DOMAIN DECOMPOSITION APPROACHES FOR ACCELERATING CONTOUR
INTEGRATION EIGENVALUE SOLVERS FOR SYMMETRIC EIGENVALUE
PROBLEMS

VASSILIS KALANTZIS*, JAMES KESTYN, ERIC POLIZZI, AND YOUSEF SAAD*

Abstract. This paper discusses techniques for computing a few sdleggenvalue-eigenvector pairs of large
and sparse symmetric matrices. A recently developed palveldss of techniques to solve this type of problems
is based on integrating the matrix resolvent operator albngmplex contour that encloses the interval containing
the eigenvalues of interest. This paper considers suctoapitttegration techniques from a domain decomposition
viewpoint, and proposes two schemes. The first scheme cardpeas an extension of domain decomposition
linear system solvers in the framework of contour integrathethods for eigenvalue problems, such as FEAST. The
second scheme focuses on integrating the resolvent operatarily along the interface region defined by adjacent
subdomains. A parallel implementation of the proposedmeiseis described and results on distributed computing
environments reported. These results show that domaimujsasition approaches can lead to reduced runtimes and
improved scalability.

Key words. Domain decomposition, symmetric eigenvalue problem, Ggirtegral formula, parallel comput-
ing, FEAST.

AMS subject classifications.15A18, 65F10, 65F15, 65F50

1. Introduction. This paper addresses the problem of computing all eigeasébecated
in an intervala, 8] and their associated eigenvectors of a sparse real synsmeitiix A of
sizen x n. A common approach for solving this type of problems is viagyIRigh-Ritz
(projection) process on a well-selected low-dimensionbkpacé/. In an ideal situatiori/
spans an invariant subspace associated with the soughvelges.

Much interest has been generated in recent years by te@dmiguvhich the subspace
U is extracted via an approximation of the spectral projeotained by numerically inte-
grating the resolvent( — A)~*, ¢ € C on a closed complex contolrthat encloses the
desired eigenvalues. The core of the method is then to carthetaction of the matrix
contour integralf.(¢( — A)~'d( on a set of vectors. From a numerical viewpoint, contour
integration eigenvalue solvers (eigensolvers) can beeadeas rational filtering techniques
that convert the solution of the original eigenvalue prabiato the solution of a series of
complex symmetric linear systems with multiple right-hadks. Popular algorithms of the
class of contour integration-based eigensolvers are ti&SHENnethod of Polizzi32,45] and
the SS method of Sakurai and Sugiu48,@1].

We focus on distributed computing environments, possibith & large number of pro-
cessors, and study contour integration eigensolvers frdomein decomposition (DD) view-
point [43,46]. In a domain decomposition approach the (discretized)mgdational domain
is partitioned into a number of subdomains, each assignadiifferent processor group. Do-
main decomposition techniques for the solution of eigarvgkroblems have been studied in
the past, see for examplé,p, 10, 20, 27,28, 31], but to our knowledge these methods have
not yet been considered within a contour integration fraorkw

*Department of Computer Science and Engineering, UniyeddiiMinnesota, Minneapolis, MN 55455, USA
(kalantzi@cs.umn.edwsaad@cs.umn.eyluThis work supported jointly by NSF under award CCF-1505%he-
oretical aspects) and by the Scientific Discovery througkialhded Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scien@iienputing Research and Basic Energy Sciences
under award number DE-SC0008877 (Implementations, agjalitto DFT).

TDepartment of Electrical and Computer Engineering, Usitgrof Massachusetts, Amherst, MA 01003, USA
(kestyn@ecs.umass.eqwolizzi@ecs.umass.eJluT his work supported by NSF under award CCF-1510010.

1


mailto:kalantzi@cs.umn.edu
mailto:saad@cs.umn.edu
mailto:kestyn@ecs.umass.edu
mailto:polizzi@ecs.umass.edu

Contour integration eigensolvers have been mostly agsalcigith the use of sparse di-
rect solvers to solve the linear systems which arise frormtimaerical approximation of the
contour integral. This approach, however, is not alwaysibda due to the possible large
amount of fill-in in the triangular factors, e.g., when fa@tg matrices that originate from
discretizations of 3D computational domains. One of thelgohthis paper is to fill part
of the gap that exists between contour integration appemahd the use of hybrid iterative
solvers within their context. In particular, we would like &ccelerate iterative solutions of
the linear systems encountered in the FEAST algorithm, ltiginy domain decomposition
preconditioners to solve the complex linear systems witltipie right-hand sides.

Even when direct solvers are the most practical way to sbledinear systems encoun-
tered in a FEAST approach, domain decomposition based apipes can lead to faster and
more scalable computations. This will be illustrated by panng the FEAST algorithm
implemented with a domain decomposition-based directesplvith an implementation of
FEAST that uses a standard parallel sparse direct solver.

Domain decomposition type methods naturally lend thenesefer parallelization in
multi-core and/or many-core environments. The paper ds&sipractical aspects of an im-
plementation of the proposed numerical schemes in diséibcomputing environments.

Finally, we discuss a modified contour integration schemielhvlpproximates only cer-
tain parts of the contour integral of the matrix resolvertisTeads to a numerical scheme that
can be computationally more efficient than following thenstard approach of numerically
integrating the entire resolvent.

The organization of this paper is as follows. In Section 2 wsadibe the main idea be-
hind contour integration eigensolvers, and FEAST algarith particular. In Section 3 we
describe the domain decomposition framework. In Sectiorefrmesent two computational
schemes within the context of domain decomposition. Se@&ifocuses on the solution of
the linear systems during the numerical integration phasd,discusses the use of domain
decomposition-based preconditioners, as well as theileimentation in distributed comput-
ing environments. In Section 6 we present computationadexgents. Finally, in Section 7,
we state a few concluding remarks.

2. Contour integration-based eigenvalue solversFor simplicity, throughout this pa-
per we will assume that the sought eigenpairgidie inside the interval—1, 1]. The above
assumption is not restrictive since the eigenvalued lifcated inside any real interval, §)
can be mapped to the interjai1, 1] by the following linear transformation:

A= (A—cl)/e, c:a;—ﬁ, e:B;a. (2.1)
Now let A haver eigenvalues, denoted by, ..., A, located in the interval-1, 1],
and letX = [z ... 2("] be then x r orthonormal matrix formed by the associated

eigenvectors. Then, the spectral projedtoe 2™ (20T 4 2 (20T = X X7 can
be expressed via the Cauchy integd]|

1
- 27 I

(I - A)de, (2.2)

wherel is a smooth, counter-clockwise oriented curve that enslosdy the sought eigen-
values)i, .. .,\.. The invariant subspace associated with the eigenveetdrs . ., (") can
be then captured by multiplyir§ by some full-rank matri®” € R"*", where it is assumed
that V7 X has rankr. The span ofPV can then exploited by a Rayleigh-Ritz projection
procedure to extract eigenpai{ts;, 1), ..., (A, z(").

2



In practice, the spectral projector iR.9) is approximated by numerical quadrature, e.qg.,
an N.-point Gaussian quadrature rule. A basis of the approxiimategiant subspace then
takes the form:

Nc
PV APV =) wi(GI—A)'V, (2.3)
J=1
where{(;,w; }1<j<n, are theN. quadrature node-weight pairs of the quadrature rule. The

numerical integration scheme iB.¢) approximates the exact spectral projedean (2.2) by
the approximate projectd® = p(A), where

Q=3 = (2.4)

The rational functiorp(¢) can be interpreted as a “spectral” filter function which mtes
eigenvalues\;, Az, ..., A, of A to the eigenvalueg(A1), p(A2), ..., p(An) Of p(A4). Inan
ideal situatiorp(¢) ~ 1,for ¢ € [-1,1] andp(¢) = 0, for ¢ ¢ [-1,1].

If the accuracy of the approximate eigenpairs computed bpdeRyh-Ritz projection
on the subspace created #/3) is not satisfactory, the procedure can be repeated useng th
most recent approximate eigenvectors as the new mittix multiply P. If direct solvers
are used to solve the complex linear system=2i)( this approach essentially amounts to
subspace iteration with matri® replaced byp(A). This approach has been implemented
in the FEAST package introduced by Poliz2P[32,45]. The subspace iteration viewpoint
relaxes the requirement for a highly accurate approximatiothe exact spectral projector
P. Itis also possible to consider contour integrals of otlagional functions, e.g., the scalar
functionu*(¢I — A)~ v, withu, v, € C", as proposed by Sakurai and Sugiura (38)41].
The poles of this scalar function are the eigenvalue4.of

This paper focuses on the FEAST framework, i.e., on an apprbased on a filtered
subspace iteration.

3. The domain decomposition framework. In a domain decomposition framework,
we typically begin by subdividing the computational domiaito P partitions (subdomains)
using a graph partitione®[L, 29]. The partitioning can be either recursive, using nestesd di
section [Lg], or P-way, where the domain is partitioned ihsubdomains directly. Through-
out this paper, we assume a non-overlapgiigiay partitioning of the domain, where each
vertex is a pair equation-unknown (equation numbend unknown numbej and the parti-
tioner subdivides the vertex set inkbpartitions, i.e.,P non-intersecting subsets whose union
is equal to the original vertex set (the aforementionedds khown either as vertex-based or
edge-separator partitioning).

Once the graph is partitioned, we can identify three difietgpes of unknowns: (1)
interior unknowns that are coupled only with local equadiof2) local interface unknowns
that are coupled with both non-local (external) and localatipns; and (3) external interface
unknowns that belong to other subdomains and are couplddledal interface variables.
Within thei*” subdomaini = 1, ..., P, a local reordering is applied in which interior points
are listed before the interface ones. With this, the loagédmiector:; can be split into two
parts: the subvectar; of internal components followed by the subveajpof local interface
components. Let now subdomaitaved; interior variables and; interface variables, i.e.,
the length of vectors; andy; is d; ands; respectively. We denote by; € R% <% the matrix
that represents the couplings between the interior vaasabk., between variablesin. Sim-
ilarly, we denote byf; e R% s the matrix that maps interface variables of subdoniain

3



interior variables of subdomainand byC; € R®**: the matrix that represents the couplings
between the interface variables of subdomaire., between variables 3. Finally, we let
E;; € R**% be the matrix representing the couplings between extenteface unknowns
from subdomainy and local interface variables of subdomain

When block partitioned according to the above splitting #dyuation A — AI)z = 0
can be written locally as

(Bi — /\I Ei ) (ul) + ( 0 ) -0
ET  Ci—AI) \ws > jen: Bijyj '
——

A; T

(3.1)

Matrix A; and vectorz; are local in theit” subdomain, andV; is the set of indices of the
subdomains that are neighbors to tHesubdomain. The tern;;y; is a part of the product
which reflects the contribution to the local equation from tieighboring subdomaijin Note
that £;; (i # j) is non-zero only if subdomainsandj are nearest neighbors. The second
block of rows in @.1) contains the couplings between the local variables ofithesubdo-
main and external interface variables from neighboringlsuateins, and gives the following
equation:

EA’ZTul + (Cl — )\I)yi + Z Eijyj =0.
JEN;

The action of the operation on the left-hand side of the almmpeation on the vector of all

interface variables, i.e., the vectgf = [y yI .-

following matrix C' € R5*:

,y5], can be accomplished into the

Cl E12 ElP

Ey Oy Es>p
c=|_ . (3.2)

Ep1 Epo Cp

whereE;; = 0if j ¢ N;, ands = s1 + s2 + -+ - + $p.

Thus, if we stack all interior variables;, us, - - - , up iNto a vectoru, in this order, and
we reorder the equations so that thes are listed first followed by the;’s, we obtain a
reordered global eigenvalue problem that has the follovidmngn:

By Ey Uy Uy
Bg E2 u9 u2
: =) , (3.3)
Bp Ep up up
Ef EJ EL C) \y y
PAPT

The matrixE;, i = 1,...,p, E; € R%>s in (3.3 is an expanded version of the cor-
responding matrixt; defined earlier and used i8.0). More specifically, we havés; =
[04;,¢,, E,04,,0,], wherel; = ;j S,V = ;;If s;, ando,, ,, denotes the zero matrix of
sizey x 1. Note in particular that we havg;y = F,y;.

Figure3.1shows an example of a Laplacian operator discretized in tmewuisions (2D)

using finite differences. The left subfigure shows the spapsittern after local reordering,
4



200X : 200
400 400
600 600
800 800 === .
0 200 400 600 800 0 200 400 600 800
nz = 4380 nz = 4380

FiG. 3.1.An example of a 2D Laplacian matrix partitioned fh= 4 subdomains and reordered according to
(3.1) (left) and @.3) (right).

while the right subfigure shows the sparsity pattern if weiassthat interior variables across
all subdomains are ordered before the interface ones. TéfficGent matrix of the system
(3.3) can be also written in a more compact form as

A= <§T g) , (3.4)

where we kept the original symbal for the permuted matrix as well. For the rest of this
paper we will assume that the matrixis represented as i3 ().

4. Contour integration in the domain decomposition framewak. In this section we
present two numerical schemes which utilize contour irgteégn approaches from a domain
decomposition perspective. Both schemes start with theesgn of the resolvent operator
(¢I — A)~! under the domain decomposition framework.

4.1. Full integration of the matrix resolvent. For¢ € C consider the complex shifted
matrix A — ¢ I written through its block LU factorizatiori{]:

I 0\ ([B—¢I E
A _<ET(B—<I)‘1 I)( 0 S<<>>’ @

S()=C—-¢I-ET"B-¢)'E (4.2)

where

is a matrix-valued rational function known as the Schur clement matrix. Then, the
negated resolvent operatef(l — A)~! = (A—¢I)~! can be expressed through the identity

_1 (B—¢I)™t —(B-¢I)7'ES(Q)! I 0
(A - CI) = < 0 S(C)_l ) <—ET(B _ <I)_1 I) ) (43)

where both(B — ¢I) and S(¢) are assumed to be non-singular (this assumption is tyviall
satisfied for any complegx with non-zero imaginary part).

Multiplying the two block triangular matrices iM(3), and defining?'(¢) = (B —
¢I)~1E, we get:

(B—¢I)~

1 F S —lF T S —1
(A_U)1:< _S(+ Q)S(C)TF () () <41“> ) "

OTHF(Q)T S0~

5



Let nowI" be a counter-clockwise oriented smooth Jordan curve,a&daitcle, that encloses
only the eigenvalues ofl inside[—1, 1], and letP denote the associated spectral projector
defined in .2. Then, the spectral project@ can be written in & x 2 block form, by
integrating each block ofA — (1)~ separately:

_ H -W
P = ﬁ/F(A— ¢H~td¢ = <—WT g ) (4.5)
with
M= [L(B =)™+ FOSQ™ F(Q)7]dC
G = —— 5O (4.6)
W= [ FOS(Q)

In order to extract an eigenspace from the expressidp iof (4.5), we consider the product
PV, whereV hasr columns, written as

v, A A
Plv. )=l owrv, cov ) =2 ) (4.7)

whereV = [V, VI]T, andV, € R¥" V, € R®*" are the parts of that correspond to

u S

the local and interface variables, respectively. We fingdly

% Jo(B = 1)~ VadC = —— [ FQOS(Q) Vs = F(QTValdg
Zs = 5= [p SO Va = F(O)VAdC.

(4.8)

Assuming that/ € R™*" is chosen such that 7V has rankr, (4.8) captures the ex-
act invariant subspace of associated with the eigenvalues located ingidg, 1]. Then,
Z =PV is used in a Rayleigh-Ritz projection to recover the actig#mpairs ofA. Because
the above discussed scheme considers all blocks afe will refer to it as “Domain Decom-
position Full Projector” (DD-FP). In the following, we sunamize the practical details of the
DD-FP scheme.

4.1.1. Practical aspects of the DD-FP schemén practice, the integrals ird(8) will
have to be approximated numerically. Once a quadratureiswdelected, with quadrature
nodes and weight&;,w;}, j = 1,..., N., the integrals are approximated by the following
summations (the scaling1/2iw is omitted):

N. N,
Zu=Y wi(B= (I WVu =Y wiF(G)SG) Ve - F(G) VAL (49)
Jj=1 j=1
~ NC
Zs = wiS(G) Ve = F(¢)Val. (4.10)
j=1

Different quadrature rules can be used to perform the nwaldritegration, e.g., the Gauss-
Legendre 32] or the trapezoidakQ] rules. Using a rule in which the quadrature nodes appear

6



in conjugate pairs, i.e¢; = @»HVC/Q, j=1,...,N./2, reduces the cost of the numerical
approximation of the contour integral by a factor of twoc&in

B_<JI: B_<j+NC/211 S(<_]) = S(<j+NC/2)a .7: 11"'1NC/27

and thus numerical integration must be carried out only anafrthe two semi-circles. For
the rest of this papery. will denote the number of quadrature nodes used to integtatwy
the positive semi-circle only. Viewing contour integratias a form of rational filtering,
other integration rules become possible, e.g., Zolotamtunmal filters [L8], or least-squares
filters [47], however, we do not explore these options in this paper.

For each quadrature nodg j =1,..., N., and each column i, we must solve two
linear systems wittB — (;I and one linear system withi((;). The calculation takes four
steps that accumulate the suMsy-(4.10 into Z,,, Z, and is shown in Algorithrd. 1:

ALGORITHM 4.1. DD-FP

0. Startwith randorV € R"*" andZ, = Z, =0

1. Do until convergence

2. Forj=1,...,N.:

3. W, = (B —¢I)~V,

4, W, =V, — ETW,

5. W, := S(¢) " W, Zs = Zs + Re(w;Wy)

6. W, =W, — (B —¢) 'EW,, Z = Zy + Re(w,;Wy,)

7. End

8. Rayleigh-Ritz: solve the eigenvalue problehAZQ = Z* ZQ®

- If not satisfied, repeat with, = Z,Q, V, = Z;Q

9. EndDo

The factorization of eacl — (;1, j =1, ..., N, is decoupled into factorizations of the
matricesB; —¢;I, i = 1,..., P, each one being local to thi€ subdomain. Moreover, since

A is symmetric, only the real parts &f, andZ,, have to be retained. The DD-FP scheme can
be cast as an iterative scheme in which approximate eigengegre improved in a straight-
forward manner by using their most recent approximatiorhasew setl” to multiply the
approximate spectral project@r. Step 8 of Algorithm4.1 extracts the approximate eigen-
pairs and also checks whether all eigenpairs inkide 1] are approximated up to a sufficient
accuracy (this part is omitted from the description of thgoathm).

If a direct solver is utilized to solve the linear systemshwst(¢;), j = 1,..., N. then
the DD-FP scheme is practically a straightforward applicabf the domain decomposi-
tion viewpoint applied to the computation of an approximatof PV, and can be seen as
equivalent to the FEAST algorithm tied with a domain decositian solver to compute the
products(A — ¢;I)~'V, j = 1,...,N.. However, a factorization of(¢) is not always
feasible (see Sectids). In such scenarios, the DD-FP scheme can leverage hybratiite
solvers which might be more practical.

4.2. Partial integration of the matrix resolvent. In this section we describe an alter-
native scheme, also based on domain decomposition, whemats to extract approximate
eigenpairs at a lower cost than the DD-FP scheme develoikd jorevious section.

Let the spectral projectd? defined in ¢.5), be expressed in the forfd = X X7, X ¢
R™*" whereX is written asX = [X, XT]7 with X,, € R™" X, € R®*". Then,P can
be also expressed in a block-partitioned form:

X, XT X, XT
(4.11)

Xu
X = <X> P =XXT 5P =[P, Py = (szff X,xT

7



Under the mild assumption that< s, i.e., the number of interface variabless greater than
the number of eigenvaluesof A lying inside[—1, 1], the range of? can be captured by the
range ofP, = X XI = [XT, XT|TXT, sinceP; is also of rank- and spans the same space
asP. By equating 4.11) with (4.5), it is clear thatX, X! = G and X, X! = —W, and
thus, in contrast with the DD-FP scheme we only need to coenat contour integrals W
andg, and ignore the blocki. As discussed in Sectioh3, and confirmed via experiments
in Section6, avoiding the computation ¢ can lead to considerable savings in some cases.
Because this scheme approximates the spectral projfabmly partially, we will refer to it
as “Domain Decomposition Partial Projector” (DD-PP).

Further insight in the above scheme can be given if we congiserepresentation of
x(A), the eigenvector oft corresponding to eigenvaluein a domain decomposition frame-
work. It can be easily shown that for any eigenvalugf A that does not belong ta(B) (the
spectrum ofB), S()) is singular and vice versa, i.e.,

Ad A(B), e A(A) < det[S(N)] = 0. (4.12)

Lety(\) € R® be the eigenvector associated with the zero eigenval§¢9f The eigenvec-
tor z(\) associated with eigenvaluecan then be written as:

—F(\)y(A
z(\) = < ;(;‘;J( )>. (4.13)

Comparing equationg(11) and @.13 shows thatpan(X,) = span(y(\1),...,y(A.)) and
span(Xy) = span(—F(A)y(M), ..., =F(Ar)y(Ar)).-

4.2.1. The DD-PP schemeThe range ofj and—)V can be approximated as:

-1
T 2r

GR /S(()‘leC, ~WR = % /(B —¢I)'ES(¢) T RdC. (4.14)
r T™Jr

forany R € R**", (# > r) whose columns have a non-trivial projection along theddios
of each eigenvectar();), i = 1,...,r of the nonlinear eigenvalue problesifA)y(\) = 0.

In practice, botlg and—W will be approximated numerically as id.(L5. Approximat-
ing the two integrals by a quadrature rule results in

N Qe _ . 1 & _ _
QR:%;%S(@) 'R, —WR:%;WJ-(B—QI) 'ES(¢)" R (4.15)

Combining the contribution of all quadrature nodes togethe final subspace accumulation
proceeds as in Algorithm.2, which we abbreviate as DD-PP. Note that because we are actu-
ally interested in an approximation of an invariant subspafcX, the signs are not important
(the signs in Steps 2 and 3 in Algorithdr2 could be reversed).

ALGORITHM 4.2. DD-PP ~ B
0. Startwith a random® € R**" andZ, = Z,, = 0

1. Forj=1,...,N.:

2 W, = S(¢;) 'R, Zs = Zy+ Re(w;jWy)
3. W, == —(B — () ' EW,, Zy = Zy + Re(w;Wy,)
4. End

5. Perform a Rayleigh-Ritz projection and extract appr@tareigenpairs

8



TABLE 4.1
Number of linear system solutions wifh — ¢I and S(¢), and Matrix-Vector multiplications witttz / ET
performed by the DD-FP and DD-PP schemes per quadrature.node

Scheme/OperationB — (I S(¢) E/ET
DD-FP 2x7 7 2x 7
DD-PP r r 7

Because there is no straightforward way to improve the e@ee approximations pro-
duced by the DD-PP scheme, we have to either use a large nofdpesdrature nodey.. to
obtain a sufficiently accurate approximation for the s grojector, or use a large value of
r.

Figure4.1 shows the average residual norm of the approximate eigenphiained by
the DD-FP and DD-PP schemes for a small 2D discretized Legplaxf sizen = 51 x 50 in
the intervalla = 1.6, 8 = 1.7] (more details on matrices of this form will be given in Sentio
6.2). Because of the iterative nature of the DD-FP scheme we saratsmall number of

2D Laplacian 51 x 50 in [1.6,1.7] 2D Laplacian 51 x 50 in [1.6,1.7]

10

—8-DD-PP, Nc=4
4 DD-PP, Nc=8
10 '} -@-DD-PP, Nc=12
-@-DD-FP, Nc=4

Average relative residual
Average relative residual

Iterations Iterations

FIG. 4.1. Average residual norm for &1 x 50 2D Laplacian in the interva[1.6,1.7]. Left: # = r. Right:
7 = 2r. The Gauss-Legendre quadrature rule was usgd [

quadrature nodes and correct the approximate eigenpaieplegting the numerical integra-

tion phase using the most recent approximate eigenvecdheaew set of right-hand sides.

Indeed, after four iterations, the DD-FP scheme with= 4 quadrature nodes achieves an
accuracy similar to that of the DD-PP scheme utiliziig= 12 quadrature nodes.

4.3. Computational comparison of the DD-FP and DD-PP scherse From a nhumer-
ical viewpoint the DD-PP and DD-FP schemes can perform antgibut, from a computa-
tional viewpoint, there are some notable differences. Athm 4.2 has a lower computa-
tional complexity per quadrature node than Algorithri since it avoids the first two steps
of Algorithm 4.1 Table4.1 shows the number of solves with matricBs— ¢I and S(¢),
as well as the number of Matrix-Vector operations wii E”" introduced per quadrature
node by each one of the two schemes. Furthermore, a straigiatid calculation reveals
that for each quadrature node, the DD-FP scheme also irdesdux 7 more floating-point
operations than the DD-PP scheme (the block matrix sultrexin Steps 3 and 5 in Algo-
rithm 4.1). Accounting for allN, quadrature nodes together, the DD-FP scheme introduces
N, x 7 x [cost_solve(B — (I) + cost_MV (E) + n] additional floating-point operations
compared to the DD-PP scheme. Hetest_solve(B — (I) andcost_MV (E) denote the
costs to multiply(B — ¢I)~! (by solving the linear system) anfd/ E” by a single vector,
respectively.



Given a distributed computing environment, in which eadbdeimain is assigned to a
different processor group, the actual extra cost introdumethe:*” subdomain (processor)
when using Algorithnat.1compared to Algorithrd.2, amounts taV, x 7 x [cost_solve(B; —

CI) + cost_MV (E;) + d;]. Thus, ifd; is large and/or many eigenvalues éflie in [—1, 1]
(and thus* is large), the dense matrix operations in Steps 3 and 5 ofrilgo 4.1 become
noticeable. The extra operations performed by Algoriththare entirely local within each
subdomain. On the other hand, as Algoritdn2 is a one-shot method, we need a rather
accurate projector for the entire approximation to worklwélhis is not a constraint for
Algorithm 4.1 since it is an iterative scheme.

5. Solving linear systems with the spectral Schur complemématrix. From a com-
putational viewpoint, the major computational proceduréath Algorithm4.1 and Algo-
rithm 4.2, is the solution of linear systems with the Schur complemesiricesS(¢;), j =
1,..., N., where each linear system ha% r right-hand sides.

Assuming that the computational domain is partitionedPimon-overlapping subdo-
mains, with each subdomain assigned to a different proceSsg ) is distributed by rows
among the different processors and has a natural blockigteuof the form

Sl(Cj) E12 e Elp
Egl 52(47) . Egp )
S =1 . A N L (5.1)
Epl Epg . Sp(@)

where
Si(¢j)=Ci—¢I—Ef(B;—(I)'E;, i=1,.... P,

is the “local” Schur complement that corresponds toithesubdomain and is a dense matrix
in general. The off-diagonal blocks;x, i,k = 1,..., P, i # k, account for the coupling
among the different subdomains and are sparse matricegenf;sk s; (they are identical
with those of the local system i3 ).

The standard approach to solve the distributed linear systeith the Schur comple-
ment in 6.1) would be to explicitly formS(¢;) and compute its LU factorization by a call
to a parallel sparse direct solver, e.g., MUMBEdr SuperLU_DIST p5|. This approach,
however, requires that the diagonal block$(;), ¢ = 1,..., P be formed explicitly. For
problems issued from discretizations of 2D domains, fogrand factorizingS(¢;) explic-
itly is an attractive option since the size of the Schur cama#nt is small even for a large
number of subdomains (the interface region between any tlhd@mains is a 1D object).
Schur complements that originate from discretizations Dfc@mputational domains3f]
typically require much more memory since in the 3D case the af the Schur complement
can become exceedingly large (the interface region now isnegbmation of planes). An
alternative discussed next is to solve the linear systertts S\i(; ), 7 = 1,..., N, using a
preconditioned iterative method (e.g., GMRESS]). Iterative methods avoid forming(¢;)
explicitly and only require a routine that is able to accoistpthe multiplication between
S(¢;) and a vector (details will be given in Sectibrp).

1For example, the memory requirements to st6(g;) when discretizing the Laplacian operator on the unit
cube withn!/3 discretization points along each direction scale©)4a?/3) if nested dissectionl] is used to
reorder(A — ¢;I).

10



5.1. Preconditioning the Schur complement.Schur complement preconditioning re-
lies on two procedures: a) approximation$f) by a matrix.S(¢), and b) a mechanism
to appIyS(C)‘1 on a vector. One of the first specialized libraries to offestributed Schur
complement preconditioners is the pARMS libra2%,38,39] which implements a multilevel
partial elimination of the Schur complement. In this paperoensider sparsified approxima-
tions of S(¢;) which are based on sparsity and/or numerical constralifd f, 33].

5.1.1. Building and applying the preconditioner. Since the*" processor holds th#"
block of rows ofS(¢), a straightforward approach is to solve the linear systents.) by
applying a block-Jacobi preconditioner, i.e., to utilizeraconditioner of the form:

S1(¢)
Sa(¢
SBJ(C) = ( ) . : (5-2)

Sp(C)

The LU factorization of each on-diagonal blo€k(¢), i = 1, ..., P can be obtained directly

from the LU factorization of
_ (Bi—¢I  E

which can be written ad;(¢) = L4,Ua,, with

_ LBi 0 o UBi, LélEl

and noticing thatS;(¢) = Lg,Us, [26,35]. The block-Jacobi preconditioner is applied in a
completely parallel fashion, with each processor perfagra forward/backward triangular
substitution withLg, /Us, .

Extending the block-Jacobi preconditioner we can take thgpling Fyx, i,k = 1, .. .,
P, i # k, among the different subdomains also into account, whieh teads to a precondi-
tionerS¢ (¢) that approximateS(¢) more accurately. The matri; (¢) is distributed among
the different groups of processors and thus communicatimng the processors is necessary
when the preconditioner is applied. To fo$a:(¢) we use two levels of dropping based on
numerical constraints. The first level of dropping concehesLU factorization ofB — (I
which is performed inexactly, by dropping all entries in thHe factorization whose real or
imaginary part is below a threshold valdeop- B. Then, thei** subdomain forms its local
Schur complement

Si(¢) = Cy — ¢I — (U TE)T (L Ey), (5.5)

while dropping any entry whose real or imaginary part is bedothreshold valuelr op- S.
MatncesL andU; denote the LU factors of the incomplete factorization ofeBe— (1, i =
, P. Overall, the preconditioner takes the form:

S1() Ew ... Ew
S
Sog = | T RO B (5.6)
Epi  Eps ... Sp(C)

11



where matrices;; are identical with those in5(1). The construction of preconditioner
Sc(€) is summarized in Algorithns. 1

ALGORITHM 5.1. Schur complement preconditiongs (¢)
0. Given¢ € C,drop-B, drop-S

1. Fori=1,...,P:
2. Obtain a factorizatiofl.;, U;] = B; — ¢I with drop tolerancelr op- B
3 FormS;(¢) = C; — ¢I — (U TE)T (L7 E;) and

- drop any entry smaller thadr op- S
4. End
5. Factorize5;(¢) by a distributed sparse solver.

A few details regarding Algorithn5.1. When formingS¢(¢), we form S;(¢) a few
columns at a time and immediately sparsify (for each incetepflactorization of3; — (I we
must solve a linear system with sparse right-hand sides). In this paper, by default we form
Si(g‘) two hundred columns at a time, where all right-hand sidesahesd simultaneously
using the Pardiso software packa@d,[30]. More details will be given in Sectioi. Small
values ofdr op- B, dr op- S might generally lead to more robust preconditioners, bat, o
the other hand, will also introduce larger computational aremory overheads during the
formation and factorization o§¢ (¢).

Before we conclude this section, we note that preconditdtezative methods to solve
the linear systems with matricé%¢;), j = 1, ..., N. can still be computationally expensive
in certain cases. First, depending on the number of sougknhpairs, we might have to
solve systems with hundreds or thousands of right-hand $ideachS(¢;), j =1,..., N..
Second, using larger values fif. will bring some of the quadrature nodes close to the real
axis. As a result, the iterative solution scheme will tyfliche slower. We will quantify this
behavior in Sectio®.

5.2. Matrix-Vector products with S(¢). To solve a linear system with matri(¢)
(here¢ can take any value), each iteration of a Krylov subspaceognaitioned iterative
solver requires at least one Matrix-Vector (MV) productwst(¢) and linear system solution
with the preconditioner matrix, as well as a few vector daiducts and vector updates.

The MV product betwee§(¢) and a vectov € R® can be computed as:

S = (C—¢lHv—ET(B—(I)"'Eu. (5.7)

An important property from domain decomposition with edggarators is that the second
term on the right-hand side 0%(7) is entirely local, as can be easily seen from the structure
of S(¢) in (5.1). MatricesB; andFE;, i = 1,..., P are entirely local in each processor and
no communication is required when we perform operationk tiem. On the other hand,
performing operations witl’ demands communication between processors which handle
neighboring subdomains. In summary, the computationdvedan (5.7) are:

1. ComputeE™ (B — ¢I)~'Ev (local),

2. Distribute (exchange) the necessary parts afid perform(C — ¢I)v (global),

3. Subtract the vector in 1) from the vector in 2) (local).
Communication in step 2) might overlap with computationstiep 1). Using more subdo-
mains (larger values faP) will reduce the computational cost per processor, butherother
hand, will increase the communication cost. Each localeswlith the block-diagonal matrix
B — (I is carried out by using a sparse solver.

The linear system solution between the preconditioner hacttrrent residual vector

can be performed either by a direct or an iterative solverthis paper we consider the

12



preconditionersSg;(¢) and S (¢), discussed in Sectioh.1.1 and we always apply them
using a direct method.

6. Experiments. In this section we analyze the performance of the proposethdo
decomposition schemes by reporting experiments perfoimditributed computing envi-
ronments. The numerical schemes discussed were implether@C++ and built on top of
the PETSc §-8] and Intel Math Kernel scientific libraried]. For PETSc, we used a com-
plex build? The source files were compiled with the Intel MPI compilgri i cpc, using
the -O3 optimization level. The computational domain wasifi@ned in P non-overlapping
subdomains with the help of the METIS graph partition2t][ Each subdomain was as-
signed to a distinct processor group and communicationdeiwdifferent processor groups
was achieved by means of the Message Passing InterfacasdaiMiPI) [44]. Each subdo-
main was handled by a separate MPI process and the numbédrdidrsains P, will be also
denoting the number of MPI processes. The LU factorizatams linear system solutions
associated with matricds — (;1, j =1, ..., N, were performed using the shared-memory,
multi-threaded version of the Pardiso library (version®)(24,30]. Unless stated otherwise,
the default number of threads per MPI process, as denoteariableT’, will be equal to one.
Whenever we computed an incomplete factorization of medifit—(; I, j = 1,..., N, that
was obtained by the UMFPACKLP] library,® and the resulting triangular factors were then
passed to Pardiso. We followed this approach in order togdiantage of the multi-threading
capability of Pardiso, as well as of the fact that Pardisathasbility to solve linear systems
with multiple right-hand sides simultaneously.

The quadrature nodes and weighis w;, j = 1,..., N, used for the numerical ap-
proximation of the contour integrals were computed by thesse_egendre quadrature rule
of order2- N, [2], retaining only theV,. quadrature nodes (and their associated weights) with
positive imaginary part.

Since the multiple right-hand sides for each linear systelti®on are available at the
same time, it is possible to utilize block Krylov subspackvas [19], e.g., block GMRES
[42]. While we explored this option, using our custom implenagioin of block GMRES, we
do not report results using block Krylov subspace methodsignpaper. Throughout the rest
of this section, the multiple right-hand sides are solvee after the other.

6.1. Computational system.The experiments performed at thesabi Linux cluster
at Minnesota Supercomputing Institudesabi consists by 741 nodes of various configura-
tions with a total of 17,784 compute cores provided by Intattell E5-2680v3 processors.
Each node features two sockets, each socket with twelveigatymres at 2.5 GHz. Each
node is also equipped with 64 GB of system memory. In tdtekabi features a peak
performance of 711 Tflop/s and 67 TB of memory.

Each MPI process will be paired with a single socket of ddebabi node.

6.2. The model problem. The model problem test matrices originate from discretiza-
tions of elliptic PDEs on 2D and 3D computational domains.rdspecifically, we are inter-
ested in solving the eigenvalue problem

—Au = \u (6.1)

on a rectangular domain, with Dirichlet boundary condiéid¢a denotes the Laplacian dif-
ferential operator). Using second order centered finiteeiiices withn,, n, andn, dis-
cretization points along each corresponding dimensiongltain matrixA, the discretized
version ofA, of sizen = nynyn..

2The complex version of PETSc was built using the optia t h- f or t r an- ker nel s=generi c
3Using the routinesinf pack_zi _ XXX

13



TABLE 6.1
Average time spent on a single quadrature node using the BCxftd DD-FP schemes to approximate the
eigenvalues\ioo1, - - - , A1200 and associated eigenvectors for three discretized 2D lciptes. The number of
right-hand sideg* as well as the number of subdomaiRswvere varied.

P =16 P =32 P =64
DD-PP  DD-FP DD-PP DD-FP DD-PP  DD-FP
n = 5002
F=r+10 12.6 14.7 8.13 9.20 6.62 7.25
7 =3r/2+ 10 15.5 18.2 12.1 13.0 8.87 9.77
P =2r+10 18.7 229 13.3 15.3 11.4 12.6
n = 10002
F=r+10 75.2 85.7 435 48.7 26.7 30.9
7= 3r/2+ 10 86.0 101.1 51.1 58.6 33.0 39.1
P =2r+10 98.1 118.8 59.6 69.9 40.4 485
n = 15002
F=r+10 267.1 290.2 116.9 121.1 66.4 74.8
7 =3r/2+ 10 295.0 328.6 134.1 140.4 79.7 91.9
7 =2r+ 10 326.9 370.0 153.3 161.5 93.4 109.1

6.3. A comparison of the DD-FP and DD-PP schemed)Ne begin by reporting a com-
parison of the DD-FP and DD-PP schemes on a set of discre?iRedaplacian matrices,
where the Schur complement matric€&;), ; = 1,..., N. were formed and factorized
explicitly (dr op- B=dr op- S=1e- 16) by MUMPS. In order to perform a fair comparison
between the two schemes, only one iteration of the DD-FPrsetveas allowed.

We used three different discretizations of the 2D Laplaciperator on the unit plane to
obtain three different matrices of size= 5002, n = 10002, andn = 15002. The interval
of interest was arbitrarily set tiav, 5] = [(A1000 + M1001)/2, (A1200 + A1201)/2], including
r = 200 eigenvalues. We usell, = 4, N, = 8 and N, = 12 quadrature nodes, while the
number of right-hand sides, was varied. Tablé.1reports the average wall-clock time spent
on a single quadrature node for the cAge= 8. By the term total wall-clock timing we mean
the total timings to perform all factorizations and linegstem solutions, as well to perform
the Rayleigh-Ritz projections and check convergence. Badmture node timings for the
other choices ofV, were basically identical. The DD-PP scheme was alwaysrfésia the
DD-FP scheme, especially #&and+ obtained smaller and larger values, respectively. The
above lies in agreement with the discussion in Secti@n

Figure6.1plots the maximum (dashed) and average (solid) residuah nbthe approx-
imate eigenpairs for all different combinations/gf andr reported in Tablé&.1 The relative
residual errors were of the same order for both the DD-FP dxdPP schemes and we report
results only for the DD-PP scheme. ThReaxis runs across the different number of right-
hand side$ while curves with different markers represent the différamber of quadrature
nodes used and are indexed #:* N, = 4, “A": N, =8, “W". N, = 12. Naturally, as we
increaseV, and/or#, the accuracy of the approximate eigenpairs improves.

The last experiment of this section discusses the case wielD-FP scheme is allowed
to perform more than one outer iterations, until all eigerspaf then = 15002 Laplacian
located inside the intervak, 3] = [(A1000+A1001)/2, (A1200+A1201) /2] are approximated to
at least eight digits of accuracy each. We compared the DBeREme against a PETSc-based

14



[
e !
>

=
°© |
@

Average—Maximum residual norm

Average—Maximum residual norm

-10

200 250 300 350 400 450 200 250 300 350 400 450
# of right-hand-sides # of right-hand-sides

10

FIG. 6.1.Maximum (dashed) and average (solid) residual norm of thergairs inside the intervdty, 3] =
[()\1000 + )\1001)/2, ()\1200 + )\1201)/2}. Left: n = 5002. Right: n = 10002. Legend: @ Ne = 4,"A™
N, =28,“W" N.=12.

TABLE 6.2
Time elapsed to compute eigenvalugso, . - . , A1200 and corresponding eigenvectors of the= 15002
Laplacian by the CI-M and DD-FP schemes, using differenicd®of N, and+. “Its” denotes the number of outer
iterations.

P =64 P =128 P = 256
Its CI-M  DD-FP CI-M  DD-FP CI-M  DD-FP
N. =2
7 = 3r/2 9 3,922.7 2,280.6 2,624.3 12424 1,911.2 8595
P=2r 5 2,863.2 1,764.5 1,877.7 9985 12555  615.3
N.=4
7 = 3r/2 5 41815 2,357.0 2,815.7 1,280.2 1,874.1 8775
P=2r 4 43303 2,571.4 2,869.5 1,462.9 2,023.2 1,036.2
N.=6
7 = 3r/2 3 3,710.3  2,068.2 2,504.1 1,122.1 1,790.8  766.5
P=2r 3 47748 2,798.5 3,177.7 1,595.2 2,743.6 11251
N.=8
7 = 3r/2 3 49116 2,722.2 3,318.7 1,476.1 2,367.7 1,006.5
P=2r 2 4,204.7 2,445.2 2,802.1 1,395.4 1,806,6  982.1

implementation of the FEAST algorithm, referred to as Cantotegration-MUMPS (CI-M),
which utilized MUMPS to factorize and solve the linear syssavith matricesA — (;1, j =
1,..., N, (not a domain decomposition approach).

Table6.2reports the total wall-clock time to compute eigenvaldgg, - - ., A1200 and
associated eigenvectors for the= 15002 2D discretized Laplacian, by both the CI-M and
DD-FP schemes, when different values¥f and+ are used. Variable “Its” denotes the
number of outer iterations (same in both schemes). As eggeasing higher values fay,
generally results to fewer outer iterations. However, tuss not necessarily lead to lower
runtimes, since increasing the value/éf does not generally lead to a great reduction in the
number of outer iterations for fixed values7of Similarly, increasing after a certain value
does not affect the number of outer iterations much, thudihggto increased runtimes. The
performance gap between the DD-FP and CI-M schemes follasliglatly increasing trend

15



120 [l Factorizations
[ ]Lin sys solutions

100

80

60

40

Time breakdown

20

2
N

c

FIG. 6.2. Time breakdown of the CI-M scheme (time spent on factooizatand linear system solutions) for
N. =1, N. = 2andN. = 3, using the optimal choice &f:= #* for each case. Results are shown for= 128.
For each choice ofV., we show the breakdown for intervdts, 3] = [(A100 + A101)/2, (A120 + A121)/2] (first-
leftmost spike)ja, 8] = [(A100+A101)/2, (A200 +A201)/2] (second spike)je, B] = [(As00+As501)/2, (As20 +
As21)/2] (third spike), ande, 8] = [(As00 + As01)/2, (A60o + Xeo1)/2] (fourth-rightmost spike).

as larger values aoP are used, mainly because the linear system solution phatesduetter
for the DD-FP scheme than what for the CI-M scheme.

6.4. Contour integration using preconditioned iterative ®lvers. In this section we
consider the solution of eigenvalue problems for which adtiformation and factorization
of the Schur complement matric€%¢;), j = 1, ..., N, is rather expensive or impractical,
e.g., discretizations of 3D or higher-dimensional compaoitel domains. The alternative is
to solve the linear systems with the Schur complement nes¢¢;), j = 1,...,N. by a
preconditioned iterative solver.

In contrast with Sectio.3, the solution of linear systems with the Schur complement
matrices far dominates the computational procedure, arxttie DD-FP and DD-PP schemes
in practice share the same computational profile. For thisoe, we only compare the DD-FP
and CI-M schemes.

For the rest of this section, the preconditioned iteratolges of choice will be the right
preconditioned GMRES(250), i.e., we allow2g) preconditioned iterations per each restart.
A linear system will be considered solved after its initieasidual norm gets reduced by at
least ten orders of magnitude.

6.4.1. A 3D model problem.In this section we consider the solution of an eigenvalue
problem whered originates from a discretization of the Laplacian operatothe unit cube,
using 150 discretization points along each correspondimgision, i.e.n = 150 x 150 x
150. We utilized the DD-FP and CI-M schemes to compute the lowe80 andr=100
eigenvalues (and associated eigenvectors) located itisedantervals: [, 8] = [(A100 +
A101)/2, (A200 + A201)/2], and|e, 8] = [(As00 + As01)/2, (Aeoo + Aeo1)/2].

We first comment on the results obtained by the CI-M scheméhwlas noted earlier,
essentially is the FEAST algorithm tied with MUMPS to faéterand solve linear systems

with A —¢;, j =1,..., N.. The results are shown in tables located in the appendiiosect
Table.1 shows the total elapsed time to compute the eigenpairsiasstevith eigenvalues
A101, - -+, A120 @ndAso1, - . ., As20, @S the number of quadrature nod€s and size of sub-

spacer are varied. The optimal value éfin terms of the total number of right-hand sides
solved is shown ag*. Table.2 conveys the same information for the eigenpairs associated
with eigenvalues\ig1, .. ., Aogg and Aso1, - - -, Agoo- Figure6.2 shows the time breakdown

of the CI-M scheme, focusing on the two main computationatpdures, i.e., time spent
on factorizations and linear system solutions, for allafiént choices ofV, and different

16



(%] —

< —0-N=L A4 5]

2 100| o Nc=2, -

[2]

S N.=3, ==

<§ 80

g

@ 60f

o

=

o 40 L

ke]

[0}

£

o 20 1
8 —0—9o————=9
42 0 50 100 150 200 250

# of MPI processes

FiG. 6.3. Total number of preconditioned GMRES iterations in ordestve a linear system with a single
right-hand side for allN. = 1, N. = 2 and N. = 3 quadrature nodes, wheR = 32, P = 64, P = 128 and
P = 256 subdomains are used.

intervals [«, 8] tested. Results are shown only for the optimal choicé*,of*, and for

P = 128 MPI processes. For the subintervals that contain enly 20 eigenvalues, fac-
torizing A — (;1, j = 1,..., N, introduces a large overhead, especially for larger values
of N. (the average factorization time per quadrature node wa$)87832.11, and 298.43
seconds, fol? = 64, 128 and P = 256 MPI processes, respectively). On the other hand,
when many eigenvalues lie within the interval of interest,axpect the time spent on solving
linear systems to dominate (unless high value&pfire chosen).

An alternative, which avoids the need to factorize matrides ;, j = 1,..., N. (and
thus their excessive requirements of memory and factasizdiime), is to exploit the DD-
FP scheme tied with a preconditioned iterative solver toestite linear systems associated
with matricesS(¢;), j = 1,..., N.. However, this approach requires some caution since
under the assumption that a factorization of the matrix ieadly at hand, the cost to solve a
linear system by using a preconditioned iterative solver ba much higher than the cost to
solve the same system by a direct sall&e expect preconditioned iterative solvers to be a
better alternative than the direct solvers (when a facition is possible) when the number
r of eigenvalues sought is not high and convergence of eaehrligystem is rapid. As a
brief numerical illustration, Figuré.3 shows the total number of preconditioned GMRES
iterations to computgjj.\[;1 S(¢;) v forarandomv € C¢, if P =32, P = 64, P = 128
and P = 256 subdomains are used (details on the preconditioner willibendater in this
section). The interval of interest was sefdo 5] = [(A100 + A101)/2, (A120 + A121)/2]. Note
the superlinear increase in the number of preconditionedR&Bliterations a®v. increases,
as well as the increase in the number of iterations as lar@ees of P are used. Iterative
solvers are greatly affected by the location of the quadeatodes;;, j = 1,..., N., with
¢;'s which lie closer to the real axis leading to slower conegrce. By construction, higher
values of N, will lead to some quadrature nodes being closer to the rés) and thus using
low values forN,, e.g. N. = 1, might in practice be a good alternative when direct solvers
are impractical.

In contrast with the discretization of 2D domains, for 3D dons, the standard approach
where each subdomain is handled by a single MPI process,utiticing a single compute
core, will not scale satisfactorily, since increasing thenver of cores implies a larger number
of subdomains, leading to an increase in the size of the Submplement matrices. An

17



TABLE 6.3
Time spent on different phases when compu@ﬁ;1 S(¢j)~ 1w for arandomv € C*. We usedV, = 1
while the interval of interest was set i, 5] = [(A1oo + A101)/2, (A200 + A201)/2]. T: number of threads per
MPI process.

PxT =32 PxT =64 PxT=128 P x T = 256

T=1 T=1 T=2 T=1 T=4 T=1 T=38
MV with S(¢1) 1.03 0.38 0.45 0.12 0.27 0.04 0.23
Factorization ofS¢ (¢1) 3.20 5.01 3.20 7.23 3.20 9.06 3.20
Application of S (¢1) 0.28 0.47 0.28 0.58 0.28 0.89 0.28

~@-DD-FP, 7=50

-@-CI-M, #=50 A - DDFPl #=200
—&-DD-FP, #=100 RN -@-CLM, #=200
A -A-CLM, #=100 3y ~A-DD-FP, #=300
e - DD-FP, #=40 10%7 3 -A-CI-M, #=300
z ' SN -m-CLM, 7=40 @ AR -~ DD-FP, 7#=236
0107 i A — Y Y -m-CI-M, #=236
g ~:'::.______ ::: A g .
g b | g 10%
F \\A =
.\.\. L :
50 100 150 200 250 300 50 100 150 200 250 300

Compute cores Compute cores

FIG. 6.4. Total elapsed time to compute a few eigenpairs by the DD-FP@RM schemes using/. = 1
and varying values of. Left: Computation of eigenvalues o1, ..., A120 and associated eigenvectors. Right:
Computation of eigenvalues; o1, . - ., A2po and associated eigenvectors.

alternative is to increase (or redistribute) the availablmpute cores so that each MPI process
utilizes more than one compute cores. In the context of theHPDscheme, we could use
lower values forP and increase the number of available compute thréaddPardiso during
the factorization and linear system solutions with magiBe— ¢;I, j = 1,..., N.. Table
6.3shows a comparison of the pure MPI and hybrid (MPI+Threadslfel paradigms when
computinng.V:C1 S(¢)~tw, N. = 1, with v € C* a random vector, while the interval of
interest was set thy, 5] = [(A100 + A101)/2, (A200 + A201)/2]. We report the amount of time
spent on performing the MV products wif({;), factorizingS¢ (¢;), and applyingS (¢;).

For the preconditione$({;) we usediropB = 1e — 4, dropS = le — 2. Assuming a fixed
number of available compute cores, the standard approaabsigning one compute core
per subdomain (pure MPI) is preferable when performing thégvbducts withS(¢;), since
factorizing and solving linear systems with-(; in this case is faster, and also more scalable,
than performing the same operation using fewer MPI prosesssch with more than one
compute threads. However, the main advantage of the hyarallpl scheme (MPI1+Threads)
is thatthe cost to apply the preconditioner does not increase amnaease the number of
compute coresTable6.3 shows that when 256 compute cores are available, using 32 MPI
processes, each with eight threads, is about five times fdmste using 256 MPI processes,
each with a single thread.

In the following we focus only on the casé. = 1, which proved to be the most com-
petitive choice for the DD-FP scheme when a preconditiotexdtive solver was used. The
number of subdomains in the DD-FP scheme was fixefd to 32.

Figure6.4compares the DD-FP and CI-M schemes when computing all eédees and
associated eigenvectors in the intervalss] = [(A100 +A101)/2, (A120+A121)/2] (left), and
[, B] = [(A100 + A101)/2, (A200 + A201)/2] (right). The results for the CI-M scheme were

18



2000 ‘ ‘ ‘ ‘ x10 ‘ ‘ -@-DD-FP, #=200
A -Q-BPﬁP, f'r:050 ol -@-CI-M, #=200
-@-CL-M, 7=5 P A
o, ~&-DD-FP, #=100 “:"gﬁ\fpgf ol
X Al “a DDFP, 7165
— L ‘e - , =39 —~ L -bE, =
L1500/ ® -m-CI-M, 7=39 z 13 -m-CLM, 7=165
£ =
< s 1f -\-\' 1
o O
+ 1000 = ‘
05F TiiIiis..
~=ﬂ-.='-.'-.'-.'-.'=-.-.-.-.-=-=-.‘
50 : : : : : : : : :
% 100 150 200 250 300 50 100 150 200 250
Compute cores Compute cores

FiG. 6.5. Total elapsed time to compute a few eigenpairs by the DD-FP@RM schemes using/. = 1
and varying values of. Left: Computation of eigenvaluessoi, . . ., As20 and associated eigenvectors. Right:
Computation of eigenvalues;o, - - . , Agoo and associated eigenvectors.

extracted from Tablesl and.2. For this experiment, the DD-FP scheme is faster than the
CI-M scheme since it avoids the large overhead introducef@tiprizing(A — ¢17), while
the preconditioned GMRES solver converges reasonably fast

Figure6.5compares the DD-FP and CI-M schemes when computing all eddees and
associated eigenvectors in the intervials8] = [(Aso0 + A501)/2, (As20 + As21)/2] (left),
and[a, 8] = [(As00 + As01)/2, (Aeoo + Aeo1)/2] (right). This eigenvalue problem becomes
tougher for the DD-FP scheme since the solution of each-hght side takes much more
time than in the previous case. For the case whete 20 the DD-FP scheme is generally
faster because it avoids the large overhead introducedebgxbensive matrix factorizations
by the CI-M scheme. However, for the case where 100, many right-hand sides must be
solved and the CI-M scheme is much faster since the avenagetdi solve each right-hand
side is much lower than that in the DD-FP scheme.

Note that the results for the DD-FP scheme (especially @tabdity) can improve sig-
nificantly since the additional compute cores per MPI preaesed by Pardiso can be also
utilized by MUMPS when applying the preconditioner, howg¥er reasons of fair compar-
ison against the CI-M scheme, for MUMPS we use only MPI paliath, and thus only a
fraction of the available compute cores are active when vpdyape preconditionefq (¢;).

6.4.2. The PARSEC matrix collection. Our third set of experiments originates from
applications in Electronic Structure Calculations usimg Density Functional Theory in real
space. The matrices (Hamiltonians) were generated ussngPARSEC software package
[23], and can be found in the University of Florida Sparse Ma@idlection [L3].# The
matrices of this collection are real, symmetric, and haustered eigenvalues. Talfied lists
the sizen, the total number of non-zero entries z, as well as the interval of interelgt, 3].

The number of nonzero entries of each Hamiltonian is quitgelaa consequence of the
high-order discretization and the addition of a (denseptaral’ term. Together with the
3D nature of the problem this leads to a large interface regigen if a good partitioning is
employed. Before we continue, it is important to stress tloatour integration approaches
are not effective for this type of problems, and, in pragtpelynomial filtering techniques
have often been found to perform bettgy15]. Thus, in this section, we do not compute any
actual eigenpairs of the matrices in Tabld. We include this set of experiments with the
purpose of demonstrating how preconditioned iterativeesotan reduce the cost of contour

4https:/iww.cise.ufl.edu/research/sparse/matrices/
19



TABLE 6.4
Test matrices obtained by the PARSEC collection. We listites:, the total number of non-zero entries:z,
as well as the interval of intere$dy, 3] and the number of eigenvaluedocated insidga, 3].

Matrix n nnz (o, ]
GegoHioo 112,085 8,451,295 [—0.65, —0.0090]
Siq1Geq1 Hro 185,639 15,011,265[—0.64, —0.00282]

Sigy Hre 240,369 10,661,631[—0.6600, —0.030]
TABLE 6.5
Elapsed time for performing th¥. factorizations of the forrd —(;1, j = 1,..., N. (CI-M) versus elapsed
time to compute the factorization of each matfix((;), i = 1, ..., P (DD-FP). The same experiment was repeated

for different values of.

P=4 P=3 P=16 P =32
CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP
Gegg Hi00
N.=1 424.1 27.9 362.8 5.1 155.9 1.36 80.2 0.51
N, =2 860.9 56.4 714.2 10.7 308.7 2.57 162.3 0.92
N. =3 1265.9 86.3 1089.4 15.5 461.1 4.26 239.5 1.47
Sig1Geq1 Hra
N.=1 1276.1 38.8 942.6 10.1 486.1 3.31 230.2 1.52
N. =2 X 74.5 1888.1 19.8 969.3 6.46 452.7 2.81
N.=3 X 117.4 X 28.8 1442.5 10.0 691.3 4.40
Sis7r Hre
N.=1 X 119.8 1726.2 14.5 942.4 1.23 382.1 0.51
N, =2 X 247.4 X 29.7 1872.8 2.53 758.0 0.94
N. =3 X 355.1 X 44.6 2853.9 3.82 1127.4 1.61

integration approaches in multi-core architectures ancese their practicability.
For this set of experiments we utilized a block-Jacobi pneddner,

Sps(¢;) = bdiag(S1(¢;), ..., Sp(C)),5=1,..., Ne. (6.2)

Factorizing a distributed approximation of each differ8chur complement matrif(¢;),

j = 1,...,N. (for any value ofdr op- B anddr op- S) introduced a very large computa-
tional and memory overhead since it essentially amoundimfizing matrixA — (1, j =
1,..., N, rendering the class of distributed preconditioners ligropefficient.

Table 6.5 shows the time elapsed to perform &l factorizations of the formd —
¢I, j = 1,...,N. (CI-M) versus the elapsed time to factorize matrickg¢;), i =
1,..., P, a pre-process step of the DD-FP scheme (mattitgs;) are defined in§.4)).

As was discussed in sectidnl.l the factorization of4;(¢;) provides the factorization of
bothB; — ¢;I andS;({;), i = 1,...,P. We report timings obtained for a varying number
of P MPI processes (subdomains). A “X” flag under the CI-M schemplies that not all
N, factorizations could fit in the memory allocated by each Mielgess. We can observe the
excessive timings when factorizing matricés- ¢;1, j =1,..., N..

Table6.6shows the elapsed time to solve All linear systems by the CI-M and DD-FP
schemes for a random right-hand side R™, i.e, ij:cl(A — ¢;I)~'v. For lower values of
P the DD-FP scheme is not a competitive approach, since theaapply the block-Jacobi
preconditioner is quite high in that case. HoweverPasicreases, the cost to solve a linear
system with a single right-hand side, for &ll. quadrature nodes, drops dramatically (the
number of iterations is only slightly increased Bsncreases). Increasing the value /gf

20



TABLE 6.6
Time elapsed‘ to perform the computat@éi“l(A — ¢;I)~ v with (DD-FP) and without (CI-M) using the
domain decomposition framework. Vectoe R™ denotes a random real vector.

P=4 P=3 P =16 P =32
CI-M DD-FP CI-M DD-FP CI-M DD-FP CI-M DD-FP
Gegg Hio0
N, =1 0.73 5.11 0.66 1.71 0.36 0.62 0.34 0.26
N, =2 1.52 13.1 1.38 3.20 0.78 1.72 0.66 0.53
N, =3 2.27 33.3 1.92 11.8 1.05 4.14 0.98 1.23
Sig1Geq1 Hro
N, =1 1.80 7.50 1.22 3.72 0.69 1.02 0.66 0.51
N, =2 X 32.8 2.53 12.1 1.41 3.53 1.38 0.84
N.=3 X 61.3 X 31.2 2.12 8.61 2.05 2.12
Sigr Hre
N, =1 X 15.0 1.59 4.33 1.29 0.92 0.90 0.41
N, =2 X 50.2 X 14.0 2.75 3.34 1.88 0.76
N, =3 X 120.5 X 34.8 4.02 7.51 2.65 1.96

results in a proportional increase in computational timetifi@ direct solver but to a much
more pronounced increase for the case of preconditionetiite solvers, owing to the fact
that iterative solvers are sensitive to the magnitude ofctiraplex part of each quadrature
node. Shifting fromV, = 1to N, = 3 leads to quadrature nodés ¢, and(s, where(; and

(3 have a much smaller imaginary part thagn As a result, the iterative scheme to solve the
Schur complement systems becomes much slower. On the a@hdr the solution phase in
the DD-FP scheme scales better than the same phase in thes€hdvhe.

7. Conclusion. In this paper we studied contour integration methods for patng
eigenvalues and eigenvectors of sparse matrices using aidatecomposition viewpoint.
We discussed two different numerical schemes. The firstsehabbreviated as DD-FP, is
basically a flexible implementation of the domain decompmsiramework in the context of
contour integral-based methods. It is essentially egeivaio a FEAST approach in which
domain decomposition-based direct solvers are employethésolution of the complex
linear systems arising from the numerical integration. $heond scheme, abbreviated as
DD-PP, focuses on approximating the contour integrals pattially by integrating the Schur
complement operator along the complex contour. Moreovecansidered the use of domain
decomposition in the context of preconditioned iterativears as a replacement of the direct
solvers. Experiments indicate that this approach can fatigrbe faster, but that its ultimate
effectiveness will be dictated by the performance of theattee scheme used for solving the
linear systems. In particular, the method can be vastlyrsmp&hen computing eigenvalues
on both ends of the spectrum but it may encounter difficultieen the eigenvalues to be
computed are located deep inside the spectrum.

Future work includes the incorporation of the block GMRE®&aodeveloped for the
solution of the complex linear systems with the Schur comelet, as well as an implemen-
tation of the DD-FP and DD-PP schemes which utilizes mora tha levels of parallelism.
The numerical methods presented in this paper will becoradadle in the future update

release of the FEAST software package.
Acknowledgments. We are grateful to the University of Minnesota Supercomyti

Institute for providing us with computational resourcepésform our experiments. We thank
Ruipeng Li and Yuanzhe Xi for fruitful discussions. We woualldo like to thank the PETSc

21



team for providing assistance with the PETSc library, ad a®lOlaf Schenk and Radim
Janalik for their help with the Pardiso library.

(1]

(5]
(6]

[7]
(8]

[9]
[10]
[11]
[12]
(23]
[14]
[15]

[16]
[17]

(18]

[19]

[20]
[21]

[22]
(23]

[24]

REFERENCES

Intel(r) fortran compiler xe 14.0 for linux

MiLTON ABRAMOWITZ, Handbook of Mathematical Functions, With Formulas, Grapired Mathematical
Tables, Dover Publications, Incorporated, 1974.

PATRICK R. AMESTOY, IAIN S. DUFF, JEAN-Y VES L'E XCELLENT, AND JACKO KOSTER A fully asyn-
chronous multifrontal solver using distributed dynamitieduling SIAM Journal on Matrix Analysis
and Applications, 23 (2001), pp. 15-41.

ALEXANDER L. SKOROKHODOV ANDREW V. KNYAZEV, Preconditioned gradient-type iterative methods
in a subspace for partial generalized symmetric eigenvaloblems SIAM Journal on Numerical Anal-
ysis, 31 (1994), pp. 1226-1239.

JARED L. AURENTZ, VASSILIS KALANTZIS, AND YOUSEFSAAD, A GPU implementation of the filtered
Lanczos procedurdlech. Report ys-2015-4, 2015.

SATISH BALAY, SHRIRANG ABHYANKAR, MARK F. ADAMS, JED BROWN, PETER BRUNE, KRIS
BUSCHELMAN, LISANDRO DALCIN, VICTOR EIJKHOUT, WILLIAM D. GROPR DINESH KAUSHIK,
MATTHEW G. KNEPLEY, LOIS CURFMAN MCINNES, KARL RUPR, BARRY F. SMITH, STEFANO
ZAMPINI, AND HONG ZHANG, PETSc users manualech. Report ANL-95/11 - Revision 3.6, Argonne
National Laboratory, 2015.

, PETSc Web pagét t p: / / ww. nts. anl . gov/ pet sc, 2015.

SATISH BALAY, WILLIAM D. GROPR LoIS CURFMAN MCINNES, AND BARRY F. SMITH, Efficient man-
agement of parallelism in object oriented numerical sofewkbraries, in Modern Software Tools in
Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langen, eds., Birkhduser Press, 1997,
pp. 163-202.

C. BEKAS AND Y. SAAD, Computation of smallest eigenvalues using spectral scomptementsSIAM J.
Sci. Comput., 27 (2006), pp. 458-481.

J. K. BENNIGHOF AND R. B. LEHOUCQ An automated multilevel substructuring method for eigansp
computation in linear elastodynamicSIAM J. Sci. Comput., 25 (2004), pp. 2084-2106.

L. M. CARVALHO, L. GIRAUD, AND P. LE TALLEC, Algebraic two-level preconditioners for the schur
complement metho&IAM Journal on Scientific Computing, 22 (2001), pp. 198102

TIMOTHY A. DAvIs, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern rinatital methogd ACM
Trans. Math. Softw., 30 (2004), pp. 196-199.

TIMOTHY A. DAvIS AND YIFAN Hu, The university of florida sparse matrix collectiohCM Trans. Math.
Softw., 38 (2011), pp. 1:1-1:25.

JAMES W. DEMMEL, Applied Numerical Linear AlgebraSociety for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1997.

H. FANG AND Y. SAAD, A filtered Lanczos procedure for extreme and interior eighre problemsSIAM
Journal on Scientific Computing, 34 (2012), pp. A2220-A2246

ALAN GEORGE Nested dissection of a regular finite element mé&éh(1973), pp. 345-363.

L. GIRAUD AND ET AL ., Sparse approximations of the schur complement for paraligbraic hybrid solvers
in 3d, 2010.

STEFAN GUTTEL, ERIC POLIZZI, PING TAK PETER TANG, AND GAUTIER VIAUD, Zolotarev quadrature
rules and load balancing for the feast eigenso)V8tAM Journal on Scientific Computing, 37 (2015),
pp. A2100-A2122.

V. KALANTZIS, C. BEKAS, A. CURIONI, AND E. GALLOPOULOS, Accelerating data uncertainty quan-
tification by solving linear systems with multiple rightdtasides Numerical Algorithms, 62 (2013),
pp. 637-653.

V. KALANTZIS, R. LI, AND Y. SAAD, Spectral schur complement techniques for symmetric eajgmv
problems

G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitionimgegular graphs
SIAM Journal on Scientific Computing, 20 (1998), pp. 359-392

J. KESTYN, E. PoLizzI, AND P. TAK PETER TANG, Feast eigensolver for non-hermitian problems

L. KRONIK, A. MAKMAL , M. L. TIAGO, M. M. G. ALEMANY, M. JAIN, X. HUANG, Y. SAAD, AND J. R.
CHELIKOWSKY, PARSEC-the pseudopotential algorithm for real-spacetrleic structure calcula-
tions: recent advances and novel applications to nanoestines Phys. Status Solidi (B), 243 (2006),
pp. 1063-1079.

ANDREY KUZMIN, MATHIEU LUISIER, AND OLAF SCHENK, Fast methods for computing selected elements
of the green’s function in massively parallel nanoeledodevice simulationsin Proceedings of the
19th International Conference on Parallel ProcessingpfPar'13, Berlin, Heidelberg, 2013, Springer-

22



http://www.mcs.anl.gov/petsc

[25]
[26]
[27]
(28]
[29]

[30]

(31]

[32]

(33]

[34]
[35]
[36]

[37]

(38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

Verlag, pp. 533-544.

XIAOYE S. LI AND JAMES W. DEMMEL, Superlu_dist: A scalable distributed-memory sparse tisedver
for unsymmetric linear system&CM Trans. Math. Softw., 29 (2003), pp. 110-140.

ZHONGZELI, YOUSEFSAAD, AND MASHA SOSONKINA, parms: a parallel version of the algebraic recur-
sive multilevel solvemNumerical Linear Algebra with Applications, 10 (2003), g#85-509.

S.H. Luli, Kron’s method for symmetric eigenvalue probledwsurnal of Computational and Applied Mathe-
matics, 98 (1998), pp. 35 — 48.

, Domain decomposition methods for eigenvalue probleinsirnal of Computational and Applied
Mathematics, 117 (2000), pp. 17 — 34.

F. PELLEGRINI, ScoTCHand LI1BScoTCcH5.1 User's Guide INRIA Bordeaux Sud-Ouest, IPB & LaBRI,
UMR CNRS 5800, 2010.

COSMING. PETRA, OLAF SCHENK, MILES LUBIN, AND KLAUS GARTNER, An augmented incomplete fac-
torization approach for computing the schur complementactsastic optimizationSIAM J. Scientific
Computing, 36 (2014).

BERNARD PHILIPPE AND YOUSEF SAAD, On correction equations and domain decomposition for com-
puting invariant subspacesComputer Methods in Applied Mechanics and Engineering (007),
pp. 1471 — 1483. Domain Decomposition Methods: recent asgmand new challenges in engineering.

ERIC PoLizzI, Density-matrix-based algorithm for solving eigenvaluelgems Phys. Rev. B, 79 (2009),
p. 115112.

S. RAJAMANICKAM , E.G. BoMAN, AND M.A. HEROUX, Shylu: A hybrid-hybrid solver for multicore plat-
forms in Parallel Distributed Processing Symposium (IPDPS)22&EE 26th International, May 2012,
pp. 631-643.

F.-H. ROUET J. XIA S. WANG, X. S. LI AND M. V. DE HOOP, A parallel geometric multifrontal solver
using hierarchically semiseparable structuCM Trans. Math. Software, to appear.

Y. SAAD, lterative Methods for Sparse Linear SysterBsciety for Industrial and Applied Mathematics,
second ed., 2003.

, Numerical Methods for Large Eigenvalue Probler@sciety for Industrial and Applied Mathematics,
2011.

Y OUCEF SAAD AND MARTIN H. ScHULTZ, Gmres: A generalized minimal residual algorithm for sofvin
nonsymmetric linear systerr8IAM Journal on Scientific and Statistical Computing, 7§80 pp. 856—
869.

Y OUSEFSAAD AND MARIA SOSONKINA, Distributed schur complement techniques for general sphns
ear systemsSIAM Journal on Scientific Computing, 21 (1999), pp. 133354

Y. SAAD AND B. SUCHOMEL, Arms: an algebraic recursive multilevel solver for genesglarse linear
systemsNumerical Linear Algebra with Applications, 9 (2002), 359-378.

TETSUYA SAKURAI AND HIROSHISUGIURA, A projection method for generalized eigenvalue problems us
ing numerical integration Journal of Computational and Applied Mathematics, 159&0pp. 119 —
128. 6th Japan-China Joint Seminar on Numerical MathemdticSearch for the Frontier of Computa-
tional and Applied Mathematics toward the 21st Century.

TETSUYA SAKURAI AND HIROTO TADANO, Cirr: a rayleigh-ritz type method with contour integral for
generalized eigenvalue probleptéokkaido Math. J., 36 (2007), pp. 745-757.

V. SIMONCINI AND E. GALLOPOULOS, Convergence properties of block gmres and matrix polynismia
Linear Algebra and its Applications, 247 (1996), pp. 97 —.119

BARRY F. SMITH, PETTER E. BJGRSTAD, AND WILLIAM D. GROPR, Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equaons, Cambridge University Press, New York,
NY, USA, 1996.

MARC SNIR, STEVE OTTO, STEVEN HUSS-LEDERMAN, DAVID WALKER, AND JACK DONGARRA, MPI-
The Complete Reference, Volume 1: The MPI Cidild Press, Cambridge, MA, USA, 2nd. (revised) ed.,
1998.

PING TAK PETERTANG AND ERIC PoLIZzI, Feast as a subspace iteration eigensolver accelerated by ap
proximate spectral projectiqrSIAM Journal on Matrix Analysis and Applications, 35 (20,1gp. 354—
390.

ANDREA TOSELLI AND OLOF WIDLUND, Domain decomposition methods: algorithms and thewo). 3,
Springer, 2005.

Y UANZHE X1 AND YOUSEFSAAD, Least-squares rational filters for the solution of interiigenvalue prob-
lems research report.

23



TABLE .1
Total elapsed time to compute the eigenpairs associatédeigenvalue\1g1, . . . , A120 andAso1, - - ., A520,
using the CI-M scheme as the number of quadrature nddeand size of subspacdeare varied. Valug** implies
the optimal value of in terms of the total number of linear systems solved.

Its P =64 P =128 P = 256
[A101, A120]
N, =
r = 50 8 1,607.2 841.4 685.0
r = 100 6 2,073.9 1,092.1 875.2
7* = 40 8 1,420.6 741.6 609.1
N, =2
r = 50 5 2,514.6 1,308.0 1,085.1
r = 100 4 3,214.3 1,682.8 1,370.1
7* = 33 5 2,118.8 1,095.2 923.8
N. =3
r = 50 4 3,422.8 1,773.4 1,485.5
r = 100 3 4121.1 2,149.0 1,770.6
7 =24 5 2,862.2 1,473.4 1,257.1
[A501, A520]
N. =1
r = 50 9 1,723.9 904.3 732.5
r = 100 5 1,840.5 966.9 780.0
#* =39 9 1,492.9 780.4 638.5
N, =
r = 50 5 2,514.4 1,308.1 1,085.6
r = 100 4 2,214.3 1,682.8 1,370.1
* = 33 5 2,118.0 1,095.7 923.6
N. =3
r = 50 4 3,422.9 1,774.3 1,485.1
r = 100 3 4,121.8 2,149.7 1,770.1
* = 33 5 3,177.2 1,642.8 1,358.9

24



TABLE .2
Total elapsed time to compute the eigenpairs associatédeigenvalue\1g1, . . . , A200 andAso1, - - - , A600,
using the CI-M scheme as the number of quadrature nddeand size of subspacdeare varied. Valug** implies
the optimal value of in terms of the total number of linear systems solved.

Its P =64 P =128 P = 256
[A101, A200]
N. =1
r = 200 14 7,206.1 3,845.6 2,965.0
r = 300 9 6,972.9 3,702.5 2,870.0
7* = 236 10 6,179.6 3,294.9 2,547.1
N, =
r = 200 5 6,013.9 3,185.4 2,510.1
r = 300 5 8,346.5 4,437.0 3,406.1
7 =184 5 5,640.7 2,983.1 2,354.8
N. =3
r = 200 4 7,628.2 4,027.6 3,195.1
r = 300 4 10,421.7 5,529.2 4,335.1
7% =133 5 6,673.6 3,520.2 2,810.4
[A501; A600]
N. =1
r = 200 12 6,274.1 3,345.0 2,585.1
r = 400 7 7,206.4 3,845.6 2,965.0
7* = 165 13 5,678.1 3,025.9 2,342.9
N, =2
r = 200 5 6,013.9 3,185.8 2,510.2
r = 400 4 8,813.7 4,687.8 3,650.0
* = 166 5 5,220.4 2,759.9 2,178.1
N. =3
r = 200 5 7,612.1 4,027.1 3,195.3
r = 400 3 10,432.7 5,529.2 4,335.4
P =123 5 6,326.4 3,332.5 2,667.9

25



