7 1,006.5
r̂ = 2r 2 4,204.7 2,445.2 2,802.1 1,395.4 1,806,6 982.1

implementation of the FEAST algorithm, referred to as Contour Integration-MUMPS (CI-M),
which utilized MUMPS to factorize and solve the linear systems with matricesA− ζjI, j =
1, . . . , Nc (not a domain decomposition approach).

Table6.2reports the total wall-clock time to compute eigenvaluesλ1001, . . . , λ1200 and
associated eigenvectors for then = 15002 2D discretized Laplacian, by both the CI-M and
DD-FP schemes, when different values ofNc and r̂ are used. Variable “Its” denotes the
number of outer iterations (same in both schemes). As expected, using higher values forNc
generally results to fewer outer iterations. However, thisdoes not necessarily lead to lower
runtimes, since increasing the value ofNc does not generally lead to a great reduction in the
number of outer iterations for fixed values ofr̂. Similarly, increasinĝr after a certain value
does not affect the number of outer iterations much, thus leading to increased runtimes. The
performance gap between the DD-FP and CI-M schemes follows aslightly increasing trend

15

1 2 3
0

20

40

60

80

100

120

N
c

T
im

e
br

ea
kd

ow
n

 Factorizations
Lin sys solutions

FIG. 6.2. Time breakdown of the CI-M scheme (time spent on factorizations and linear system solutions) for
Nc = 1, Nc = 2 andNc = 3, using the optimal choice of̂r := r̂∗ for each case. Results are shown forP = 128.
For each choice ofNc, we show the breakdown for intervals[α, β] = [(λ100 + λ101)/2, (λ120 + λ121)/2] (first-
leftmost spike),[α, β] = [(λ100+λ101)/2, (λ200+λ201)/2] (second spike),[α, β] = [(λ500+λ501)/2, (λ520+
λ521)/2] (third spike), and[α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2] (fourth-rightmost spike).

as larger values ofP are used, mainly because the linear system solution phase scales better
for the DD-FP scheme than what for the CI-M scheme.

6.4. Contour integration using preconditioned iterative solvers. In this section we
consider the solution of eigenvalue problems for which a direct formation and factorization
of the Schur complement matricesS(ζj), j = 1, . . . , Nc is rather expensive or impractical,
e.g., discretizations of 3D or higher-dimensional computational domains. The alternative is
to solve the linear systems with the Schur complement matricesS(ζj), j = 1, . . . , Nc by a
preconditioned iterative solver.

In contrast with Section6.3, the solution of linear systems with the Schur complement
matrices far dominates the computational procedure, and thus the DD-FP and DD-PP schemes
in practice share the same computational profile. For this reason, we only compare the DD-FP
and CI-M schemes.

For the rest of this section, the preconditioned iterative solver of choice will be the right
preconditioned GMRES(250), i.e., we allowed250 preconditioned iterations per each restart.
A linear system will be considered solved after its initial residual norm gets reduced by at
least ten orders of magnitude.

6.4.1. A 3D model problem. In this section we consider the solution of an eigenvalue
problem whereA originates from a discretization of the Laplacian operatoron the unit cube,
using 150 discretization points along each corresponding dimension, i.e.,n = 150× 150 ×
150. We utilized the DD-FP and CI-M schemes to compute the lowestr=20 andr=100
eigenvalues (and associated eigenvectors) located insidethe intervals: [α, β] = [(λ100 +
λ101)/2, (λ200 + λ201)/2], and[α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2].

We first comment on the results obtained by the CI-M scheme, which, as noted earlier,
essentially is the FEAST algorithm tied with MUMPS to factorize and solve linear systems
with A− ζj , j = 1, . . . , Nc. The results are shown in tables located in the appendix section.
Table.1 shows the total elapsed time to compute the eigenpairs associated with eigenvalues
λ101, . . . , λ120 andλ501, . . . , λ520, as the number of quadrature nodesNc and size of sub-
spacêr are varied. The optimal value of̂r in terms of the total number of right-hand sides
solved is shown aŝr∗. Table.2 conveys the same information for the eigenpairs associated
with eigenvaluesλ101, . . . , λ200 andλ501, . . . , λ600. Figure6.2 shows the time breakdown
of the CI-M scheme, focusing on the two main computational procedures, i.e., time spent
on factorizations and linear system solutions, for all different choices ofNc and different

16

0 50 100 150 200 250

20

40

60

80

100

of MPI processes

of

 p
re

c/
ne

d
G

M
R

E
S

 it
er

at
io

ns
 p

er
 r

hs

N

c
=1, [λ

101
,λ

120
]

N
c
=2, −−

N
c
=3, −−

FIG. 6.3. Total number of preconditioned GMRES iterations in order tosolve a linear system with a single
right-hand side for allNc = 1, Nc = 2 andNc = 3 quadrature nodes, whenP = 32, P = 64, P = 128 and
P = 256 subdomains are used.

intervals [α, β] tested. Results are shown only for the optimal choice ofr̂, r̂∗, and for
P = 128 MPI processes. For the subintervals that contain onlyr = 20 eigenvalues, fac-
torizingA − ζjI, j = 1, . . . , Nc introduces a large overhead, especially for larger values
of Nc (the average factorization time per quadrature node was 679.02, 332.11, and 298.43
seconds, forP = 64, 128 andP = 256 MPI processes, respectively). On the other hand,
when many eigenvalues lie within the interval of interest, we expect the time spent on solving
linear systems to dominate (unless high values ofNc are chosen).

An alternative, which avoids the need to factorize matricesA − ζj , j = 1, . . . , Nc (and
thus their excessive requirements of memory and factorization time), is to exploit the DD-
FP scheme tied with a preconditioned iterative solver to solve the linear systems associated
with matricesS(ζj), j = 1, . . . , Nc. However, this approach requires some caution since
under the assumption that a factorization of the matrix is already at hand, the cost to solve a
linear system by using a preconditioned iterative solver can be much higher than the cost to
solve the same system by a direct solver. We expect preconditioned iterative solvers to be a
better alternative than the direct solvers (when a factorization is possible) when the number
r of eigenvalues sought is not high and convergence of each linear system is rapid. As a
brief numerical illustration, Figure6.3 shows the total number of preconditioned GMRES
iterations to compute

∑Nc

j=1 S(ζj)
−1v for a randomv ∈ Cs, if P = 32, P = 64, P = 128

andP = 256 subdomains are used (details on the preconditioner will be given later in this
section). The interval of interest was set to[α, β] = [(λ100+λ101)/2, (λ120+λ121)/2]. Note
the superlinear increase in the number of preconditioned GMRES iterations asNc increases,
as well as the increase in the number of iterations as larger values ofP are used. Iterative
solvers are greatly affected by the location of the quadrature nodesζj , j = 1, . . . , Nc, with
ζj ’s which lie closer to the real axis leading to slower convergence. By construction, higher
values ofNc will lead to some quadrature nodes being closer to the real axis, and thus using
low values forNc, e.g.Nc = 1, might in practice be a good alternative when direct solvers
are impractical.

In contrast with the discretization of 2D domains, for 3D domains, the standard approach
where each subdomain is handled by a single MPI process, eachutilizing a single compute
core, will not scale satisfactorily, since increasing the number of cores implies a larger number
of subdomains, leading to an increase in the size of the Schurcomplement matrices. An

17

TABLE 6.3
Time spent on different phases when computing

∑Nc
j=1

S(ζj)−1v for a randomv ∈ Cs. We usedNc = 1

while the interval of interest was set to[α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2]. T : number of threads per
MPI process.

P × T = 32 P × T = 64 P × T = 128 P × T = 256

T = 1 T = 1 T = 2 T = 1 T = 4 T = 1 T = 8

MV with S(ζ1) 1.03 0.38 0.45 0.12 0.27 0.04 0.23
Factorization ofSG(ζ1) 3.20 5.01 3.20 7.23 3.20 9.06 3.20
Application ofSG(ζ1) 0.28 0.47 0.28 0.58 0.28 0.89 0.28

50 100 150 200 250 300

10
3

Compute cores

T
ot

al
 ti

m
e

(s
)

DD-FP, r̂=50

CI-M, r̂=50

DD-FP, r̂=100

CI-M, r̂=100

DD-FP, r̂=40

CI-M, r̂=40

50 100 150 200 250 300

10
3.3

10
3.5

10
3.7

Compute cores

T
ot

al
 ti

m
e

(s
)

 DD-FP, r̂=200

CI-M, r̂=200

DD-FP, r̂=300

CI-M, r̂=300

DD-FP, r̂=236

CI-M, r̂=236

FIG. 6.4. Total elapsed time to compute a few eigenpairs by the DD-FP and CI-M schemes usingNc = 1
and varying values of̂r. Left: Computation of eigenvaluesλ101, . . . , λ120 and associated eigenvectors. Right:
Computation of eigenvaluesλ101, . . . , λ200 and associated eigenvectors.

alternative is to increase (or redistribute) the availablecompute cores so that each MPI process
utilizes more than one compute cores. In the context of the DD-FP scheme, we could use
lower values forP and increase the number of available compute threadsT in Pardiso during
the factorization and linear system solutions with matricesB − ζjI, j = 1, . . . , Nc. Table
6.3shows a comparison of the pure MPI and hybrid (MPI+Threads) parallel paradigms when
computing

∑Nc

j=1 S(ζj)
−1v, Nc = 1, with v ∈ Cs a random vector, while the interval of

interest was set to[α, β] = [(λ100+λ101)/2, (λ200+λ201)/2]. We report the amount of time
spent on performing the MV products withS(ζj), factorizingSG(ζj), and applyingSG(ζj).
For the preconditionerSG(ζj) we useddropB = 1e− 4, dropS = 1e− 2. Assuming a fixed
number of available compute cores, the standard approach ofassigning one compute core
per subdomain (pure MPI) is preferable when performing the MV products withS(ζj), since
factorizing and solving linear systems withB−ζj in this case is faster, and also more scalable,
than performing the same operation using fewer MPI processes, each with more than one
compute threads. However, the main advantage of the hybrid parallel scheme (MPI+Threads)
is that the cost to apply the preconditioner does not increase as we increase the number of
compute cores. Table6.3 shows that when 256 compute cores are available, using 32 MPI
processes, each with eight threads, is about five times faster than using 256 MPI processes,
each with a single thread.

In the following we focus only on the caseNc = 1, which proved to be the most com-
petitive choice for the DD-FP scheme when a preconditioned iterative solver was used. The
number of subdomains in the DD-FP scheme was fixed toP = 32.

Figure6.4compares the DD-FP and CI-M schemes when computing all eigenvalues and
associated eigenvectors in the intervals[α, β] = [(λ100+λ101)/2, (λ120+λ121)/2] (left), and
[α, β] = [(λ100 + λ101)/2, (λ200 + λ201)/2] (right). The results for the CI-M scheme were

18

50 100 150 200 250 300
500

1000

1500

2000

Compute cores

T
ot

al
 ti

m
e

(s
)

DD-FP, r̂=50
CI-M, r̂=50
DD-FP, r̂=100
CI-M, r̂=100
DD-FP, r̂=39
CI-M, r̂=39

50 100 150 200 250

0.5

1

1.5

2

x 10
4

Compute cores

T
ot

al
 ti

m
e

(s
)

 DD-FP, r̂=200

CI-M, r̂=200

DD-FP, r̂=400

CI-M, r̂=400

DD-FP, r̂=165

CI-M, r̂=165

FIG. 6.5. Total elapsed time to compute a few eigenpairs by the DD-FP and CI-M schemes usingNc = 1
and varying values of̂r. Left: Computation of eigenvaluesλ501, . . . , λ520 and associated eigenvectors. Right:
Computation of eigenvaluesλ501, . . . , λ600 and associated eigenvectors.

extracted from Tables.1 and.2. For this experiment, the DD-FP scheme is faster than the
CI-M scheme since it avoids the large overhead introduced byfactorizing(A − ζ1I), while
the preconditioned GMRES solver converges reasonably fast.

Figure6.5compares the DD-FP and CI-M schemes when computing all eigenvalues and
associated eigenvectors in the intervals[α, β] = [(λ500 + λ501)/2, (λ520 + λ521)/2] (left),
and[α, β] = [(λ500 + λ501)/2, (λ600 + λ601)/2] (right). This eigenvalue problem becomes
tougher for the DD-FP scheme since the solution of each right-hand side takes much more
time than in the previous case. For the case wherer = 20 the DD-FP scheme is generally
faster because it avoids the large overhead introduced by the expensive matrix factorizations
by the CI-M scheme. However, for the case wherer = 100, many right-hand sides must be
solved and the CI-M scheme is much faster since the average time to solve each right-hand
side is much lower than that in the DD-FP scheme.

Note that the results for the DD-FP scheme (especially its scalability) can improve sig-
nificantly since the additional compute cores per MPI process used by Pardiso can be also
utilized by MUMPS when applying the preconditioner, however, for reasons of fair compar-
ison against the CI-M scheme, for MUMPS we use only MPI parallelism, and thus only a
fraction of the available compute cores are active when we apply the preconditionerSG(ζj).

6.4.2. The PARSEC matrix collection.Our third set of experiments originates from
applications in Electronic Structure Calculations using the Density Functional Theory in real
space. The matrices (Hamiltonians) were generated using the PARSEC software package
[23], and can be found in the University of Florida Sparse MatrixCollection [13].4 The
matrices of this collection are real, symmetric, and have clustered eigenvalues. Table6.4lists
the sizen, the total number of non-zero entriesnnz, as well as the interval of interest[α, β].

The number of nonzero entries of each Hamiltonian is quite large, a consequence of the
high-order discretization and the addition of a (dense) ‘non-local’ term. Together with the
3D nature of the problem this leads to a large interface region, even if a good partitioning is
employed. Before we continue, it is important to stress thatcontour integration approaches
are not effective for this type of problems, and, in practice, polynomial filtering techniques
have often been found to perform better [5,15]. Thus, in this section, we do not compute any
actual eigenpairs of the matrices in Table6.4. We include this set of experiments with the
purpose of demonstrating how preconditioned iterative solves can reduce the cost of contour

4https://www.cise.ufl.edu/research/sparse/matrices/

19

TABLE 6.4
Test matrices obtained by the PARSEC collection. We list thesizen, the total number of non-zero entriesnnz,

as well as the interval of interest[α, β] and the number of eigenvaluesr located inside[α, β].

Matrix n nnz [α, β]
Ge99H100 112,985 8,451,295 [−0.65,−0.0096]
Si41Ge41H72 185,639 15,011,265 [−0.64,−0.00282]
Si87H76 240,369 10,661,631 [−0.6600,−0.030]

TABLE 6.5
Elapsed time for performing theNc factorizations of the formA−ζjI, j = 1, . . . , Nc (CI-M) versus elapsed

time to compute the factorization of each matrixAi(ζj), i = 1, . . . , P (DD-FP). The same experiment was repeated
for different values ofP .

P = 4 P = 8 P = 16 P = 32

CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP

Ge99H100

Nc = 1 424.1 27.9 362.8 5.1 155.9 1.36 80.2 0.51
Nc = 2 860.9 56.4 714.2 10.7 308.7 2.57 162.3 0.92
Nc = 3 1265.9 86.3 1089.4 15.5 461.1 4.26 239.5 1.47

Si41Ge41H72

Nc = 1 1276.1 38.8 942.6 10.1 486.1 3.31 230.2 1.52
Nc = 2 X 74.5 1888.1 19.8 969.3 6.46 452.7 2.81
Nc = 3 X 117.4 X 28.8 1442.5 10.0 691.3 4.40

Si87H76

Nc = 1 X 119.8 1726.2 14.5 942.4 1.23 382.1 0.51
Nc = 2 X 247.4 X 29.7 1872.8 2.53 758.0 0.94
Nc = 3 X 355.1 X 44.6 2853.9 3.82 1127.4 1.61

integration approaches in multi-core architectures and increase their practicability.
For this set of experiments we utilized a block-Jacobi preconditioner,

SBJ(ζj) = bdiag(S1(ζj), . . . , SP (ζj)), j = 1, . . . , Nc. (6.2)

Factorizing a distributed approximation of each differentSchur complement matrixS(ζj),
j = 1,. . .,Nc (for any value ofdrop-B anddrop-S) introduced a very large computa-
tional and memory overhead since it essentially amounts to factorizing matrixA− ζjI, j =
1, . . . , Nc, rendering the class of distributed preconditioners largely inefficient.

Table 6.5 shows the time elapsed to perform allNc factorizations of the formA −
ζjI, j = 1, . . . , Nc (CI-M) versus the elapsed time to factorize matricesAi(ζj), i =
1, . . . , P , a pre-process step of the DD-FP scheme (matricesAi(ζj) are defined in (5.4)).
As was discussed in section5.1.1, the factorization ofAi(ζj) provides the factorization of
bothBi − ζjI andSi(ζj), i = 1, . . . , P . We report timings obtained for a varying number
of P MPI processes (subdomains). A “X” flag under the CI-M scheme implies that not all
Nc factorizations could fit in the memory allocated by each MPI process. We can observe the
excessive timings when factorizing matricesA− ζjI, j = 1, . . . , Nc.

Table6.6shows the elapsed time to solve allNc linear systems by the CI-M and DD-FP
schemes for a random right-hand sidev ∈ Rn, i.e,

∑Nc

j=1(A − ζjI)
−1v. For lower values of

P the DD-FP scheme is not a competitive approach, since the cost to apply the block-Jacobi
preconditioner is quite high in that case. However, asP increases, the cost to solve a linear
system with a single right-hand side, for allNc quadrature nodes, drops dramatically (the
number of iterations is only slightly increased asP increases). Increasing the value ofNc

20

TABLE 6.6
Time elapsed to perform the computation

∑Nc
j=1

(A − ζjI)−1v with (DD-FP) and without (CI-M) using the
domain decomposition framework. Vectorv ∈ Rn denotes a random real vector.

P = 4 P = 8 P = 16 P = 32

CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP

Ge99H100

Nc = 1 0.73 5.11 0.66 1.71 0.36 0.62 0.34 0.26
Nc = 2 1.52 13.1 1.38 3.20 0.78 1.72 0.66 0.53
Nc = 3 2.27 33.3 1.92 11.8 1.05 4.14 0.98 1.23

Si41Ge41H72

Nc = 1 1.80 7.50 1.22 3.72 0.69 1.02 0.66 0.51
Nc = 2 X 32.8 2.53 12.1 1.41 3.53 1.38 0.84
Nc = 3 X 61.3 X 31.2 2.12 8.61 2.05 2.12

Si87H76

Nc = 1 X 15.0 1.59 4.33 1.29 0.92 0.90 0.41
Nc = 2 X 50.2 X 14.0 2.75 3.34 1.88 0.76
Nc = 3 X 120.5 X 34.8 4.02 7.51 2.65 1.96

results in a proportional increase in computational time for the direct solver but to a much
more pronounced increase for the case of preconditioned iterative solvers, owing to the fact
that iterative solvers are sensitive to the magnitude of thecomplex part of each quadrature
node. Shifting fromNc = 1 toNc = 3 leads to quadrature nodesζ1, ζ2 andζ3, whereζ1 and
ζ3 have a much smaller imaginary part thanζ2. As a result, the iterative scheme to solve the
Schur complement systems becomes much slower. On the other hand, the solution phase in
the DD-FP scheme scales better than the same phase in the CI-Mscheme.

7. Conclusion. In this paper we studied contour integration methods for computing
eigenvalues and eigenvectors of sparse matrices using a domain decomposition viewpoint.
We discussed two different numerical schemes. The first scheme, abbreviated as DD-FP, is
basically a flexible implementation of the domain decomposition framework in the context of
contour integral-based methods. It is essentially equivalent to a FEAST approach in which
domain decomposition-based direct solvers are employed for the solution of the complex
linear systems arising from the numerical integration. Thesecond scheme, abbreviated as
DD-PP, focuses on approximating the contour integrals onlypartially by integrating the Schur
complement operator along the complex contour. Moreover, we considered the use of domain
decomposition in the context of preconditioned iterative solvers as a replacement of the direct
solvers. Experiments indicate that this approach can potentially be faster, but that its ultimate
effectiveness will be dictated by the performance of the iterative scheme used for solving the
linear systems. In particular, the method can be vastly superior when computing eigenvalues
on both ends of the spectrum but it may encounter difficultieswhen the eigenvalues to be
computed are located deep inside the spectrum.

Future work includes the incorporation of the block GMRES solver developed for the
solution of the complex linear systems with the Schur complement, as well as an implemen-
tation of the DD-FP and DD-PP schemes which utilizes more than two levels of parallelism.
The numerical methods presented in this paper will become available in the future update
release of the FEAST software package.

Acknowledgments. We are grateful to the University of Minnesota Supercomputing
Institute for providing us with computational resources toperform our experiments. We thank
Ruipeng Li and Yuanzhe Xi for fruitful discussions. We wouldalso like to thank the PETSc

21

team for providing assistance with the PETSc library, as well as Olaf Schenk and Radim
Janalik for their help with the Pardiso library.

REFERENCES

[1] Intel(r) fortran compiler xe 14.0 for linux.
[2] M ILTON ABRAMOWITZ, Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical

Tables,, Dover Publications, Incorporated, 1974.
[3] PATRICK R. AMESTOY, IAIN S. DUFF, JEAN-YVES L’E XCELLENT, AND JACKO KOSTER, A fully asyn-

chronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis
and Applications, 23 (2001), pp. 15–41.

[4] A LEXANDER L. SKOROKHODOV ANDREW V. K NYAZEV , Preconditioned gradient-type iterative methods
in a subspace for partial generalized symmetric eigenvalueproblems, SIAM Journal on Numerical Anal-
ysis, 31 (1994), pp. 1226–1239.

[5] JARED L. AURENTZ, VASSILIS KALANTZIS , AND YOUSEFSAAD , A GPU implementation of the filtered
Lanczos procedure, Tech. Report ys-2015-4, 2015.

[6] SATISH BALAY , SHRIRANG ABHYANKAR , MARK F. ADAMS, JED BROWN, PETER BRUNE, KRIS

BUSCHELMAN, L ISANDRO DALCIN , V ICTOR EIJKHOUT, WILLIAM D. GROPP, DINESH KAUSHIK ,
MATTHEW G. KNEPLEY, LOIS CURFMAN MCINNES, KARL RUPP, BARRY F. SMITH , STEFANO

ZAMPINI , AND HONG ZHANG, PETSc users manual, Tech. Report ANL-95/11 - Revision 3.6, Argonne
National Laboratory, 2015.

[7] , PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.
[8] SATISH BALAY , WILLIAM D. GROPP, LOIS CURFMAN MCINNES, AND BARRY F. SMITH , Efficient man-

agement of parallelism in object oriented numerical software libraries, in Modern Software Tools in
Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997,
pp. 163–202.

[9] C. BEKAS AND Y. SAAD , Computation of smallest eigenvalues using spectral schur complements, SIAM J.
Sci. Comput., 27 (2006), pp. 458–481.

[10] J. K. BENNIGHOF AND R. B. LEHOUCQ, An automated multilevel substructuring method for eigenspace
computation in linear elastodynamics, SIAM J. Sci. Comput., 25 (2004), pp. 2084–2106.

[11] L. M. CARVALHO , L. GIRAUD , AND P. LE TALLEC, Algebraic two-level preconditioners for the schur
complement method, SIAM Journal on Scientific Computing, 22 (2001), pp. 1987–2005.

[12] TIMOTHY A. DAVIS, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method, ACM
Trans. Math. Softw., 30 (2004), pp. 196–199.

[13] TIMOTHY A. DAVIS AND Y IFAN HU, The university of florida sparse matrix collection, ACM Trans. Math.
Softw., 38 (2011), pp. 1:1–1:25.

[14] JAMES W. DEMMEL, Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1997.

[15] H. FANG AND Y. SAAD , A filtered Lanczos procedure for extreme and interior eigenvalue problems, SIAM
Journal on Scientific Computing, 34 (2012), pp. A2220–A2246.

[16] ALAN GEORGE, Nested dissection of a regular finite element mesh, 10 (1973), pp. 345–363.
[17] L. GIRAUD AND ET AL .,Sparse approximations of the schur complement for parallelalgebraic hybrid solvers

in 3d, 2010.
[18] STEFAN GUTTEL, ERIC POLIZZI , PING TAK PETER TANG, AND GAUTIER V IAUD , Zolotarev quadrature

rules and load balancing for the feast eigensolver, SIAM Journal on Scientific Computing, 37 (2015),
pp. A2100–A2122.

[19] V. K ALANTZIS , C. BEKAS, A. CURIONI, AND E. GALLOPOULOS, Accelerating data uncertainty quan-
tification by solving linear systems with multiple right-hand sides, Numerical Algorithms, 62 (2013),
pp. 637–653.

[20] V. K ALANTZIS , R. LI , AND Y. SAAD , Spectral schur complement techniques for symmetric eigenvalue
problems.

[21] G. KARYPIS AND V. K UMAR, A fast and high quality multilevel scheme for partitioning irregular graphs,
SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392.

[22] J. KESTYN, E. POLIZZI , AND P. TAK PETER TANG, Feast eigensolver for non-hermitian problems.
[23] L. K RONIK, A. MAKMAL , M. L. T IAGO, M. M. G. ALEMANY, M. JAIN , X. HUANG, Y. SAAD , AND J. R.

CHELIKOWSKY, PARSEC–the pseudopotential algorithm for real-space electronic structure calcula-
tions: recent advances and novel applications to nano-structures, Phys. Status Solidi (B), 243 (2006),
pp. 1063–1079.

[24] ANDREY KUZMIN , MATHIEU LUISIER, AND OLAF SCHENK, Fast methods for computing selected elements
of the green’s function in massively parallel nanoelectronic device simulations, in Proceedings of the
19th International Conference on Parallel Processing, Euro-Par’13, Berlin, Heidelberg, 2013, Springer-

22

http://www.mcs.anl.gov/petsc

Verlag, pp. 533–544.
[25] X IAOYE S. LI AND JAMES W. DEMMEL, Superlu_dist: A scalable distributed-memory sparse direct solver

for unsymmetric linear systems, ACM Trans. Math. Softw., 29 (2003), pp. 110–140.
[26] ZHONGZEL I , YOUSEFSAAD , AND MASHA SOSONKINA, parms: a parallel version of the algebraic recur-

sive multilevel solver, Numerical Linear Algebra with Applications, 10 (2003), pp. 485–509.
[27] S.H. LUI, Kron’s method for symmetric eigenvalue problems, Journal of Computational and Applied Mathe-

matics, 98 (1998), pp. 35 – 48.
[28] , Domain decomposition methods for eigenvalue problems, Journal of Computational and Applied

Mathematics, 117 (2000), pp. 17 – 34.
[29] F. PELLEGRINI, SCOTCH and LIB SCOTCH 5.1 User’s Guide, INRIA Bordeaux Sud-Ouest, IPB & LaBRI,

UMR CNRS 5800, 2010.
[30] COSMIN G. PETRA, OLAF SCHENK, M ILES LUBIN , AND KLAUS GÄRTNER, An augmented incomplete fac-

torization approach for computing the schur complement in stochastic optimization, SIAM J. Scientific
Computing, 36 (2014).

[31] BERNARD PHILIPPE AND YOUSEF SAAD , On correction equations and domain decomposition for com-
puting invariant subspaces, Computer Methods in Applied Mechanics and Engineering, 196 (2007),
pp. 1471 – 1483. Domain Decomposition Methods: recent advances and new challenges in engineering.

[32] ERIC POLIZZI , Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79 (2009),
p. 115112.

[33] S. RAJAMANICKAM , E.G. BOMAN , AND M.A. HEROUX, Shylu: A hybrid-hybrid solver for multicore plat-
forms, in Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, May 2012,
pp. 631–643.

[34] F.-H. ROUET J. XIA S. WANG, X. S. LI AND M. V. DE HOOP, A parallel geometric multifrontal solver
using hierarchically semiseparable structure, ACM Trans. Math. Software, to appear.

[35] Y. SAAD , Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics,
second ed., 2003.

[36] , Numerical Methods for Large Eigenvalue Problems, Society for Industrial and Applied Mathematics,
2011.

[37] YOUCEF SAAD AND MARTIN H. SCHULTZ, Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856–
869.

[38] YOUSEFSAAD AND MARIA SOSONKINA, Distributed schur complement techniques for general sparse lin-
ear systems, SIAM Journal on Scientific Computing, 21 (1999), pp. 1337–1356.

[39] Y. SAAD AND B. SUCHOMEL, Arms: an algebraic recursive multilevel solver for generalsparse linear
systems, Numerical Linear Algebra with Applications, 9 (2002), pp.359–378.

[40] TETSUYA SAKURAI AND HIROSHI SUGIURA, A projection method for generalized eigenvalue problems us-
ing numerical integration, Journal of Computational and Applied Mathematics, 159 (2003), pp. 119 –
128. 6th Japan-China Joint Seminar on Numerical Mathematics; In Search for the Frontier of Computa-
tional and Applied Mathematics toward the 21st Century.

[41] TETSUYA SAKURAI AND HIROTO TADANO, Cirr: a rayleigh-ritz type method with contour integral for
generalized eigenvalue problems, Hokkaido Math. J., 36 (2007), pp. 745–757.

[42] V. SIMONCINI AND E. GALLOPOULOS, Convergence properties of block gmres and matrix polynomials,
Linear Algebra and its Applications, 247 (1996), pp. 97 – 119.

[43] BARRY F. SMITH , PETTER E. BJØRSTAD, AND WILLIAM D. GROPP, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, New York,
NY, USA, 1996.

[44] MARC SNIR, STEVE OTTO, STEVEN HUSS-LEDERMAN, DAVID WALKER , AND JACK DONGARRA, MPI-
The Complete Reference, Volume 1: The MPI Core, MIT Press, Cambridge, MA, USA, 2nd. (revised) ed.,
1998.

[45] PING TAK PETER TANG AND ERIC POLIZZI , Feast as a subspace iteration eigensolver accelerated by ap-
proximate spectral projection, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 354–
390.

[46] ANDREA TOSELLI AND OLOF WIDLUND , Domain decomposition methods: algorithms and theory, vol. 3,
Springer, 2005.

[47] YUANZHE X I AND YOUSEFSAAD , Least-squares rational filters for the solution of interioreigenvalue prob-
lems, research report.

23

TABLE .1
Total elapsed time to compute the eigenpairs associated with eigenvaluesλ101, . . . , λ120 andλ501, . . . , λ520 ,

using the CI-M scheme as the number of quadrature nodesNc and size of subspacêr are varied. Valuêr∗ implies
the optimal value of̂r in terms of the total number of linear systems solved.

Its P = 64 P = 128 P = 256

[λ101, λ120]

Nc = 1

r̂ = 50 8 1,607.2 841.4 685.0
r̂ = 100 6 2,073.9 1,092.1 875.2
r̂∗ = 40 8 1,420.6 741.6 609.1

Nc = 2

r̂ = 50 5 2,514.6 1,308.0 1,085.1
r̂ = 100 4 3,214.3 1,682.8 1,370.1
r̂∗ = 33 5 2,118.8 1,095.2 923.8

Nc = 3

r̂ = 50 4 3,422.8 1,773.4 1,485.5
r̂ = 100 3 4,121.1 2,149.0 1,770.6
r̂∗ = 24 5 2,862.2 1,473.4 1,257.1

[λ501, λ520]

Nc = 1

r̂ = 50 9 1,723.9 904.3 732.5
r̂ = 100 5 1,840.5 966.9 780.0
r̂∗ = 39 9 1,492.9 780.4 638.5

Nc = 2

r̂ = 50 5 2,514.4 1,308.1 1,085.6
r̂ = 100 4 2,214.3 1,682.8 1,370.1
r̂∗ = 33 5 2,118.0 1,095.7 923.6

Nc = 3

r̂ = 50 4 3,422.9 1,774.3 1,485.1
r̂ = 100 3 4,121.8 2,149.7 1,770.1
r̂∗ = 33 5 3,177.2 1,642.8 1,358.9

24

TABLE .2
Total elapsed time to compute the eigenpairs associated with eigenvaluesλ101, . . . , λ200 andλ501, . . . , λ600 ,

using the CI-M scheme as the number of quadrature nodesNc and size of subspacêr are varied. Valuêr∗ implies
the optimal value of̂r in terms of the total number of linear systems solved.

Its P = 64 P = 128 P = 256

[λ101, λ200]

Nc = 1

r̂ = 200 14 7,206.1 3,845.6 2,965.0
r̂ = 300 9 6,972.9 3,702.5 2,870.0
r̂∗ = 236 10 6,179.6 3,294.9 2,547.1

Nc = 2

r̂ = 200 5 6,013.9 3,185.4 2,510.1
r̂ = 300 5 8,346.5 4,437.0 3,406.1
r̂∗ = 184 5 5,640.7 2,983.1 2,354.8

Nc = 3

r̂ = 200 4 7,628.2 4,027.6 3,195.1
r̂ = 300 4 10,421.7 5,529.2 4,335.1
r̂∗ = 133 5 6,673.6 3,520.2 2,810.4

[λ501, λ600]

Nc = 1

r̂ = 200 12 6,274.1 3,345.0 2,585.1
r̂ = 400 7 7,206.4 3,845.6 2,965.0
r̂∗ = 165 13 5,678.1 3,025.9 2,342.9

Nc = 2

r̂ = 200 5 6,013.9 3,185.8 2,510.2
r̂ = 400 4 8,813.7 4,687.8 3,650.0
r̂∗ = 166 5 5,220.4 2,759.9 2,178.1

Nc = 3

r̂ = 200 5 7,612.1 4,027.1 3,195.3
r̂ = 400 3 10,432.7 5,529.2 4,335.4
r̂∗ = 123 5 6,326.4 3,332.5 2,667.9

25

