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SUMMARY

This paper presents an efficient method to perform Structured Matrix Approximation by Separation and
Hierarchy (SMASH), when the original dense matrix is associated with a kernel function. Given points in a
domain, a tree structure is first constructed based on an adaptive partitioning of the computational domain
to facilitate subsequent approximation procedures. In contrast to existing schemes based on either analytic
or purely algebraic approximations, SMASH takes advantage of both approaches and greatly improves the
efficiency. The algorithm follows a bottom-up traversal of the tree and is able to perform the operations
associated with each node on the same level in parallel. A strong rank-revealing factorization is applied to
the initial analytic approximation in the separation regime so that a special structure is incorporated into the
final nested bases. As a consequence, the storage is significantly reduced on one hand and a hierarchy of
the original grid is constructed on the other hand. Due to this hierarchy, nested bases at upper levels can be
computed in a similar way as the leaf level operations but on coarser grids. The main advantages of SMASH
include its simplicity of implementation, its flexibility to construct various hierarchical rank structures and
a low storage cost. Rigorous error analysis and complexity analysis are conducted to show that this scheme
is fast and stable. The efficiency and robustness of SMASH are demonstrated through various test problems
arising from integral equations, structured matrices, etc. Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: hierarchical rank structure, nested basis, error analysis, integral equation, Cauchy-like
matrix

1. INTRODUCTION

The invention of the Fast Multipole Method (FMM) [1, 2] opened a new chapter in scientific
computing methodology by unraveling a set of effective techniques revolving around the powerful
principle of divide-and-conquer. When sets of points are far apart from each other, the physical
equations that couple them can be approximately expressed by means of a low rank matrix.
Among the many variations to this elegant idea, a few schemes have been developed to gain
further efficiency by building hierarchical bases in order to expand the various low-rank couplings.
The resulting hierarchical rank structured matrices [3, 4, 5, 6], culminated in H2 matrices[7, 6],
provide efficient solution techniques for structured linear systems (Toeplitz, Hankel, etc.)[8, 9, 10],
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integral equations [3, 4, 11, 12, 13, 14, 15, 16], partial differential equations [4, 17, 6, 18], matrix
equations [4, 19, 20] and eigenvalue problems [21, 22]. Though these methods come under various
representations, they all start with a block partitioning of the coefficient matrix and approximate
certain blocks with low-rank matrices. The refinements of these techniques embodied in the H2

[4, 6, 23] and HSS [5, 24, 25] matrix representations take advantage of the relationships between
different (numerically) low-rank blocks and use nested bases [6] to minimize computational costs
and storage requirements. What is often not emphasized in the literature, is that this additional
efficiency in the solution phase is achieved at a rather high cost in the construction phase.

Both HSS andH2 matrices employ just two key ingredients: low-rank approximations and nested
bases. The low-rank approximation, or compression, methods exploited in these techniques can
be classified into three categories. The first category involves methods that rely on algebraic
compression, such as the SVD and the rank–revealing QR (RRQR) [26] which are among the
most common approaches. Utilizing these techniques to compress low-rank blocks [27, 23, 25]
will result in nested bases that have orthogonal columns and an optimal rank. However, these
methods will require the matrix entries to be explicitly available and usually lead to quadratic
construction cost [23, 25]. Other compression techniques, such as adaptive cross approximation
(ACA) [11, 28, 29], extract a low-rank factorization based only on part of the matrix entries and
this leads to a nearly linear construction cost. However, ACA may fail for general kernel functions
and complex geometries due to the heuristic nature of the method [30]. Other efficient low-rank
approximation techniques include but are not limited to Pseudo-skeleton approximations [31, 32],
Mosaic-skeleton approximations [33], Cross approximations [34] and their latest development
[35, 36]. To the best of our knowledge, no algebraic approach is able to achieve linear cost for
an H2 or HSS construction with guaranteed accuracy. The methods in the second category rely on
information on the kernel to perform the compression. They include methods based on interpolation
[4, 37], Taylor expansion [7] or multipole expansion (as in FMM [2, 1]), etc. Although these
methods lead to a linear construction cost, they usually yield nested bases whose rank is much
larger than the optimal one [38]. Moreover, since bases are stored as dense matrices, these methods
suffer from high storage costs [3]. The methods in the third category either combine algebraic
compression with the analytic kernel information to take advantage of both, or use other techniques
like equivalent densities or randomized methods to obtain a low-rank factorization. For example,
hybrid cross approximation (HCA) [30] technique improves the robustness of ACA by applying it
only on a small matrix arising from the interpolation of the kernel function. The kernel independent
fast multipole methods [39, 40] use equivalent densities to avoid explicit kernel expansions but it
is only valid for certain kernels arising in potential theory. The randomized construction algorithms
[41, 42, 43, 22] compute the hierarchical rank structured matrices by applying SVD/RRQR to the
product of the original matrix and a random matrix and are effective when a fast matrix vector
multiplication routine is available.

1.1. Contributions

The aim of this paper is to introduce an efficient and unified framework to construct an n× n H2

or HSS matrix based on structured matrix approximation by separation and hierarchy (SMASH).
In terms of the three categories discussed above, SMASH belongs to the third category in that it
starts with an initial analytic approximation in the Separation regime, then algebraic techniques are
employed to postprocess the approximation in order to build up a Hierarchy. The main features of
SMASH are as follows.

1. Fast and stable O(n) construction SMASH starts with an adaptive partitioning of the
computational domain and then constructs a tree structure to facilitate subsequent operations as
in [44, 3, 4, 45]. The construction process follows a bottom-up traversal of the tree and is able to
compute the bases associated with each node on the same level in parallel. In fact, the construction
procedure is entirely local in the sense that the compression for a parent node only depends on
the information passed from its children. By combining the analytic compression technique with
strong RRQR [26], a special structure is incorporated into the final nested bases. In contrast to the
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methods used in [42, 40], SMASH is able to set the approximation accuracy to any tolerance. In
addition, the nested bases at each non-leaf level can be computed directly in a similar way as the
leaf-level operations but on a coarser grid extracted from previous level of compression. Therefore,
SMASH is also advantageous relative to one based on the HCA method [46] since it does not need
to construct an H matrix first and then use a recompression scheme to recover the nested bases.
SMASH can be easily adapted to construct either an n× n H2 or HSS matrix depending on the
properties of the underlying applications with O(n) complexity. Equipped with a rigorous error
analysis, the guaranteed accuracy/robustness of SMASH is justified by various test examples with
complicated geometries (Section 6).

2. Low storage requirement Construction algorithms that use analytic approximations usually
lead to high storage costs. SMASH alleviates this issue in several ways. First, instead of storing
nested bases as dense matrices, only one vector and one smaller dense matrix need to be saved for
each basis. Second, each coupling matrix [3] is a submatrix of the original matrix in this scheme.
Therefore, it suffices to store row and column indices associated with the submatrix instead of the
whole submatrix explicitly. Finally, the use of strong RRQR [26] can automatically reduce the rank
of the nested bases if their columns obtained from the analytic approximation are not numerically
linearly independent.

3. Simplicity and flexibility for approximation of variable order Unlike analytic approaches
(e.g., FMM) in which farfield approximations and transfer matrices are obtained differently and
extra information is needed to compute transfer matrices (cf.[47]), SMASH only requires a farfield
approximation, which can be readily obtained for almost all kernels, for example, via interpolation
[37]. Moreover, the approximation rank in the compression on upper levels is independent of the
rank used in lower levels, which means that approximation rank can be chosen arbitrarily in the
compression at any level while still maintaining theH2 or HSS structure. This is due to the fact that
in each level of compression, SMASH produces transfer matrices directly, which is an advantage of
algebraic approaches. For interpolation-based constructions, there are restrictions on the maximal
degree of basis polynomials in each level in order to maintain the H2 structure. [23].

1.2. Outline and Notation

The paper is organized as follows. In Section 2 we review low-rank approximations ([48, 3, 6])
associated with some kernel functions. Section 3 introduces SMASH for the construction of
hierarchical rank structured matrices with nested bases. The approximation error and complexity
of SMASH are analyzed in Section 4 and Section 5, respectively. Numerical examples are provided
in Section 6 and final concluding remarks are drawn in Section 7.

Throughout the paper, the following notation is used:

• A: a dense matrix associated with a kernel function κ;

• Â: H2 or HSS approximation to A;

• i = 1 : n denotes an enumeration of index i from 1 to n;

• |·| denotes the cardinality of a finite set if the input is a set;

• ‖·‖, ‖·‖F denote the L2 norm, Frobenius norm, respectively, and ‖A‖max denotes the
elementwise sup-norm of a matrix, i.e.,

‖A‖max := max
i,j
|ai,j |, A = [ai,j ]i,j ;

• diag(. . . ) denotes a block diagonal matrix;

• Given a tree T , children(i) and lv(i) represent the children and level of node i, respectively,
where root node is at level 1. The location of a node i at level l is denoted as li when
enumerated from left to right;
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• Let X and Y be two nonempty finite sets of points and A be a matrix whose (i, j)th entry is
determined by the ith point in X and jth point in Y . If i denotes the index set corresponding
to a subset Xi of X , then A|i denotes the submatrix of A with rows determined by Xi.
Furthermore, if index set j corresponds to a subset Yj of Y , then A|i×j denotes a submatrix of
A whose rows and columns are determined by Xi and Yj, respectively.

2. DEGENERATE AND LOW-RANK APPROXIMATIONS

Hierarchical rank structured matrices are often used to approximate matrices after a block
partitioning such that most blocks display certain (numerical) low-rank characteristics. For matrices
derived from kernel functions, a low-rank approximation can be determined when the kernel
function can be locally approximated by degenerate functions [48]. In this section, we first review
this property. For pedagogical reasons, we focus on the kernel function 1/(x− y) but more general
kernel functions can be handled in a similar way as demonstrated in the numerical experiments
section (Section 6).

2.1. Degenerate expansion

Consider the kernel function κ(x, y) on C×C defined by

κ(x, y) =

{
1

x−y , if x 6= y,

dx, if x = y,
(1)

where the number dx ∈ C can be arbitrary. If x and y are far from each other (See Definition 2.1
below), then κ(x, y) can be well approximated by a degenerate expansion

κ(x, y) ≈
r−1∑
k=0

k∑
l=0

ck,lφk(x)ψl(y),

where φk and ψl are univariate functions. In fact, interpolation in the x variable yields the simplest,
yet most general, way to obtain a degenerate approximation:

κ(x, y) ≈
r∑

k=1

pk(x)κ(xk, y), (2)

where xk’s are the interpolation points and the pk’s are the associated Lagrange polynomials.
Several ways to quantify the distance between two sets of points that are away from each other

have been defined [3, 6, 47]. One of these ([47]), given below, is often referred to. For a bounded
nonempty set S of C, let δ = minc∈C sups∈S |s− c|. Then we refer to the minimizer c∗ as the center
of S and to the corresponding minimum value δ as its radius.

Definition 2.1
Let X and Y be two nonempty bounded sets in C. Let a ∈ C and δa > 0 be the center and radius
of X with |x− a| ≤ δa, ∀x ∈ X . Analogously, let b ∈ C and δb > 0 denote the center and radius of
Y . Given a number τ ∈ (0, 1), we say that X and Y are well-separated with separation ratio τ if
the following condition holds

δa + δb ≤ τ |a− b|. (3)

Fig. 1 illustrates two well-separated intervals (centered at a = 0.5, b = 2.5, respectively) with
separation ratio τ = 0.5. Given two sets X and Y , if (3) only holds for τ ≈ 1, then this implies that
X and Y are close to each other and we cannot regard X and Y as being well-separated. Hence we
assume that τ is a given small or moderate constant (for example, τ ≤ 0.7) in the rest of this paper.

Consider the kernel function 1/(x− y) again. WhenX and Y are well-separated so that (3) holds,
a degenerate expansion for the kernel function based on Taylor expansion takes the following form
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X

a b
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Figure 1. Well-separated intervals X,Y (centered at a = 0.5, b = 2.5) with separation ratio τ = 0.5.

[49]:

κ(x, y) =

r−1∑
k=0

k∑
l=0

ck,lφa,l(x− a)φb,k−l(y − b) + εr, ∀x ∈ X, y ∈ Y, (4)

where

ck,l :=

{
−k!(b− a)−(k+1)η−1

a,l η
−1
b,k−l(−1)k−l if l ≤ k,

0 if l > k,

φv,l(x) := ηv,l
xl

l!
, ηv,l =

1, if l = 0,(
l
e (2πr)

1
2r

1
δv

)l
if l = 1, . . . , r − 1,

(5)

and the approximation error εr satisfies

|εr| ≤
(1 + τ)τ r

(1− τ)
|κ(x, y)|, ∀x ∈ X, y ∈ Y. (6)

The above expansion will be used to illustrate the construction of hierarchical rank structured
matrices and analyze the approximation error in the remaining sections.

2.2. Farfield and nearfield blocks

We now consider a dense matrix A defined by A := [κ(x, y)]x∈X,y∈Y . The degenerate
approximation (4) immediately indicates that certain blocks of A admit a low-rank approximation.
In order to identify these low-rank blocks, it is necessary to exploit nearfield and farfield matrix
blocks as they are defined in [3].

Definition 2.2
Given two sets of points Xi and Yj, a submatrix A|i×j is called a farfield block if Xi and Yj are
well-separated in the sense of Definition 2.1; otherwise, A|i×j is called a nearfield block.

A major difference between farfield and nearfield blocks is that each farfield block can be
approximated by low-rank matrices, as a consequence of (4). The following theorem restates (4)
in matrix form.

Theorem 2.1
If Xi and Yj are well-separated sets in C in the sense of (3) with centers ai and aj , radii δi and δj ,
respectively, the farfield block A|i×j admits a low-rank approximation of the form

A|i×j = ÛiB̂i,j V̂
T
j + EF |i×j, (7)

where

Ûi = [φai,l(x− ai)] x∈Xi,
l=0:r−1

, V̂j =
[
φaj ,l(y − aj)

]
y∈Yj,
l=0:r−1

, B̂i,j = [ck,l]k,l=0:r−1 , (8)

with ck,l, φv,l(v = ai, aj) defined in (5), and

‖EF |i×j‖max ≤ εfar‖A|i×j‖max with εfar =
(1 + τ)τ r

(1− τ)
. (9)

Let ni = |Xi| and nj = |Yj|. If the points x of Xi are listed as columns and the various functions
φai,l(x− ai) are listed row-wise with l = 0, · · · , r − 1 and similarly for y, Yj, and φaj ,l(y − aj) then
the matrices Ûi, B̂ij and V̂j has dimensions ni × r, r × r, and nj × r, respectively. The theorem is
illustrated in Fig.2.
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Figure 2. Illustration of Theorem 2.1.

2.3. Strong rank-revealing QR

Notice that in the approximation (7), Ûi only depends on the points in Xi, V̂j only depends the
points in Yj and B̂i,j depends on both the centers of Xi and Yj as well as their radii. This represents
a standard expansion structure used in FMM [2, 1, 47]. As will be seen in the next section the
construction of H2 and HSS matrices will be significantly simplified by further postprocessing
Ûi and V̂j with a strong rank-revealing QR (SRRQR) factorization [26]. The following theorem
summarizes Algorithm 4 in [26].

Theorem 2.2
([26, Algorithm 4]) LetM be anm× nmatrix andM 6= 0. Given a real number s > 1 and a positive
integer r (r ≤ rank(A)), the strong rank-revealing QR algorithm computes a factorization of M in
the form:

MP = Q

[
R11 R12

R22

]
, (10)

where P is a permutation matrix, Q ∈ Rm×m is an orthogonal matrix, R11 is a r × r upper
triangular matrix and R12 is a r × (n− r) dense matrix that satisfies the condition:

‖R−1
11 R12‖max ≤ s.

The complexity is O(n3 logs n) if m ≈ n.

In all of our implementations, we set s = 2. SRRQR unravels a set of columns of A that nearly
span the range of A – thus the term rank-revealing. Assume C is an n× r matrix with rank r.
Applying SRRQR to CT produces the following factorization:

CTP = Q
[
R11 R12

]
,

where Q ∈ Rr×r is an orthogonal matrix. A modification of the above equation leads to

C = P

[
I

(R−1
11 R12)T

]
C̃,

where I is an identity matrix of order r and C̃ = (QR11)T . Note that the above relation implies that
C̃ ∈ Rr×r is a submatrix of C consisting of the first r rows of the row-permuted matrix PTC.
From this perspective, the whole aim of the procedure is to extract a set of r rows from C that will
nearly span its row space.

When Ûi and V̂j in (7) both have more rows than columns, applying SRRQR to ÛTi and then to
V̂ Tj yields:

Ûi = Pi

[
I
Gi

]
Ûi |̂i, V̂j = Fj

[
I
Hj

]
V̂j |̂j. (11)
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STRUCTURED MATRIX APPROXIMATION BY SEPARATION AND HIERARCHY 7

Note that, as explained above for C̃, Ûi |̂i denotes a matrix made up of selected rows of Ûi.
Substituting the above two equations into (7) leads to another form of the low-rank approximation

to A|i×j:

A|i×j ≈ Pi
[
I
Gi

]
Ûi |̂iB̂i,j(V̂j |̂j)

T

(
Fj

[
I
Hj

])T
(12)

= Pi

[
I
Gi

]
(A|̂i×ĵ − EF |̂i×ĵ)

(
Fj

[
I
Hj

])T
≈ Pi

[
I
Gi

]
A|̂i×ĵ

(
Fj

[
I
Hj

])T
, (13)

where î and ĵ represent subsets of i and j, respectively, and (13) results from (7).
A major advantage of this form of approximation over (7) is a reduction in storage. Now only

four index sets are needed to represent (Pi, Fj , î, ĵ) and two smaller dense matrices (Gi, Hj) need
to be stored rather than three dense matrices (Ûi, B̂i,j , V̂j). There are other advantages that will be
discussed in the next section.

The operations represented by (11) will be used extensively in the construction of hierarchical
matrices to be seen in the next section. These will be denoted as follows:

[Pi, Gi, î] = compr(Ûi, i) and [Fj , Hj , ĵ] = compr(V̂j , j). (14)

Each of the above operations is also called a structure-preserving rank-revealing (SPRR)
factorization [10] or an interpolative decomposition [50]. For recent developments on rank-revealing
algorithms, see [51]. Notice that the matrices Ûi and V̂j in (7) serve as the approximate column
and row bases for A|i×j, respectively. Taylor exapnsion (4) is used to illustrate the compression
of low-rank blocks due to its simplicity. More advanced compression schemes such as weighted
truncation techniques [52], the modified ACA method [29] and the fast algorithm combining Green’s
representation formula with quadrature [53], can also be exploited to compute these bases.

3. CONSTRUCTION OF HIERARCHICAL RANK STRUCTURED MATRICES WITH
NESTED BASES

This section presents SMASH, an algorithm to construct either an H2 or an HSS matrix
approximation to an n× n matrix A := [κ(x, y)]x∈X,y∈Y , where κ is a given kernel function and X
and Y are two finite sets of points. Although the discussion focuses on square matrices, SMASH
can be extended to rectangular ones [8] without any difficulty.

3.1. Adaptive partitioning

SMASH starts with a hierarchical partitioning of the computational domain Ω and then builds a tree
structure T to facilitate subsequent operations. In order to deal with the case when X and Y are
non-uniformly distributed, an adaptive partitioning scheme is necessary.

Without loss of generality, assume both X and Y are contained in a unit box Ω = [0, 1]d

in Rd (d = 1, 2, 3). The basic idea of this partitioning algorithm is to recursively subdivide the
computational domain Ω into several subdomains until the number of points included in each
resulting subdomain is less than a prescribed constant ν0 (usually much smaller than the number
of points in the domain). Specifically, at level 1, Ω is not partitioned. Starting from level l (l ≥ 2),
each box obtained at level l − 1 that contains more than ν0 points is bisected along each of the d
dimensions.

For convenience we assume that the number of points from X and Y in each partitioning is the
same. If a box is empty, it is discarded. Let L be the maximum level where the recursion stops.
Then the information about the partitioning can be represented by a tree T with L levels, where
the root node is at level 1 and corresponds to the domain Ω and each nonroot node i corresponds
to a partitioned subdomain Ωi. See Fig. 3 for a 1D example. The adaptive partitioning guarantees
that each subdomain corresponding to a leaf node contains a small number of points less than the
prescribed constant ν0.
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Figure 3. Illustration of an adaptive partitioning for the case X = Y = {x1, x2, . . . , x8}. Left: the
computational domain Ω is recursively bisected until the number of points in each sub-interval Ωi centered
at ai is less than 4 (circled dots represent the points xi). Right: the corresponding postordered binary tree T

with indices of points stored at each node.

a1

a2 a3

a4 a5

a6

a7

level 4

level 3

level 2

level 1
x1 x2 x3 x4x5 x6 x7 x8 7 [1:8]

6 [4:8]

5 [8]4[4:7]

3 [6:7]2[4:5]

1[1:3]

3.2. Review of H2 and HSS matrices

The low-rank property of a block A|i×j associated with a node pair (i, j) is related to the strong (or
standard) admissibility condition employed to define H and H2 matrices ([4],[38]):

for a fixed τ ∈ (0, 1), the node pair (i, j) in T is admissible if Xi and Yj are well-
separated in the sense of Definition 2.1.

Hierarchical matrices are often defined in terms of the above condition, which, in essence, spells
out when a given block in the matrix can be compressed. A matrix Â (associated with a tree T ) is
called an H matrix ([37]) of rank r if there exists a positive integer r such that

rank(Â|i×j) ≤ r, whenver (i, j) is admissible.

Furthermore, Â is called a uniform H matrix ([37]) if there exist a column basis set {Ui}i∈T and a
row basis set {Vi}i∈T associated with T , such that when (i, j) is admissible, Â|i×j admits a low-rank
factorization:

Â|i×j = UiBi,jV
T
j , for some matrix Bi,j .

This factorization is referred to as an AKB representation in [6], where Bi,j is called a coefficient
matrix. In [3], Bi,j is termed a coupling matrix and we will follow this terminology here.

The class of H2 matrices [37] is a subset of uniform H matrices with a more refined structure.
That is, Â is an H2 matrix if it is a uniform H matrix with nested bases in the sense that one can
readily express a basis at one level from that of its children (see (16)). What is exploited here is that
admissible blocks are low-rank and in addition their factors (or generators) can be expressed from
lower levels.

c

p

c c c
4321

A|c1×Q ≈ Uc1 T̃c1
A|c2×Q ≈ Uc2 T̃c2
A|c3×Q ≈ Uc3 T̃c3
A|c4×Q ≈ Uc4 T̃c4

Figure 4. A parent node p with children c1, · · · , c4 and the corresponding partition of the matrix block
A|p×Q, where Q is the collection of indices associated with all nodes q such that (p, q) is admissible. In the
context of HSS matrices there are at most 2 children since the trees are binary. ForH2 matrices the trees are

more general.

Assume we have a situation illustrated in Fig. 4 where the parent node p has children c1, . . . , c4.
According to the interpolation in (2), the column basis Ui associated with the set i (for any nonroot
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STRUCTURED MATRIX APPROXIMATION BY SEPARATION AND HIERARCHY 9

node i) can be chosen as
Ui =

[
p

(i)
k (x)

]
x∈Xi
k=1:r

,

where p
(i)
k (k = 1, . . . , r) are Lagrange basis polynomials corresponding to interpolation points

xi1 , . . . , xir . If i is a child of node p, we can write (cf.[37])

p
(p)
k (x) =

∑
l=1:r

p
(p)
k (xil)p

(i)
l (x). (15)

The matrix version of (15) then leads to the so-called nested basis:

Up =

Uc1Rc1...
Uc4Rc4

 , with Ri =

p
(p)
1 (xi1) . . . p

(p)
r (xi1)

...
...

...

p
(p)
1 (xir ) . . . p

(p)
r (xir )

 .
The nested basis can also be obtained through algebraic compressions based on a bottom-up

procedure. Let A|p×Q denote the entire (numerically) low rank block row associated with node
p, i.e., Q is the union of all indices q such that (p, q) is admissible. As illustrated in Fig. 4,
assuming that the column basis Uci has been obtained from a rank-r factorization of the submatrix
A|ci×Q ≈ Uci T̃ci , we then derive

A|p×Q ≈

Uc1 Uc2
Uc3

Uc4



T̃c1
T̃c2
T̃c3
T̃c4

 .
Applying a rank-r factorization to the transpose of

[
T̃Tc1 T̃Tc2 T̃Tc3 T̃Tc4

]
leads to

T̃c1
T̃c2
T̃c3
T̃c4

 ≈
Rc1Rc2
Rc3
Rc4

Tp −→ A|p×Q ≈ UpTp with Up =

Uc1Rc1Uc2Rc2
Uc3Rc3
Uc4Rc4

 .
Thus, we can get the basis Up for the parent node from the children’s Uci’s and the matrices

Rci from both analytic and algebraic compression schemes. The Ris are called transfer matrices.
Clearly, a similar process can be applied to obtain a row-basis Vp and so, more generally, we can
write

Up =

Uc1Rc1...
UckRck

 , Vp =

Vc1Wc1
...

VckWck

 . (16)

Hence only the matrices Ui, Vi for all leaf nodes i need to be stored. Matrices Up, Vp for a non-leaf
node p can be obtained via transfer matrices which require much less storage. This is at the origin
of the improvement from an O(n log n) cost for the early method in this class developed by Barnes
and Hut [44] (H structure) into an O(n) cost method obtained later by the FMM [2] (H2 structure)
for computing matrix-vector multiplications for some kernel matrices ([47]).

Note that as they are described in the literature H and H2 matrices are associated with more
general trees than those traditionally used for HSS matrices [54, 5] which are binary trees, according
to the partitioning algorithm described in Section 3.1. In fact HSS matrices can be viewed as a
special class of H2 matrices in which the strong admissibility condition is replaced by the weak
admissibility condition[38]:

the node pair (i, j) in T is admissible if i 6= j.

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



10 D. CAI, E. CHOW, Y. SAAD, Y. XI

The above weak admissibility condition implies that, if Â is an HSS matrix, and i, j are two children
of the root node, then the matrix block Â|i×j should admit a low-rank factorization.

In the context of integral equations, this requirement means that the HSS structure will face
difficulties in situations when couplings between nearfield blocks require a relatively high rank
representation. Approximation by HSS matrices will work well for integral equations defined on a
curve where kernel functions are discretized. In other cases the numerical rank of A|i×j may not
necessarily be small even when a non-oscillatory kernel function is discretized on a surface or in a
volume [3, 9].

The construction of H2 and HSS matrices involves computing the basis matrices U, V at the leaf
level, along with the transfer matrices R,W , and the coupling matrices B associated with a tree T .
In particular, each leaf node i is assigned four matrices {Ui, Vi, Ri,Wi} and each nonleaf node i at
level l ≥ 3 is assigned two matrices {Ri,Wi}.

There are two types of Bi,j matrices, those corresponding to the nearfield blocks at the leaf
level, and those corresponding to the coupling matrix where the product UiBi,jV Tj approximates
block A|i×j for certain admissible (i, j). In general, the computation of Bi,j is more complicated
because one has to carefully specify the set of admissible node pairs (i, j) to be used for the efficient
approximation of A. If the distribution of points is uniform, the corresponding node pairs (i, j) are
related to what is called interaction list in FMM [2, 47]. In more general settings where points
can be arbitrarily distributed, they are called admissible leaves [3]. The set of admissible leaves
corresponding to the minimal admissible partitioning [6] can be defined as follows:

L ={(i, j) : i, j ∈ T are nodes at the same level such that (i, j) is admissible
but (pi, pj) is not admissible , where pi, pj are parents of i, j, respectively}
∪ {(i, j) : i ∈ T is a leaf node and j ∈ T with lv(j) > lv(i) such that
(i, j) is admissible but (i, pj) is not admissible with pj the parent of j}
∪ {(i, j) : j ∈ T is a leaf node and i ∈ T with lv(i) > lv(j) such that
(i, j) is admissible but (pi, j) is not admissible with pi the parent of i}.

(17)

The node pairs (i, j) corresponding to blocks Bi,j that can not be compressed or partitioned, can be
identified through inadmissible leaves as defined below (cf.[3]):

L− := {(i, j) : i, j ∈ T are leaf nodes and (i, j) is not admissible} . (18)

In particular, for HSS matrices, it can be seen that L and L− have the following simple expression:

L = {(i, j) : i, j ∈ T and j = sibling of i}, L− = {(i, i) : i ∈ T is a leaf node}. (19)

This special feature will be used later (Section 3.3.1) to simplify the notation associated with HSS
matrices. The U, V,R,W,B matrices are called H2, or HSS, generators in the remaining sections.

3.3. Levelwise construction

Although the HSS structure may appear to be simpler than theH2 structure, based on their algebraic
definitions the HSS construction procedure is actually more complex. This is because HSS matrices
require the compression of both nearfield and farfield blocks while H2 matrices only require the
compression on farfield blocks. For example, if two sets Xi and Yj are almost adjacent to each other
(τ ≈ 1 in (3)), then the analytic approximation will not produce a low rank, i.e., to get an accurate
approximation, r has to be large in (6). In this case, the H2 matrix will form this block explicitly as
a dense matrix while the HSS matrix still requires the block to be factorized. In what follows, we
will first discuss SMASH for the HSS construction in detail and then present the H2 construction
with an emphasis on their differences.

3.3.1. HSS construction Due to the simple structure of L,L− in (19), the notation denoting the
coupling matrices and nearfield blocks can be simplified in the HSS representation. Specifically, for
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(i, j) ∈ L, Bi,j can be represented as Bi with the second index j dropped because j = sibling of i is
uniquely determined in a binary tree. An additional symbol Di is introduced to represent diagonal
blocks Bi,i because (i, j) ∈ L− implies j = i.

The basic idea of SMASH for the HSS construction is to first apply a truncated SVD to obtain
a basis for nearfield blocks, use interpolation or expansion to obtain a basis for farfield blocks and
then apply SRRQR to the combination of these two bases to obtain the U, V,R and W matrices.
The D and B matrices are submatrices of the original kernel matrix and their indices are readily
available after the computation of U, V,R,W matrices. In order to distinguish between column and
row indices associated with a node i, we use superscript row to mark its row indices and col to mark
its column indices. For example, irow and icol denote the indices of points from X and Y contained
in Ωi, respectively.

Assuming the HSS tree T has L levels, the HSS construction algorithm traverses T through level
l = L,L− 1, . . . , 2. Before the construction, two intermediate sets īrow and īcol are initialized as
follows for each node i:

īrow =

{
irow if i is a leaf,
∅ otherwise,

īcol =

{
icol if i is a leaf,
∅ otherwise,

(20)

where the index sets irow and icol have been saved for each leaf node after the partitioning of Ω.
Let Ni be the set of blocks that are nearfield to node i. This set is used for HSS matrices only

and is defined in the appendix. For each node i at level l, the construction algorithm first applies a
truncated SVD to compute an approximate column basis for the nearfield block rows in terms of
Xīrow :

A−i :=
[
A|̄irow×j̄col

]
j∈Ni

= SiΣ
−
i

[
S̃j
]
j∈Ni

+
[
E−Σ |̄irow×j̄col

]
j∈Ni

, (21)

where the columns of Si and [S̃j ]j∈Ni are the left/right singular vectors of A−i and Σ−i is a diagonal
matrix composed of corresponding singular values of A−i such that the following estimate holds

‖E−Σ |̄irow×j̄col‖F ≤
√
|̄irow||̄jcol|εSVD‖A−i ‖2, ∀ j ∈ Ni. (22)

Here, εSVD is the relative tolerance used in the truncated SVD. This estimate will be used to analyze
the overall construction error in Section 4. The matrix Si is then taken as an approximate column
basis for the nearfield block rows A−i .

For farfield blocks with respect to Xīrow , a column basis Ûi can be easily obtained through
interpolation (2) or Taylor expansion (8) that only rely on Xīrow and Ωi. Next, we apply SRRQR to
the combined basis [Ûi, Si] as shown below

[Pi, Gi, î
row] = compr([Ûi, Si], ī

row). (23)

From these outputs, we set

Ui : = Pi

[
I
Gi

]
if i is a leaf node,[

Rc1
Rc2

]
: = Pi

[
I
Gi

]
if i is a parent with children c1, c2.

(24)

Similarly, in order to compute V,W generators, a truncated SVD is first applied to the nearfield
block columns (transposed) in terms of Yīcol :

A
|
i : =

[(
Aj̄row×īcol

)T ]
j∈Ni

= TiΣ
|
i

[
T̃j
]
j∈Ni

+
[
(E
|
Σ |̄jrow×īcol)T

]
j∈Ni

, (25)

where the truncation error satisfies

‖E|Σ |̄jrow×īcol‖F ≤
√
|̄icol||̄jrow|εSVD‖A|i‖2, ∀ j ∈ Ni. (26)
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In the next step we compute a row basis V̂i for the farfield blocks with respect to Yīcol based on (2)
or (8) and apply SRRQR to [V̂i, Ti]:

[Fi, Hi, î
col] = compr([V̂i, Ti], ī

col).

Then we set

Vi : = Fi

[
I
Hi

]
if i is a leaf node,[

Wc1

Wc2

]
: = Fi

[
I
Hi

]
if i is a parent with children c1, c2.

(27)

Once the compressions for children nodes (at level l) are complete, we update the intermediate index
set associated with the parent node (at level l − 1) as shown below :

p̄row = ĉ1
row ∪ ĉ2

row, p̄col = ĉ1
col ∪ ĉ2

col, (28)

where c1, c2 are the children of p.
After the bottom-up traversal of T and hence the computation of U, V,R,W matrices, the B and

D matrices can be extracted as follows:

Bi := A|̂irow×ĵcol , j = sibling of i, and Di := A|irow×icol , i = leaf node. (29)

3.3.2. H2 construction As mentioned at the beginning of Section 3.3, the H2 construction is
simpler because nearfield blocks will not be factorized, and the only complication is that an H2

matrix may be associated with a more general tree structure where a parent can have more than two
children.

SMASH for the H2 construction also follows a bottom-up levelwise traversal of T through
level l = L,L− 1, . . . , 2. For each node i at level l, a column/row basis Ûi/V̂i corresponding to a
farfield block row/column with index īrow /̄icol can be obtained via either interpolation (2) or Taylor
expansion (8). The bases Ûi and V̂i are then passed into SRRQR

[Pi, Gi, î
row] = compr(Ûi, ī

row) and [Fi, Hi, î
col] = compr(V̂i, ī

col). (30)

The H2 generators U,R, V,W are then set as

Ui : = Pi

[
I
Gi

]
if i is a leaf node,Rc1...

Rck

 : = Pi

[
I
Gi

]
if i is a parent with children c1, . . . , ck,

Vi : = Fi

[
I
Hi

]
if i is a leaf node,Wc1

...
Wck

 : = Fi

[
I
Hi

]
if i is a parent with children c1, . . . , ck.

(31)

Again, once the compressions for children nodes (at level l) are complete, the intermediate index
set associated with the parent node (at level l − 1) can be updated as in (28). Namely,

p̄row = ĉ1
row ∪ · · · ∪ ĉk

row, p̄col = ĉ1
col ∪ · · · ∪ ĉk

col, with children(p) = {c1, . . . , ck}.
(32)

Finally, analogous to (29), the coupling matrices associated with admissible leaves are extracted
based on index sets îrow and ĵcol as

Bi,j := A|̂irow×ĵcol , ∀(i, j) ∈ L, (33)
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and the nearfield blocks associated with inadmissible leaves are formed by

Bi,j := A|irow×jcol , ∀(i, j) ∈ L−. (34)

Compared with standardH2 constructions based on either expansion or interpolation, SMASH is
more efficient and easier to implement. First, in order to complete theH2 construction procedure, it
suffices to provide only the column/row basis for each farfield block, which can be easily obtained
based on interpolation (2), for example, and the coupling matrices Bi,j can be simply extracted
from the original matrix without resorting to any other formulas. Second, no information is required
about the translation to compute transfer matrices because the computation of R/W is essentially
the same as that of U/V at leaf level. For all the children i of a node p, Ri/Wi are calculated jointly
based on a subset of points located inside Ωp (i.e., Xp̄row/Yp̄col). Therefore, SMASH essentially
builds a hierarchy of grids and computes the bases at each level of the tree by repeating the same
operations (30) on each coarse grid (this can be more clearly seen in (41) in view of a perfect tree).
In addition, the use of SRRQR guarantees that each entry of the U, V,R,W matrices is bounded
by a user-specified constant, which ensures the numerical stability of the construction procedure.
Note that the special structures in the nested bases (31) result in not only a reduced storage but
also in faster matrix operations such as matrix-vector multiplications, linear system solutions, etc.
Finally, since the computation of the basis matrices only relies on the information local to each node,
as can be seen from (23) and (30), this construction algorithm is inherently suitable for a parallel
computing environment.

3.4. Matrix-vector multiplication

Among various hierarchical rank structured matrix operations, the matrix-vector multiplication is
the most widely used, as indicated by the popularity of tree code [44] (for H matrices) and fast
multipole method [2, 47] (for H2 matrices).

The matrix-vector multiplication for an H2 matrix A follows first a bottom-up and then a top-
down traversal of T [3, 6], which is a succinct algebraic generalization of the fast multipole method
(cf.[47]). Suppose T has L levels, the node-wise version of this algorithm to evaluate z = Aq can
be summarized as follows:

1. from level l = L to level l = 2, for each node i at level l, compute q̂i := V Ti q|icol if l = L;
otherwise, compute q̂i :=

∑
c∈children(i)W

T
c q̂c;

2. for each nonroot node i ∈ T , compute ẑi =
∑

j:(i,j)∈LBi,j q̂j ;

3. from level l = 2 to level l = L, for each node i at level l, if l < L, for each child c of i, compute
ẑc = ẑc +Rcẑi; otherwise, compute z|irow = Uiẑi +

∑
j:(i,j)∈L− Bi,jq|jcol .

When X and Y are uniformly distributed in [0, 1]d, the resulting tree T is a perfect 2d-tree (each
parent has 2d children and all leaf nodes are at the same level). If, in addition we assume the ordering
of points to be consistent with the postordering of tree T , i.e., for two siblings i, j ∈ T , if i < j then
the index of any point in box i must be smaller than point in box j, then an H2 matrix A has a
telescoping representation:

A =B(L)+

U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2)

)
. . .

)(
V (L−1)

)T
+B(L−1)

)(
V (L)

)T
,

(35)

where U (l), V (l) are block diagonal matrices:

U (l) =


diag(Ui)lv(i)=l if l = L,

diag



Rc1
...

Rck




lv(i)=l

if l < L,
V (l) =


diag(Vi)lv(i)=l if l = L,

diag



Wc1

...

Wck




lv(i)=l

if l < L,
(36)

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



14 D. CAI, E. CHOW, Y. SAAD, Y. XI

and B(l) has a block structure. B(L) has #{i ∈ T : lv(i) = L} ×#{i ∈ T : lv(i) = L} blocks
where each nonzero block corresponds to a nearfield block, while for l < L, there are #{i ∈ T :
lv(i) = l + 1} ×#{i ∈ T : lv(i) = l + 1} blocks in B(l) and each nonzero block corresponds to a
coupling matrix. That is, block (li, lj) is equal toBi,j if lv(i) = lv(j) = l such that (i, j) ∈ L− when
l = L or (i, j) ∈ L when l ≤ L. Here li denotes the location of node i at level l enumerated from
left to right. If A is an HSS matrix associated with a perfect binary tree T , the structures of U (l) and
V (l) are identical to those in (36) with k = 2 but B(l) has a much simpler block diagonal structure:

B(l) =


diag(Di)i is a leaf node if l = L,

diag

([
0 Bc1
Bc2 0

])
lv(i)=l

if l < L,
(37)

where c1 and c2 are the children of node i.
Based on the explicit representation (35) of an H2 matrix associated with a perfect 2d-tree, we

can write down a levelwise version of the matrix-vector multiplication:

1. at level l(2 ≤ l ≤ L), compute

q̂(l) =
(
V (l)

)T
. . .
(
V (L)

)T
q; (38)

2. at level l(2 ≤ l ≤ L), compute
ẑ(l) = B(l−1)q̂(l); (39)

3.
z = B(L)q + U (L)

(
. . .
(
U (3)(U (2)ẑ(2) + ẑ(3)) + ẑ(4)

)
+ . . . ẑ(L)

)
. (40)

Notice that when X,Y are not uniformly distributed, T is not necessarily a perfect tree. Under
this condition, the nodes i, j corresponding to a coupling matrix Bi,j may not be at the same level
of T and the telescoping expansion (35) does not exist.

As for linear system solutions, H2 and HSS matrices take completely different approaches to
directly solve the resulting system. Linear complexity H2 matrix solvers ([3, 6]) heavily depend
on recursion to reduce the number of floating point operations while HSS matrices could benefit
from highly parallelizable ULV-type algorithms (cf.[54], [5]) due to the special structure of HSS.
However, as mentioned before, since the requirement of an HSS structure is too strong, the
application of HSS matrices is limited as compared to H2 matrices.

4. ERROR ANALYSIS

In this section, we analyze the approximation error of SMASH. Since the HSS construction is more
complicated than H2 construction due to the factorization of nearfield blocks, the corresponding
error analysis is more involved. Here we first present error analysis for the HSS construction
associated with a perfect binary tree and then an error bound for the H2 construction associated
with a perfect 2d-tree can be easily derived.

For a perfect 2d-tree, it is natural and easy to interpret the levelwise construction in Section 3.3 in
the following recursive manner:

A(l) = U (l)A(l−1)
(
V (l)

)T
+B(l) + E(l), ∀l ≥ 3, (41)

where A(L) = A and A(l) (l < L) is a submatrix of A with the following block structure:

(li, lj)−block of A(l) =

{
A|̄i×j̄ if lv(i) = lv(j) = l and (i, j) is admissible,
0 if lv(i) = lv(j) = l and (i, j) is not admissible,

(42)
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U (l), V (l), B(l) follow the definition in Section 3.4 and E(l) denotes the factorization error at level
l. The superscripts row and col used in (20) are dropped in (42) in order to simplify the notation
used in the proof. Here, we assume that the items involving the index i refer to rows and the items
involving the index j refer to columns. In addition, we introduce the notation

I(l) := ∪lv(i)=l ī and J(l) := ∪lv(j)=l j̄.

Then the size of A(l) is equal to |I(l)| × |J(l)|.
We also assume there exists a constant r(l) associated with each level such that

|̂i| ≤ r(l), |̂j| ≤ r(l), i, j at level l, and r(l+1) ≤ r(l). (43)

This constant r(l) is actually an upper bound for the numerical ranks in the admissible blocks at
level l.

Expanding the recursion (41) leads to

A =U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2) + E(2)

)
. . .

)(
V (L−1)

)T
+B(L−1) + E(L−1)

)(
V (L)

)T
+B(L) + E(L).

(44)

Now we focus on the analysis of HSS approximation error. To estimate the norm of each diagonal
block in U (l) and V (l), the following lemma is needed, which is a simple consequence of SRRQR
in Theorem 2.2 and thus holds for both H2 and HSS construction.

Lemma 4.1
Let s > 1 be the prescribed elementwise bound in SRRQR in Theorem 2.2, then the norms of the
H2 generators in (31) or of the HSS generators in (24) and (27) satisfy the following estimate

‖Pi
[
I
Gi

]
‖F ≤ s

√
|̄i|r(l) and ‖Fj

[
I
Hj

]
‖F ≤ s

√
|̄j|r(l), (45)

for any nodes i, j at level l.

Proof

Under the assumption (43), we know that the column size of
[
I
Gi

]
is |̂i| ≤ r(l). Since the row size

of
[
I
Gi

]
is equal to |̄i| and the entries of Gi are bounded by s, we get

‖Pi
[
I
Gi

]
‖F ≤ s

√
|̂i|+ (|̄i| − |̂i|)|̂i| ≤ s

√
|̄i|r(l).

The same argument applies to ‖Fj
[
I
Hj

]
‖F .

In the following two lemmas, Lemma 4.2 and Lemma 4.3, we investigate the local error generated
in farfield approximation and nearfield approximation, respectively. Lemma 4.2 applies to both H2

and HSS construction, while Lemma 4.3 is only necessary for HSS construction because there
is no nearfield approximation in H2 construction. Referring to Section 3.1, in the following we
will denote by Sep the set of all well-separated pairs of subdomains corresponding to a given
partitioning:

Sep := {(i, j) : Ωi,Ωj are well-separated } . (46)

Lemma 4.2
Suppose i and j are two nodes at level l and (i, j) ∈ Sep. Denote the farfield approximation tolerance
by εfar as in (9). Then the H2 generators computed in (31) or the HSS generators computed in (24)
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and (27) produce the following factorization

A|̄i×j̄ = Pi

[
I
Gi

]
A|̂i×ĵ

(
Fj

[
I
Hj

])T
+ E(i,j),

where the approximation error E(i,j) satisfies

‖E(i,j)‖F ≤ 2s2
√
|̄i||̄j|r(l)εfar‖A|̄i×j̄‖F .

Proof
According to (7) and (11), we know that for each (i, j) ∈ Sep

A|̄i×j̄ = ÛīB̂i,j V̂
T
j̄ + EF |̄i×j̄ = Pi

[
I
Gi

]
ÛîB̂i,j V̂

T
ĵ

(
Fj

[
I
Hj

])T
+ EF |̄i×j̄

= Pi

[
I
Gi

]
A|̂i×ĵ

(
Fj

[
I
Hj

])T
+ E(i,j),

where

E(i,j) := −Pi
[
I
Gi

]
EF |̂i×ĵ

(
Fj

[
I
Hj

])T
+ EF |̄i×j̄. (47)

Based on (9) and Lemma 4.1, we deduce that

‖E(i,j)‖F ≤ ‖Pi
[
I
Gi

]
‖F ‖EF |̂i×ĵ‖F ‖Fj

[
I
Hj

]
‖F + ‖EF |̄i×j̄‖F

≤ 2s

√
|̄i|r(l)εfar‖A|̄i×j̄‖F s

√
|̄j|r(l) = 2s2

√
|̄i||̄j|r(l)εfar‖A|̄i×j̄‖F .

Lemma 4.3
Suppose i and j are two nodes at level l of the HSS tree and (i, j) /∈ Sep. Then in the HSS
construction, the application of the truncated SVD with relative tolerance εSVD in (21) and (25)
produces the following factorization

A|̄i×j̄ = SiΣ
−
i S̃j + E(i,j),

where

‖E(i,j)‖F ≤ s2 |̄j|
√
|̄i|r(l)r(l)εSVD‖A|j‖F + s|̄i|

√
|̄j|r(l)εSVD‖A−i ‖F .

Proof
According to (23), we know that

Si = Pi

[
I
Gi

]
Si |̂i.

Therefore,

SiΣ
−
i S̃j = Pi

[
I
Gi

]
Si |̂iΣ

−
i S̃j

= Pi

[
I
Gi

](
A|̂i×j̄ − E

−
Σ |̂i×j̄

)
.

Based on (25), we further have:

A|̂i×j̄ = T̃Ti |̂i(Σ
|
j)
TTTj + E

|
Σ |̂i×j̄.
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Since

TTj = (Tj |̂j)
T

(
Fj

[
I
Hj

])T
,

we obtain

A|̂i×j̄ =
(
A|̂i×ĵ − E

|
Σ |̂i×ĵ

)(
Fj

[
I
Hj

])T
+ E

|
Σ |̂i×j̄.

Therefore, we get

A|̄i×j̄ = Pi

[
I
Gi

]
A|̂i×ĵ

(
Fj

[
I
Hj

])T
+ E(i,j),

where

E(i,j) :=− Pi
[
I
Gi

]
E
|
Σ |̂i×ĵ

(
Fj

[
I
Hj

])T
+ Pi

[
I
Gi

](
E
|
Σ |̂i×j̄ − E

−
Σ |̂i×j̄

)
+ E−Σ |̄i×j̄. (48)

Introduce the notation
ǐ := ī \ î and ǰ := j̄ \ ĵ,

we then have

E
|
Σ |̂i×j̄ = E

|
Σ |̂i×ĵ

(
Fj

[
I
0

])
+ E

|
Σ |̂i×ǰ

(
Fj

[
0
I

])
and E−Σ |̄i×j̄ = Pi

[
I
0

]
E−Σ |̂i×j̄ + Pi

[
0
I

]
E−Σ |̌i×j̄.

Substituting the above identities into (48), we obtain

E(i,j) =− Pi
[
I
Gi

]
E
|
Σ |̂i×ĵ

(
Fj

[
0
Hj

])T
+ Pi

[
I
Gi

]
E
|
Σ |̂i×ǰ

(
Fj

[
0
I

])T
− Pi

[
0
Gi

]
E−Σ |̂i×j̄ + Pi

[
0
I

]
E−Σ |̌i×j̄.

(49)

Based on (22), (26) and Lemma 4.1, we have the estimate

‖E(i,j)‖F ≤ ‖
[
I
Gi

]
‖F
(
‖Hj‖F ‖E|Σ |̂i×ĵ‖F + ‖E|Σ |̂i×ǰ‖F

)
+ ‖Gi‖F ‖E−Σ |̂i×j̄‖F + ‖E−Σ |̌i×j̄‖F

≤ ‖
[
I
Gi

]
‖F
√
‖Hj‖2F + 1‖E|Σ |̂i×j̄‖F +

√
‖Gi‖2F + 1‖E−Σ |̄i×j̄‖F

≤ s2 |̄j|
√
|̄i|r(l)r(l)εSVD‖A|j‖F + s|̄i|

√
|̄j|r(l)εSVD‖A−i ‖F .

Based on Lemmas 4.2–4.3, we can estimate the total approximation error at level l in HSS
construction.

Lemma 4.4
Assume εSVD and εfar are the approximation tolerances used in the approximation of nearfield and
farfield blocks in the HSS construction. Then the approximation error E(l) in (41) satisfies the
following bound

‖E(l)‖F ≤ s22l/2+2
(
r(l+1)

)3/2 (
r(l)
)3/2

εSVD‖A(l)‖F + 4s2r(l)r(l+1)εfar‖A(l)‖F ,

where we have set r(L+1) := r(L).
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Proof
Based on Lemma 4.3, we know that the approximation error from the nearfield compression at level
l can be estimated as follows:

∑
(i,j)/∈Sep

‖E(i,j)‖2F ≤ 2
∑

(i,j)/∈Sep

(
s4 |̄j|2 |̄i|

(
r(l)
)3

ε2SVD‖A
|
j‖

2
F + s2 |̄i|2 |̄j|r(l)ε2SVD‖A−i ‖

2
F

)

≤ 2
∑

i,j at level l

(
s4 |̄j|2 |̄i|

(
r(l)
)3

ε2SVD‖A
|
j‖

2
F + s2 |̄i|2 |̄j|r(l)ε2SVD‖A−i ‖

2
F

)
.

Since |̄i| ≤ 2r(l+1), |̄j| ≤ 2r(l+1) for nodes i, j at level l and there are 2l−1 nodes at this level, we
further have

∑
(i,j)/∈Sep

‖E(i,j)‖2F ≤
∑

i,j at level l

(
2s4
(

2r(l+1)
)3 (

r(l)
)3

ε2SVD‖A
|
j‖

2
F + 2s2

(
2r(l+1)

)3

r(l)ε2SVD‖A−i ‖
2
F

)

=
∑
lv(i)=l

 ∑
lv(j)=l

2s4
(

2r(l+1)
)3 (

r(l)
)3

ε2SVD‖A
|
j‖

2
F


+
∑

lv(j)=l

 ∑
lv(i)=l

2s2
(

2r(l+1)
)3

r(l)ε2SVD‖A−i ‖
2
F


≤
∑
lv(i)=l

2s4
(

2r(l+1)
)3 (

r(l)
)3

ε2SVD‖A(l)‖2F

+
∑

lv(j)=l

2s2
(

2r(l+1)
)3

r(l)ε2SVD‖A(l)‖2F

≤ 2l
(
s4
(

2r(l+1)
)3 (

r(l)
)3

+ s2
(

2r(l+1)
)3

r(l)

)
ε2SVD‖A(l)‖2F

≤ s42l+4
(
r(l+1)

)3 (
r(l)
)3

ε2SVD‖A(l)‖2F .

Based on Lemma 4.2, we know that the approximation error for the farfield compression at level l
satisfies: ∑

(i,j)∈Sep

‖E(i,j)‖2F ≤
∑

(i,j)∈Sep

(2s2
√
|̄i||̄j|r(l))2ε2far‖Aī×j̄‖2F .

Following the construction procedure (28) and the assumption (43), we have

|̄i| ≤ 2r(l+1), |̄j| ≤ 2r(l+1). (50)

Thus, we obtain the following estimation:

∑
(i,j)∈Sep

‖E(i,j)‖2F ≤
∑

(i,j)∈Sep

(4s2r(l+1)r(l))2ε2far‖Aī×j̄‖2F

= 16s4(r(l+1)r(l))2ε2far

∑
(i,j)∈Sep

‖Aī×j̄‖2F

≤ 16s4(r(l+1)r(l))2ε2far‖A(l)‖2F .
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To sum up both farfield and nearfield approximation errors, we obtain the estimate for the overall
approximation error introduced at level l:

‖E(l)‖F =

 ∑
(i,j)/∈Sep

‖E(i,j)‖2F +
∑

(i,j)∈Sep

‖E(i,j)‖2F

 1
2

≤ s22l/2+2
(
r(l+1)

)3/2 (
r(l)
)3/2

εSVD‖A(l)‖F + 4s2r(l)r(l+1)εfar‖A(l)‖F .

The overall HSS approximation error in the Frobenius norm can then be derived in the following
theorem.

Theorem 4.1
Suppose the HSS tree has L levels. With the assumptions in Lemma 4.4, SMASH produces the
following factorization

A =U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2)

)
. . .

)(
V (L−1)

)T
+B(L−1)

)(
V (L)

)T
+B(L) + E,

(51)

where the approximation error E satisfies the estimate

‖E‖F ≤ C1εSVD‖A‖F + C2εfar‖A‖F ,

with

C1 =

L−1∑
l=2

2L+l/2+2s2L−2l+2
(
r(l+1) . . . r(L)

)2 (
r(l+1)

)3/2 (
r(l)
)5/2

C2 =

L∑
l=2

2L+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2

r(l+1).

Proof
According to (44), we know that the overall HSS approximation error E has the expression

E =
(
U (L) . . . U (3)

)
E(2)

(
V (L)) . . . V (3)

)T
+ · · ·+ U (L)E(L−1)

(
V (L)

)T
+ E(L). (52)

Note that the column size of
(
U (L) . . . U (l+1)

)
is bounded by r(l)2l. Thus we have

‖U (L) . . . U (l+1)‖F ≤
√
r(l)2l‖U (L) . . . U (l+1)‖2 ≤ 2L/2sL−l

√
r(l)r(l+1) . . . r(L), (53)

and same upper bound holds for ‖V (L) . . . V (l+1)‖F . It follows from (52) that

‖E‖F ≤
L−1∑
l=2

‖U (L) . . . U (l+1)‖F ‖E(l)‖F ‖V (L) . . . V (l+1)‖F + ‖E(L)‖F

≤
L−1∑
l=2

2Ls2L−2lr(l)
(
r(l+1) . . . r(L)

)2

s22l/2+2
(
r(l+1)

)3/2 (
r(l)
)3/2

εSVD‖A(l)‖F

+

L−1∑
l=2

2Ls2L−2lr(l)
(
r(l+1) . . . r(L)

)2

4s2r(l+1)r(l)εfar‖A(l)‖F + ‖E(L)‖F

≤
L−1∑
l=2

2L+l/2+2s2L−2l+2
(
r(l+1) . . . r(L)

)2 (
r(l+1)

)3/2 (
r(l)
)5/2

εSVD‖A‖F

+

L∑
l=2

2L+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2

r(l+1)εfar‖A‖F .

(54)
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It is easy to see that the bound in (54) is quite pessimistic because we bound ‖A(l)‖F from above
by ‖A‖F , where A(l) (defined in (42)) is a submatrix of A of size |I(l)| × |J(l)|.

Corollary 4.1
Besides the assumptions in Theorem 4.1, if there also exists a constant r ≥ 2 such that r(l) ≤ r for
each l > 1, then the approximation error E in SMASH satisfies the estimate:

‖E‖F ≤ (2r2s2)L(16εSVD + 8εfar)‖A‖F .

Next we estimate the error inH2 approximation. Note that, by setting εSVD = 0, the error estimate
in Theorem 4.1 also holds for the H2 construction with a possibly different constant C2 depending
on dimension d. In fact, analogous to Lemma 4.4, we first have the following estimate for the H2

construction:
‖E(l)‖F ≤ 4s2r(l)r(l+1)εfar‖A(l)‖F ,

where E(l) denotes the approximation error introduced at level l, as defined in (41). Assume the
H2 matrix is associated with a perfect 2d-tree T (d ∈ {1, 2, 3}), i.e., each nonleaf node of T has 2d

children and all leaves are at the same level. For a node i at level l, since |̄i| ≤ 2dr(l+1) ≤ 2dr(l), it
follows from (36), (31) and Lemma 4.1 that

‖U (l)‖2 ≤ s2d/2r(l).

Notice that the column size of
(
U (L) . . . U (l+1)

)
is bounded by r(l)2dl. Then the counterpart of (53)

can be obtained for the H2 construction as:

‖U (L) . . . U (l+1)‖F ≤
√
r(l)2dl‖U (L) . . . U (l+1)‖2 ≤ 2dL/2sL−l

√
r(l)r(l+1) . . . r(L),

and the same upper bound holds for ‖V (L) . . . V (l+1)‖F . The total approximation error can now be
obtained by means of (52):

‖E‖F ≤
L−1∑
l=2

‖U (L) . . . U (l+1)‖F ‖E(l)‖F ‖V (L) . . . V (l+1)‖F + ‖E(L)‖F

≤
L−1∑
l=2

2dLs2L−2lr(l)
(
r(l+1) . . . r(L)

)2

4s2r(l+1)r(l)εfar‖A(l)‖F + 4s2(r(L))2εfar‖A‖F

≤
L−1∑
l=2

2dL+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2

r(l+1)εfar‖A‖F + 4s2(r(L))2εfar‖A‖F

≤
L∑
l=2

2dL+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2

r(l+1)εfar‖A‖F .

The above error analysis yields the following theorem.

Theorem 4.2
Suppose T is a perfect 2d-tree with L levels, associated with theH2 approximation of A. Under the
assumptions in (43), SMASH produces the following factorization

A =U (L)

(
U (L−1)

(
. . .

(
U (2)B(1)

(
V (2)

)T
+B(2)

)
. . .

)(
V (L−1)

)T
+B(L−1)

)(
V (L)

)T
+B(L) + E,

(55)

where the approximation error E satisfies the estimate

‖E‖F ≤ Cεfar‖A‖F ,
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with

C =

L∑
l=2

2dL+2s2L−2l+2
(
r(l)r(l+1) . . . r(L)

)2

r(l+1).

Corollary 4.2
Besides the assumptions in Theorem 4.2, if there also exists a constant r ≥ 2 such that r(l) ≤ r for
each l > 1, then the approximation error E in SMASH satisfies the estimate:

‖E‖F ≤ (2dr2s2)L8εfar‖A‖F .

Finally, we will show that the term (2dr2s2)L in Corollaries 4.1-4.2 can be bounded by functions
of n which are independent of εfar and εsvd under certain assumptions.

Proposition 4.1
Given r, let T be a perfect 2d-tree of L levels such that r2dL ≤ n. Assume without loss of generality
that s ≤ 2. Then the constants in Corollary 4.1 and Corollary 4.2 satisfy the following estimation:(

2dr2s2
)L ≤ n 1

2d log2 n+ 2
d +1. (56)

Proof
Since r2dL ≤ n, we have L ≤ 1

d log2
n
r . It follows that

2dLs2L ≤ 2dL22L ≤
(n
r

) 2
d +1

≤ n 2
d +1.

Next it remains to bound r2L ≤ r 2
d log2

n
r . To this end, we define g(x) = xlog2

n
x for x ≥ 1. Then

r2L ≤ (g(r))
2
d . It can be verified that the global maximum of g is achieved at x =

√
n. Therefore,

r2L ≤ (g(r))
2
d ≤

(
g(
√
n)
) 2

d = n
1
2d log2 n,

and we conclude that (
2dr2s2

)L ≤ n 1
2d log2 n+ 2

d +1.

Proposition 4.1 also indicates that C1, C2 in Theorem 4.1 and C in Theorem 4.2 all can be
bounded by constants which are independent of εfar and εsvd under certain assumptions.

5. COMPLEXITY ANALYSIS

This section studies the complexity of SMASH for an n× nmatrix. For simplicity, we only consider
the case whenX = Y and the points are uniformly distributed. Under this assumption, a perfect tree
T will be used for both HSS and H2 structures.

5.1. Complexity for the HSS construction

We start with the HSS construction case. Since the HSS matrix structure is only efficient for one
dimensional problems, we will focus on the one-dimensional problems in this section. Suppose T
has L levels such that n = O(r2L), where r is a positive integer such that the rank of HSS generators
is bounded above by r and

|̄irow| ≤ 2r, |̄icol| ≤ 2r, ∀i 6= root. (57)

Notice that in the context of integral equations in potential theory, the assumption (57) in general
holds only for integral equations defined on a curve. Since the points are uniformly distributed, for
each nonroot node i, the number of nodes in Ni (See Appendix) is very small, which we assume to
be bounded above by 3. Under these assumptions, we have the following complexity estimate.
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Theorem 5.1
Let T be a perfect binary tree with L levels and (57) hold. Then the complexity of SMASH for the
HSS construction in Section 3.3.1 is O(n).

Proof
Based on (57), it is easy to see that, for each nonroot node i, the compression cost for its nearfield
blocks in (21) is O(r3). This is because the size of the nearfield block row in (21) is no larger
than 2r-by-6r under the above assumption for Ni. Besides, the farfield basis matrix Ûi has column
size at most r, so the cost of an SRRQR procedure in (23) is O(r3). Therefore, the compression
cost associated with each nonroot node i is O(r3) and the complexity of the HSS construction is
O(2Lr3) = r2O(n) = O(n).

5.2. Complexity for the H2 construction

For the H2 construction case, we assume that when X ⊂ Rd, T is a perfect 2d-tree with L levels
such that n = O(r2dL) and r is a positive integer such that the rank ofH2 generators is bounded by
r and

|̄irow| ≤ r2d, |̄icol| ≤ r2d, ∀i 6= root. (58)

The analysis here is simpler than that of the HSS construction in Section 5.1. Since each node i
only involves the compression of farfield basis Ûi |̄irow ( as well as V̂i |̄icol ), whose size is no larger
than r2d-by-r under the assumption (58), we deduce that the compression cost associated with each
node is O(r3). As a result, the complexity of the H2 construction is O(2dLr3) = r2O(n). Thus we
conclude:

Theorem 5.2
Let T be a perfect 2d-tree with L levels and (58) hold. Then the complexity of SMASH for the H2

construction in Section 3.3.2 is O(n).

6. NUMERICAL EXAMPLES

In this section, we present numerical examples to illustrate the performance of SMASH. All of the
numerical results were performed in MATLAB R2014b on a macbook air with a 1.6 GHz CPU and
8 GB of RAM. The following notation is used throughout the section:

• n: the size of A;

• tconstr: wall clock time for constructing Â in seconds;

• tmatvec: wall clock time for multiplying Â with a vector in seconds;

• tsol: wall clock time for solving Âx = b in seconds;

• εsvd: relative tolerance used in the truncated SVD for the nearfield compression;

• rand([0, 1]): a random number sampled from the uniform distribution in [0, 1].

6.1. Choice of parameters

Since the quality of a degenerate approximation depends on the underlying kernel function, there
is no rule of thumb in general on choosing the parameters to satisfy a prescribed tolerance. For
completeness, here we present a heuristic approach that we use in all numerical experiments on the
choice of parameters.

Given a matrix A and a tolerance ε, suppose one wants to construct a hierarchical matrix Â
(H, H2, or HSS) such that ‖A− Â‖max ≈ ε. Then the following approach is adopted to determine
parameters τ, r.
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Table I. 2D test in Section 6.2.1: construction and matrix-vector product of an H2 matrix.

n = m2 ‖Âu−Au‖/‖Au‖ tconstr tmatvec

1600 6.69× 10−13 0.52 0.02
6400 2.00× 10−12 1.97 0.07
25600 3.65× 10−12 9.53 0.30

102400 4.87× 10−12 39.47 1.18

The choice of separation ratio τ ∈ (0, 1) only depends on the dimension of the problem, so it is
chosen first. We choose τ such that τ ≤ 0.7 and, in general, a slightly larger τ is preferred for higher
dimensional problems. For example, we choose τ = 0.6 for essentially one-dimensional problems,
such as those in Section 6.3 and Section 6.4; we choose τ = 0.65 for problems in two or three
dimensions in Section 6.2.

Having chosen a separation ratio τ , we use the following function to determine the farfield
approximation rank r used in constructing Ûi, V̂i (before the SRRQR postprocessing):

r =


blog ε/ log τ − 20c, if ε < 10−8,

blog ε/ log τ − 15c, if 10−8 ≤ ε < 10−6,

max{blog ε/ log τ − 10c, 5} otherwise,

where bxc yields the largest integer less than or equal to x. For example, in Section 6.2.1, ε = 10−7,
τ = 0.65, r = 22; in Section 6.3, ε = 10−8, τ = 0.6, r = 21; in Section 6.4, ε = 10−10, τ = 0.6,
r = 25.

6.2. Construction and matrix-vector multiplication of H2 matrices

In this section, we perform numerical experiments to test the construction and matrix-vector
multiplication of anH2 approximation associated with kernels in both two and three dimensions. A
complicated three-dimensional geometry (see Figure 5) is presented to illustrate the robustness of
the algorithm.

6.2.1. Two dimensions We first consider the kernel in (1) with dx = 1. We chose X as a uniform
m×m grid in [0, 1]2 and A = [κ(x, y)]x,y∈X . The computational domain [0, 1]2 was recursively
divided into 4 subdomains until the number of the points inside each domain was less than or equal
to 50. We embedded [0, 1]2 in the complex plane and used the truncated Taylor expansion (4) with
r = 22 terms and the separation ratio τ = 0.65 to compress farfield blocks. The approximation error
of this construction is measured by the relative error ‖Âu−Au‖/‖Au‖, where u is a random vector
of length n = m2 with entries generated by rand([0, 1]). The numerical results are reported in Table
I.

As can be seen from Table I, SMASH for theH2 construction and the matrix-vector multiplication
described in Section 3.4 scale linearly, which is consistent with the complexity analysis in Section
5.

6.2.2. Three dimensions In three dimensions, we consider the kernel

κ(x, y) =

{
log |x−y|
|x−y| , if x 6= y,

1, if x = y,

which has a stronger singularity than 1/|x− y| near x = y. The geometry here is a triceratops
embedded in the cube [−100, 100]3 as illustrated in Figure 5 †. The points in X are drawn randomly

†The datasets are from the point cloud tools http://www.geo.tuwien.ac.at/downloads/pg/pctools/pctools.html
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Table II. 3D test in Section 6.2.2: construction and matrix-vector product of an H2 matrix.

n ‖Âu−Au‖/‖Au‖ tconstr tmatvec

10000 1.98× 10−6 9.12 0.14
20000 3.83× 10−6 23.20 0.38
40000 5.83× 10−6 50.39 0.74
80000 7.20× 10−6 115.03 1.57

from the triceratops and A = [κ(x, y)]x,y∈X . The H2 approximation Â is constructed based on
interpolation in three dimensions, where 5 Chebyshev points are used in each direction.

It is easily seen from Table II that the time for construction or matrix-vector multiplication scales
linearly in terms of the matrix size. Moreover, despite the complicated geometry, the approximation
accuracy remains relatively high as problem sizes increase.

Figure 5. The 3D triceratops geometry used for the numerical experiments in Table II.

6.3. Cauchy-like matrices

We consider in this section the numerical solution of Cauchy-like matrices. It is known that
Cauchy-like matrices are related to other types of structured matrices including Toeplitz matrices,
Vandermonde matrices, Hankel matrices and their variants [55, 56, 57, 58, 59, 60]. Consider the
kernel κ(x, y) = 1/(x− y), x 6= y ∈ C. Let xi, yj(i, j = 1 : n) be 2n pairwise distinct points in
C. The Cauchy matrix is then given by C = [κ(xi, yj)]i,j=1:n, which is known to be invertible
[61]. Given two matrices w, v ∈ Cn×p, the (i, j)-entry of a Cauchy-like matrix A associated with
generators w, v is defined by [62]

ai,j =
1

xi − yj

p∑
l=1

wi,lvj,l. (59)

For simplicity, we consider the case p = 2, i.e., w (as well as v) is composed of two column vectors.
Denote by ŵ1, ŵ2, v̂1, v̂2 the column vectors in u, v, i.e., w = [ŵ1, ŵ2], v = [v̂1, v̂2]. It can be seen
that A can be written as

A = diag(ŵ1)Cdiag(v̂1) + diag(ŵ2)Cdiag(v̂2). (60)

Existing approaches for solving Cauchy or Cauchy-like linear systems associated with points in
R mainly rely on some variants of Gaussian elimination with pivoting techniques. For example,
fast O(n2) algorithms for solving Cauchy linear systems can be found in [63, 64, 65, 66], etc.;
a superfast O(n log3 n) algorithm based on a sequential block Gaussian elimination process was
proposed in [67]. The performance of most existing methods depends on the the distribution of
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point sets x, y. As pointed out in [64], if two sets of points x, y can not be separated, for example,
when they are interlaced, existing algorithms (for example, BP-type algorithm of [63]) suffer from
backward stability issues. Moreover, due to the use of pivoting techniques, the accuracy of existing
algorithms heavily depend on the ordering of points [63, 64] and the analysis is limited to the case
when the points are in R.

Therefore, in view of the issues mentioned above, we assume xi, yj are mixed together such that
in adaptive partitioning (see Section 3.1), each box contains the same number of points from xi and
yj . We also consider that xi, yj are distributed on a curve in R2 as illustrated in Fig. 7 to demonstrate
that the algorithm is independent of the ordering of points and is applicable for points in C.

We construct the HSS approximation Â to A using SMASH discussed in Section 3.3.1 and then
solve the linear system associated with Â using a fast ULV factorization solver [5]. Due to the
choice of stable expansion in (4), arbitrarily high approximation accuracy can be achieved without
stability issues [49].

Note that the HSS approximation to C can be readily obtained as in Section 3. Consequently,
the HSS approximations to diag(ŵ1)Cdiag(v̂1) and diag(ŵ2)Cdiag(v̂2) can be derived by modifying
U, V,D generators, respectively. The sum of these two HSS representations is also an HSS matrix
whose generators can be easily obtained using the technique presented in [68] by merging the two
sets of HSS generators. Hence the HSS approximation to A is derived.

In the first experiment, the point sets {xk}nk=1, {yk}nk=1 are chosen as follows:

xk = k/(n+ 1), yk = xk + 10−7 ∗ rand([0, 1]), k = 1, . . . , n. (61)

In the second experiment, the point sets are distributed on the curve illustrated in Fig. 6 that is
parametrized by

γ(t) = e−πi/6 ∗ [(0.5 + sin(4πt)) cos(2πt) + i(0.5 + sin(4πt)) sin(2πt)] , t ∈ [0, 1],

and {xk}nk=1, {yk}nk=1 are given by

xk = γ(k/(n+ 1)), yk = γ(xk + 10−7 ∗ rand([0, 1])), k = 1, . . . , n. (62)

In the third experiment, the point set {xk}nk=1 is on the snail geometry in C as illustrated in Fig. 7
and the point set {yk}nk=1 is given by

yk = xk + 10−7 ∗ rand([0, 1]), k = 1, . . . , n. (63)

For generators of this Cauchy-like matrix, i.e., w = [ŵ1, ŵ2], v = [v̂1, v̂2], we chose ŵl, v̂l(l =
1, 2) such that each entry in those vectors was given by rand([0, 1]). In order to solve the linear
system Au = b, we constructed an HSS approximation Â to A in (60) by SMASH. 1D boxes (i.e.,
intervals) and 2D boxes (i.e., rectangles) are used in adaptive partitioning for point sets in (61) and
(63), respectively. The right subfigures in Fig. 7 illustrate the adaptive partitioning using 2D boxes
as described in Remark .1. We chose separation ratio as τ = 0.6 and adaptive partitioning stopped
when the number of points inside each box was less than or equal 50. The nearfield blocks were
compressed through SVD with truncation tolerance 10−9. The exact solution was set to be a column
vector u of length n with entries generated by rand([0, 1]), and the right-hand side b was formed by
b = Au.

The numerical results for three Cauchy-like matrix problems are reported in Table III. From
Table III, we see that the computational time for both construction and the solution scale linearly,
and SMASH in Section 3.3.1 is quite robust with respect to complex geometries. Moreover, it can
be seen that SMASH is independent of the ordering of points.

6.4. Integral equations

In this section, we solve Laplace boundary value problems via the integral equation method. Assume
Ω is a smooth simply-connected domain in R2 and let Γ = ∂Ω be the boundary of Ω of class C2.
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Figure 6. Honeybee geometry used for the numerical experiments in Table III. Left: Original curve; Right:
Adaptive partitioning of the curve for the case when n = 12800 in Table III.
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Figure 7. Snail geometry used for the numerical experiments in Table III. Left: Original curve; Right:
Adaptive partitioning of the curve for the case when n = 12800 in Table III.

Table III. Numerical results for solving the Cauchy-like matrix when {xk}nk=1 are distributed on three
different curves.

curve n ‖u− û‖/‖u‖ ‖Au−Aû‖/‖Au‖ tconstr tsol

[0, 1]

1600 7.69× 10−12 5.56× 10−15 0.33 0.11
3200 1.01× 10−09 3.87× 10−14 0.63 0.19
6400 5.58× 10−11 5.58× 10−14 1.29 0.35
12800 1.47× 10−08 5.87× 10−14 2.58 0.69

honeybee

1600 9.37× 10−11 8.09× 10−14 1.14 0.28
3200 9.78× 10−10 5.60× 10−13 2.22 0.51
6400 1.55× 10−09 9.16× 10−13 4.42 0.96
12800 2.76× 10−09 1.54× 10−12 8.49 1.87

snail

1600 1.34× 10−11 1.02× 10−15 1.75 0.39
3200 2.98× 10−11 6.61× 10−16 2.93 0.69
6400 3.65× 10−10 5.88× 10−15 5.81 1.30
12800 2.78× 10−10 6.27× 10−15 10.57 2.39

Consider the interior Dirichlet problem: find u ∈ C2(Ω) ∩ C(Ω) such that

∆u = 0 in Ω,

u = uD on Γ,
(64)

where uD ∈ C(Γ) is given. With smooth boundary curves and Dirichlet data, the wellposedness of
this problem is well studied in potential theory [69, 70].

The fundamental solution and its gradient (in terms of y) for the Laplace equation in R2 are given
by:

Φ(x,y) = − 1

2π
log |x− y|, and ∇yΦ(x,y) = − 1

2π

y − x

|x− y|2
.
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Let νy denote the unit outer normal at point y ∈ Γ. The double layer potential with continuous
density σ is given by

Kσ(x) :=

∫
Γ

∂Φ(x,y)

∂νy
σ(y)dsy =

∫ 1

0

∂Φ(x, r(t))

∂νy
|r′(t)|σ(r(t))dt, x ∈ Ω, (65)

where we assume Γ is parametrized by r(t) : [0, 1]→ R2.
Given Dirichlet data uD ∈ C(Γ) in (64), we solve the following integral equation for σ ∈ C(Γ):

(K − 1

2
I)σ = uD, on Γ. (66)

It is well-known ([70]) that the problem above for σ ∈ C(Γ) is well-posed, and the corresponding
double layer potential u := Kσ solves the interior Dirichlet problem (64).

Denote the kernel in the second integral in (65) by

κ(s, t) :=
∂Φ(r(s), r(t))

∂νy
|r′(t)|. (67)

It is easily seen that the smoothness of the above kernel function depends on the underlying
boundary curve and it is known that ([71]) if r ∈ C∞([0, 1]), then κ ∈ C∞([0, 1]× [0, 1]).

Several Laplace problems (64) with the same exact solution but different domains are considered
here. The first domain Ω is a ram head whose boundary curve Γ is parametrized by r(t) =
(r1(t), r2(t)) for t ∈ [0, 1]:

r1(t) = 2 cos(2πt),

r2(t) = 1 + sin(2πt)− 1.4 cos4(4πt).
(68)

The second domain is a sunflower whose boundary curve Γ is parametrized by:

r1(t) = (1.3 + 1.25 cos(40πt)) cos(2πt),

r2(t) = (1.3 + 1.25 cos(40πt)) sin(2πt).
(69)

We chose the Dirichlet data uD such that the exact solution of (64) is

u(x) = log |x− x0|,

where the source point x0 = (2, 1.5) is in the exterior of Ω. Illustrations for the curves parametrized
in (68) and (69) are shown in Fig. 8 and Fig. 9, respectively. We used Nyström method with
trapezoidal rule to discretize (66). Since the curve Γ and the kernel are both smooth, Nyström
discretization converges with a convergence rate proportional to that of the quadrature rule.

As in Section 6.3, we applied the HSS matrix techniques to approximate and solve the resulting
matrix from the Nyström discretization of the integral equation in (66). The adaptive partitioning
based on bisection (cf. Remark .1) was applied to a box covering the domain Ω in R2 and each box
in leaf level contained no more than 50 quadrature points on Γ. Empty boxes were discarded during
the partitioning. Illustrations of adaptive partitioning are shown in the right subfigures of Fig. 8 and
Fig. 9, when 10240 quadrature points are in use. A binary tree T was then generated corresponding
to each adaptive partitioning. In the construction of the HSS matrix, the bases for the farfield blocks
were approximated by polynomial interpolation (with 25 interpolating points) with respective to
the separation ratio 0.6 and the bases for the nearfield blocks are computed by the truncated SVD
with the tolerance εsvd = 10−11. In order to test the convergence of the discretization, for curves in
Fig. 8, we compared the numerical solution û with the exact solution u by evaluating them at point
x∗ = (0.1, 0.1) inside Ω. For the curve in Fig. 9, the evaluation point is chosen as x∗ = (1.5, 0)
inside Ω. The numerical results for the ram head and sunflower problems are shown in Table IV and
Table V, respectively.

From Table IV and Table V, it can be seen that the HSS matrix methods achieve linear
complexity at both the construction and solution stages. In addition, it is worth noting that the
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Figure 8. Ram head domain for the Dirichlet problem (64) with source point and evaluation point marked
as green ‘+’ and red ‘*’, respectively. Left: Original curve; Right: Adaptive partitioning of the ram head

boundary curve for the case when 10240 quadrature points are used in Table IV.
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Figure 9. Sunflower domain for the Dirichlet problem (64) with source point and evaluation point marked
as green ‘+’ and red ‘*’, respectively. Left: Original curve; Right: Adaptive partitioning of the sunflower

boundary curve for the case when 10240 quadrature points are used in Table V.

Table IV. Numerical results for solving a 2D Laplace Dirichlet problem in a ram head domain as shown in
Fig. 8.

n |u(x∗)− û(x∗)| ‖A− Â‖max cond(A) tconstr tsol

160 5.03× 10−08 1.06× 10−10 6.15× 1001 0.42 0.107
320 9.54× 10−11 6.81× 10−10 6.92× 101 1.54 0.042
640 1.91× 10−12 7.98× 10−10 6.00× 101 2.93 0.127
1280 8.22× 10−13 2.26× 10−09 6.02× 101 5.41 0.103
2560 7.78× 10−13 3.90× 10−09 6.02× 101 9.76 0.177
5120 1.50× 10−13 9.63× 10−09 6.02× 101 18.74 0.282
10240 1.96× 10−12 1.01× 10−08 6.02× 1001 34.78 0.591

Table V. Numerical results for solving a 2D Laplace Dirichlet problem in a sunflower domain as shown in
Fig. 9.

n |u(x∗)− û(x∗)| ‖A− Â‖max cond(A) tconstr tsol

640 2.96× 10−02 1.20× 10−08 5.65× 103 5.42 0.105
1280 1.25× 10−03 2.65× 10−08 2.23× 103 16.80 0.256
2560 1.88× 10−06 3.56× 10−08 1.85× 103 41.76 0.624
5120 1.02× 10−10 4.27× 10−07 1.72× 104 102.65 1.429
10240 1.66× 10−11 3.80× 10−07 1.12× 104 192.78 2.165
20480 8.03× 10−10 9.55× 10−07 6.86× 103 316.68 3.219
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Table VI. Comparison of exact ε-rank and approximation rank ofM = Airow×jcol for the ram head geometry
in Fig.8, the sunflower geometry in Fig.9 with ε = 10−3, 10−6, 10−10

geometry n size(M ) ε = 10−3 ε = 10−6 ε = 10−10

rε(M) size(Bi) rε(M) size(Bi) rε(M) size(Bi)

ram
head

1280 640 13 19 25 45 43 70
2560 1280 13 18 25 45 43 71
5120 2560 13 18 25 45 43 72
10240 5120 13 19 25 45 43 72

sun-
flower

1280 640 67 84 111 141 151 185
2560 1280 83 117 159 187 213 251
5120 2560 83 125 182 226 298 347
10240 5120 83 123 187 237 328 380
20480 10240 83 120 187 238 327 382

numerical solutions for these Laplace Dirichlet problems converge exponentially fast regardless of
the complicated geometries and the solver is quite robust. For example, in view of Table V which
corresponds to the seemingly complicated geometry in Fig. 9, 10 digits of accuracy can be achieved
using only 5120 quadrature points.

6.5. Nearly optimal compression

In this section, we compare the exact numerical rank of the largest off-diagonal block of A with
the approximation rank obtained from SMASH. The numerical results show that the approximation
rank is nearly optimal in the sense that it differs from the exact numerical rank by a small constant
that is roughly independent of the kernel and the matrix size.

Definition 6.1 (ε-rank)
Let σ1 ≥ σ2 ≥ · · · ≥ σr be singular values of a nonzero matrix A. Given a tolerance ε ∈ (0, 1), the
relative ε-rank of a matrix A, denoted by rε(A), is the largest number i such that σi ≥ εσ1.

Consider the numerical examples in Section 6.4, where different curves give rise to different
kernels according to (67). Let i, j be two children of the root node. We focus on the (largest) off-
diagonal block Airow×jcol .

We consider three tolerances: ε = 10−3, 10−6, 10−10. We list the size of Airow×jcol , the exact
ε-rank, and the approximation rank characterized by the size of Bi generator with size(Bi) :=
maximum between row size and column size. The results are reported in Table VI .

Note that no a priori information is needed to determine the approximation rank as it is solely
derived from the prescribed tolerance and the construction algorithm. Thus the numerical results
also imply that the proposed method in Section 6.1 for choosing parameters is satisfactory.

6.6. Storage cost

In this section, we demonstrate the benefit of the special structure in the generators produced by
SMASH. We store the HSS generators using the strategy mentioned at the end of Section 2.3. For
comparison, we also compute the cost by storing the generators as dense matrices, denoted by HSS0,
as well as the storage cost for the original dense matrix. The test matrix A of order 10240 is derived
from kernels in Section 6.4 and all entries are stored in double precision. The results are collected
in Table VII for different geometries and different approximation accuracy. The reduction in storage
justifies the use of strong rank-revealing QR algorithm in the construction and we see that SMASH
is quite cheap even when a high approximation accuracy is in use.
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Table VII. A comparison of storage costs (MB) of HSS generators the storage strategy in Section 2.3
(SMASH) and the standard approach by storing dense generators (HSS0) for a square matrix A of order

10240.

εfar εSVD geometry storage(A) HSS0 SMASH
10−4 10−5 ram head 800 5.9 4.4
10−4 10−5 sunflower 800 35.2 11.0
10−10 10−11 ram head 800 23.2 8.8
10−10 10−11 sunflower 800 145.7 31.3

7. CONCLUSION

We presented a unified framework, called SMASH, to construct either an n× n HSS or H2 matrix
with an O(n) cost. One appealing feature of this scheme is its simple implementation which only
requires a routine to compress far field blocks. In addition, SMASH can greatly reduce the memory
cost relative to existing analytic construction schemes. The numerical experiments illustrated the
efficiency and robustness of SMASH through a few examples with various point distributions and
kernel matrices.

We plan to extend this scheme to highly oscillatory kernels and to develop approximate inverse-
type preconditioners for solving the resulting linear systems with H2 matrix representations.
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Figure 10. Illustration of the sets Ni used in HSS constructions.
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APPENDIX: DETERMINATION OF NEARFIELD BLOCKS

In building HSS structures, we need to collect nodes corresponding to blocks that are nearfield with
respect to node i. The set of such nodes is denoted by Ni for node i. We set Ni = ∅ when i = root.
For the other cases, Ni is defined below where pi denotes the parent of i:

Ni = {k ∈ T such that : either k is a sibling of i
or pk ∈ Npi and (i, k) /∈ Sep
or k is a leaf such that k ∈ Npi and (i, k) /∈ Sep}

(70)

Note that when i is a child of root then Npi is empty and so only the first case can take place (k is
a sibling of i). We also remark that the third case (k is a leaf such that k ∈ Np and (i, k) /∈ Sep) is
required for non-uniform distributions and that it is empty if the distribution is uniform. It is easy to
see that if Ω = [0, 1] and X = Y is uniformly distributed, T is a perfect binary tree. In addition, if
the separation ratio is set to τ = 0.5, then for any nonroot node i, Ni contains at most two nodes.

For each node i, let i denote the index set of the points inX ∩ Ωi. Similarly, j represents the index
set of the points in Y ∩ Ωj . Namely, Xi = X ∩ Ωi and Yj = Y ∩ Ωj .

Remark .1
Since the HSS structure [54, 5] is associated with a binary tree regardless of the dimension of the
problem (see Section 3.2), to construct HSS matrices, bisection is used throughout the adaptive
partitioning procedure. For example, given a domain or a curve enclosed in a square in R2, we use
bisection in the horizontal direction and the vertical direction alternatively in consecutive stages
of the adaptive partitioning, i.e., if horizontal bisection is used at partitioning level l, then vertical
bisection will be employed at level l + 1. The numerical experiments in Section 6.3 and Section 6.4
provide illustrations. This partitioning strategy corresponds to the geometrically regular clustering
(cf.[3]), and can be generalized into the geometrically balanced clustering (cf.[3]).
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