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Abstract. This paper addresses matrix approximation problems for matrices that are large,4
sparse and/or that are representations of large graphs. To tackle these problems, we consider5
algorithms that are based primarily on coarsening techniques, possibly combined with random6
sampling. A multilevel coarsening technique is proposed which utilizes a hypergraph associated with7
the data matrix and a graph coarsening strategy based on column matching. Theoretical results are8
established that characterize the quality of the dimension reduction achieved by a coarsening step,9
when a proper column matching strategy is employed. We consider a number of standard applications10
of this technique as well as a few new ones. Among the standard applications we first consider the11
problem of computing the partial SVD for which a combination of sampling and coarsening yields12
significantly improved SVD results relative to sampling alone. We also consider the Column subset13
selection problem, a popular low rank approximation method used in data related applications, and14
show how multilevel coarsening can be adapted for this problem. Similarly, we consider the problem15
of graph sparsification and show how coarsening techniques can be employed to solve it. Numerical16
experiments illustrate the performances of the methods in various applications.17
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1. Introduction. Many modern applications related to data often involve very21

large datasets, but their relevant information lie on a low dimensional subspace. In22

many of these applications, the data matrices are often sparse and/or are repre-23

sentations of large graphs. In recent years, there has been a surge of interest in24

approximating large matrices in a variety of different ways, such as by low rank25

approximations [16, 25, 37], graph sparsification [55, 27], and compression [32]. Low26

rank approximations include the partial singular value decomposition (SVD) [25] and27

Column Subset Selection (the CSS Problem) [7]. A variety of methods have been28

developed to efficiently compute partial SVDs of matrices [49, 23], a problem that29

has been studied for a few decades. However, traditional methods for partial SVD30

computations cannot cope with very large data matrices. Such datasets prohibit31

even the use of rather ubiquitous methods such as the Lanczos or subspace iteration32

algorithms [49, 50], since these algorithms require consecutive accesses to the whole33

matrix multiple times. Computing such matrix approximations is even harder in the34

scenarios where the matrix under consideration receives frequent updates in the form35

of new columns or rows.36

Much recent attention has been devoted to a class of ‘random sampling’ tech-37

niques [15, 16, 25] whereby an approximate partial SVD is obtained from a small subset38

of the matrix only, or possibly a few subsets. Random sampling is well-established39

(theoretically) and is proven to give good results in some situations, see [37] for a40

review. In this paper we will consider random sampling methods as one of the tools41

to down sample very large datasets. However, because randomized methods assume42

no prior information on the data and are independent of the input matrix they are43

often termed “data-oblivious” [1]. Because of this feature, they can be suboptimal in44

many situations since they do not exploit any available information or structures in45
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2 S. UBARU AND Y. SAAD

the matrix. One of the goals of this work is to show that multilevel graph coarsening46

techniques [26] can be good alternatives to randomized sampling.47

Coarsening a graph (or a hypergraph) G = (V,E) means finding a ‘coarse’ ap-48

proximation Ḡ = (V̄ , Ē) to G with |V̄ | < |V |, which is a reduced representation of the49

original graph G, that retains as much of the structure of the original graph as possible.50

Multilevel coarsening refers to the technique of recursively coarsening the original graph51

to obtain a succession of smaller graphs that approximate the original graph G. Several52

methods exist in the literature for coarsening graphs and hypergraphs [26, 28, 9, 29].53

These techniques are relatively more expensive than down-sampling with column norm54

probabilities [16] but they are more accurate. Moreover, coarsening methods will be55

inexpensive compared to the popular leverage scores based sampling [17] which is56

more accurate than norm sampling. For very large matrices, a typical algorithm would57

first perform randomized sampling to reduce the size of the problem and then utilize58

a multilevel coarsening technique for computing an approximate partial SVD of the59

reduced matrix.60

Our Contribution. In this paper, we present a multilevel coarsening technique61

that utilizes a hypergraph associated with the data matrix and a coarsening strategy62

that is based on column matching, and discuss various applications for this technique.63

We begin by discussing different approaches to find partial SVD of large matrices,64

starting with random sampling methods. We also consider incremental sampling,65

where we start with small samples and then increase the size until a certain criterion is66

satisfied. The second approach is to replace random sampling, with a form of multilevel67

coarsening technique. A middle ground solution is to start with random coarsening68

and then utilize multilevel coarsening on the resulting sampled subset. The coarsening69

techniques exploit inherent redundancies and structures in the matrix and perform70

better than randomized sampling in many cases as is confirmed by the experiments.71

We establish theoretical error analysis for a class of coarsening techniques. We also72

show how the SVD update approach, see [65] or subspace iteration can be used after73

the sampling or coarsening step to improve the SVD results. This approach is useful74

when an accurate SVD of a large matrix is desired.75

The second low rank approximation problem considered in this paper is that of76

column subset selection problem [7, 66] (CSSP) or CUR decomposition [36, 17]. Popular77

methods for CSSP use leverage score sampling method for sampling/selecting the78

columns. Computing the leverage scores requires a partial SVD of the matrix and this79

may be expensive, particularly for large matrices and when the (numerical) rank is not80

small. In this work, we show how the graph coarsening techniques can be adapted for81

column subset selection (CSSP). The coarsening approach is an inexpensive alternative82

for this problem and performs well in many situations.83

The third problem we consider is that of graph sparsification [31, 55, 27]. Here,84

given a large (possibly dense) graph G, we wish to obtain a sparsified graph G̃ that85

has significantly fewer edges than G but still maintains important properties of the86

original graph. Graph sparsification allows one to operate on large (dense) graphs87

G with a reduced space and time complexity. In particular, we are interested in88

spectral sparsifier, where the Laplacian of G̃ spectrally approximates the Laplacian of89

G [56, 27, 67]. That is, the spectral norm of the Laplacian of the sparsified graph is close90

to the spectral norm of the Laplacian of G, within a certain additive or multiplicative91

factor. Such spectral sparsifiers can help approximately solve linear systems with the92

Laplacian of G and to approximate effective resistances, spectral clusterings, random93

walk properties, and a variety of other computations. We again show how the graph94

coarsening techniques can be adapted to achieve graph sparsifications. We also present95
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COARSENING ALGORITHMS FOR MATRIX APPROXIMATIONS 3

a few new applications for coarsening methods, see section 2.96

Outline. The outline of this paper is as follows. Section 2, discusses a few97

applications of graph coarsening. Section 3 describes existing popular algorithms98

that are used for low rank approximation. The graph coarsening techniques and the99

multilevel algorithms are described in sec. 4. In particular, we present a hypergraph100

coarsening technique based on column matching. We also discuss methods to improve101

the SVD obtained from randomized and coarsening methods. In section 5, we establish a102

theoretical error analysis for the coarsening method. We also discuss the existing theory103

for randomized sampling and subspace iteration. Numerical experiments illustrating104

the performances of these methods in a variety of applications are presented in section 6.105

2. Applications. We present a few applications of (multilevel) coarsening meth-106

ods. In these applications, we typically encounter large matrices, and these are often107

sparse and/or representations of graphs.108

i. Latent Semantic Indexing. Latent semantic indexing (LSI) is a popular text109

mining technique for analyzing a collection of documents that are similar [13, 33, 5, 30].110

Given a user’s query, the method is used to retrieve a set of documents from a given111

collection that are relevant to the query. Truncated SVD [5] and related methods [30]112

are popular tools used in the LSI applications. The argument is that a low rank113

approximation preserves the important underlying structure associated with terms114

and documents, and removes the noise or variability in word usage [16]. Multilevel115

coarsening for LSI was considered in [51]. In this work, we revisit this idea and show116

how hypergraph coarsening can be employed in this application.117

ii. Projective clustering. Several projective clustering methods such as Isomap [58],118

Local Linear Embedding (LLE) [47], spectral clustering [40], subspace clustering [43,119

18], Laplacian eigenmaps [4] and others involve partial eigen-decomposition and SVD120

computation of a graph Laplacian. Various kernel based learning methods [39] also121

involve SVD computation of large graph Laplacians. In most applications today, the122

number of data-points are large and computing the singular vectors (eigenvectors) will123

be expensive. Graph coarsening is a handy tool to reduce the number of data-points124

in these applications, see [20, 41] for results.125

iii. Eigengene analysis. Analysis of gene expression DNA microarray data has126

become an important tool when studying a variety of biological processes [2, 46, 44].127

In a microarray dataset, we have m genes (from m individuals possibly from different128

populations) and a series of n arrays probe genome-wide expression levels in n different129

samples, possibly under n different experimental conditions. The data is large with130

several individuals and gene expressions, but is known to be of low rank. Hence, it has131

been shown that a small number of eigengenes and eigenarrays (few singular vectors)132

are sufficient to capture most of the gene expression information [2]. Article [44]133

showed how column subset selection (CSSP) can be used for selecting a subset of gene134

expressions that describe the population well in terms of spectral information captured135

by the reduction. In this work, we show how hypergraph coarsening can be adapted136

to choose a good (small) subset of genes in this application.137

iv. Multilabel Classification. The last application we consider is that of multilabel138

classification in machine learning applications [60, 61]. In the multilabel classification139

problem, we are given a set of labeled training data {(xi, yi)}ni=1, where each xi ∈ Rp140

is an input feature for a data instance which belongs to one or more classes, and141

yi ∈ {0, 1}d are vectors indicating the corresponding labels (classes) to which the data142

instances belong. A vector yi has a one at the jth coordinate if the instance belongs143

to j-th class. We wish to learn a mapping (prediction rule) between the features and144
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the labels, in order to be able to predict a class label vector y of a new data point145

x. Such multilabel classification problems occur in many domains such as computer146

vision, text mining, and bioinformatics [59, 57], and modern applications involve a147

large number of labels.148

A popular approach to handle classification problems with many classes is to begin149

by reducing the effective number of labels by means of so-called embedding-based150

approaches. The label dimension is reduced by projecting label vectors onto a low151

dimensional space, based on the assumption that the label matrix Y = [y1, . . . , yn]152

has a low-rank. The reduction is achieved in different ways, for example, by using153

SVD in [57] and column subset selection in [6]. In this work, we demonstrate how154

hypergraph coarsening can be employed to reduce the number of classes, and yet155

achieve accurate learning and prediction.156

Article [54] discusses a number of methods that rely on clustering the data first in157

order to built a reduced dimension representation. It can be viewed as a top-down158

approach whereas coarsening is a bottom-up method.159

3. Background. In this section, we review three popular classes of methods used160

for calculating the partial SVD of matrices. The first class is based on randomized161

sampling. We also consider the column subset selection (CSSP) and graph sparsification162

problems using randomized sampling, in particular leverage score sampling. The second163

class is the set of methods based on subspace iteration, and the third is the set of164

SVD-updating algorithms [68, 65]. We consider the latter two classes of methods as165

tools to improve the results obtained by sampling and coarsening methods. Hence, we166

are particularly interested in the situation where the matrix A under consideration167

receives updates in the form of new columns. In fact when coupling with the multilevel168

algorithms (which we will discuss in sec. 4), these updates are not small since the169

number of columns can double.170

3.1. Random sampling. Randomized algorithms have become popular in recent171

years due to their broad applications and the related theoretical analysis developed172

which give results that are independent of the matrix spectrum. Several ‘randomized173

embedding’ and ‘sketching’ methods have been proposed for low rank approximation174

and for computing the partial SVD [38, 35, 25, 62] starting with the seminal work175

of Frieze et al. [21]. Drineas et al. [15, 16] presented the randomized subsampling176

algorithms, where a submatrix (certain columns of the matrix) is randomly selected177

based on a certain probability distribution. Their method samples the columns based178

on column norms. Given a matrix A ∈ Rm×n, they sample its columns such that the179

i-th column is sampled with the probability pi given by180

pi =
β‖A(i)‖22
‖A‖2F

,181

where β < 1 is a positive constant and A(i) is the i-th column of A. Using the above182

distribution, c columns are selected and the subsampled matrix C is formed by scaling183

the columns by 1/
√
cpi. Then, the SVD of C is computed. The approximations184

obtained by this randomization method will yield reasonable results only when there185

is a sharp decay in the singular value spectrum.186

3.2. Column Subset Selection. Another popular dimensionality reduction187

method which we consider in this paper is the column subset selection (CSSP) [7]. If188

a subset of the rows is also selected, then the method leads to the CUR decomposi-189

tion [36]. These methods can be viewed as extensions of the randomized sampling190
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based algorithms. Let A ∈ Rm×n be a large data matrix whose columns we wish to191

select and suppose Vk is a matrix whose columns are the top k right singular vectors192

of A. Then, the leverage score of the i-th column of A is given by193

`i =
1

k
‖Vk(i, :)‖22,194

the scaled square norm of the i-th row of Vk. Then, in leverage scores sampling, the195

columns of A are sampled using the probability distribution pi = min{1, `i}. The most196

popular methods for CSSP involve the use of this leverage scores as the probability197

distribution for columns selection [17, 7, 36, 8]. Greedy subset selection algorithms198

have been also proposed based on the right singular vectors of the matrix [44, 3].199

However, these methods may be expensive since one needs to compute the top k200

singular vectors. In this work, we see how the coarsened graph, i.e., the columns201

obtained by graph coarsening perform in CSSP.202

3.3. Graph Sparsification. Sparsification of large graphs has several compu-203

tational (cost and space) advantages and has hence found many applications [31,204

34, 53, 55, 56]. Given a large graph G = (V,E) with n vertices, we wish to find a205

sparse approximation to this graph that preserves certain information of the original206

graph such as the spectral information [56, 27], structures like clusters within in the207

graph [31, 34], etc. Let B ∈ R(n
2)×n be the vertex edge incidence matrix of the graph208

G, where eth row be of B for edge e = (u, v) of the graph has a value
√
we in columns209

u and v, and zero elsewhere. The corresponding Laplacian of the graph is then given210

by K = BTB.211

The spectral sparsification problem involves computing a weighted subgraph G̃212

of G such that if K̃ is the Laplacian of G̃, then xT K̃x is close to xTKx for any213

x ∈ Rn. Many methods have been proposed for the spectral sparsification of graphs,214

see e.g., [55, 56, 27, 67]. A popular approach is to perform row sampling of the matrix215

B using the leverage score sampling [27]. Considering the SVD of B = UΣV T , the216

leverage scores `i for a row bi of B can be computed as `i = ‖ui‖22 ≤ 1 using the rows of217

U . This leverage score is related to the effective resistance of edge i [55]. By sampling218

the rows of B according to their leverage scores it is possible to obtain a matrix B̃,219

such that K̃ = B̃T B̃ and xT K̃x is close to xTKx for any x ∈ Rn. In section 4, we220

show how the rows of B can we selected via coarsening.221

3.4. Subspace iteration. Subspace iteration is a well-established method used222

for solving eigenvalue and singular value problems [23, 49]. We review this algorithm223

as it will be exploited later as a tool to improve SVD results obtained by sampling224

and coarsening methods. A known advantage of the subspace iteration algorithm225

is that it is very robust and that it tolerates changes in the matrix [50]. This is226

important in our context. Let us consider a general matrix A ∈ Rm×n, not necessarily227

associated with a graph. The subspace iteration algorithm can easily be adapted to the228

situation where a previous SVD is available for a smaller version of A with fewer rows229

or columns, obtained by subsampling or coarsening for example. Indeed, let As be a230

column-sampled version of A. In matlab notation we represent this as As = A(:, Js)231

where Js is a subset of the column index [1 : n]. Let At be another subsample of A,232

where we assume that Js ⊂ Jt. Then if As = UsΣsV
T
s , we can perform a few steps of233

subspace iteration updates as shown in Algorithm 1.234

3.5. SVD updates from subspaces. A well known algorithm for updating the235

SVD is the ‘updating algorithm’ of Zha and Simon [68]. Given a matrix A ∈ Rm×n236
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Algorithm 1 Incremental Subspace Iteration

Start: U = Us
for i = 1 : iter do

V = ATt U
U = AtV
U := qr(U, 0); V := qr(V, 0);
S = UTAtV
if condition then

// Diagonalize S to obtain current estimate of singular vectors and values
[RU ,Σ, RV ] = svd(S); U := Ui+1RU ; V := Vi+1RV

end if
end for

and its partial SVD [Uk,Σk, Vk], the matrix A is updated by adding columns D to it,237

resulting in a new matrix AD = [A,D]. The algorithm then first computes238

(1) (I − UkUTk )D = ÛpR,239

the truncated QR decomposition of (I −UkUTk )D, where Ûp ∈ Rm×p has orthonormal240

columns and R ∈ Rp×p is upper triangular. Given (1), one can observe that241

(2) AD = [Uk, Ûp]HD

[
Vk 0
0 Ip

]T
, HD =

[
Σk UTk D
0 R

]
,242

where Ip denotes the p-by-p identity matrix. Thus, if Θk, Fk, and Gk are the matrices243

corresponding to the k dominant singular values of HD ∈ R(k+p)×(k+p) and their left244

and right singular vectors, respectively, then the desired updates Σ̃k, Ũk, and Ṽk are245

given by246

(3) Σ̃k = Θk, Ũk = [Uk, Ûp]Fk, and Ṽk =

[
Vk 0
0 Ip

]
Gk .247

The QR decomposition in the first step eq. (2) can be expensive when the updates248

are large so an improved version of this algorithm was proposed in [65] where this249

factorization is replaced by a low rank approximation of the same matrix. That is,250

for a rank l, we compute a rank-l approximation, (I − UkUTk )D = XlSlY
T
l . Then, the251

matrix HD is the update equation (3) will be252

HD =

[
Σk UTk D
0 SlY

T
l

]
253

with Ū = [Uk, Xl]. The idea is that the update D will likely be low rank outside the254

previous top k singular vector space. Hence a low rank approximation of (I−UkUTk )D255

suffices, thus reducing the cost.256

In the low rank approximation applications, the rank k will be typically much257

smaller than n, and it can be computed inexpensively using the recently proposed258

numerical rank estimation methods [63, 64].259

4. Coarsening. The previous section discussed randomization methods, which260

work well in certain situations, for example, when there is a good gap in the spectrum or261

there is a sharp spectral decay. An alternative method to reduce the matrix dimension,262

particularly when the matrices are associated with graphs, is to coarsen the data with263
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Fig. 1. Left: Coarsening / uncoarsening procedure; Right : A sample hypergraph

the help of graph coarsening, perform all computations on the resulting reduced size264

matrix, and then project back to the original space. Similarly to the idea of sampling265

columns and computing the SVD of the smaller sampled matrix, in the coarsening266

methods, we compute the SVD from the matrix corresponding to the coarser data. It267

is also possible to then wind back up and correct the SVD gradually, in a way similar268

to V-cycle techniques in multigrid [51], this is illustrated in Figure 1(left). See, for269

example [70, 51, 20, 45] for a few illustrations where coarsening is used in data-related270

applications.271

Before coarsening, we first need to build a graph representing the data. This first272

step may be expensive in some cases but for data represented by sparse matrices, the273

graph is available from the data itself in the form of a standard graph or a hypergraph.274

For dense data, we need to set-up a similarity graph, see [10] for a fast algorithm to275

achieve this. This paper will focus on sparse data such as the data sets available in276

text mining, gene expressions and multilabel classification, to mention a few examples.277

In such cases, the data is represented by a (rectangular) sparse matrix and it is most278

convenient to use hypergraph models [70] for coarsening.279

4.1. Hypergraph Coarsening. Hypergraphs extend the classical notion of280

graphs. A hypergraph H = (V,E) consists of a set of vertices V and a set of281

hyperedges E [9, 70]. In a standard graph an edge connects two vertices, whereas282

a hyperedge may connect an arbitrary subset of vertices. A hypergraph H = (V,E)283

can be canonically represented by a boolean matrix A, where the vertices in V and284

hyperedges (nets) in E are represented by the columns and rows of A, respectively.285

This is called the row-net model. Each hyperedge, a row of A, connects the vertices286

whose corresponding entries in that row are non-zero. An illustration is provided287

in Figure 1(Right), where V = {1, . . . , 9} and E = {a, . . . , e} with a = {1, 2, 3, 4},288

b = {3, 5, 6, 7}, c = {4, 7, 8, 9}, d = {6, 7, 8}, and e = {2, 9}.289

Given a (sparse) data set of n entries in Rm represented by a matrix A ∈ Rm×n, we290

can consider a corresponding hypergraph H = (V,E) with vertex set V corresponding291

to the columns of A. Several methods exist for coarsening hypergraphs, see, e.g.,292

[9, 29]. In this work, we consider a hypergraph coarsening based on column matching,293

which is a modified version of the maximum-weight matching method, e.g., [9, 14].294

The modified approach follows the maximum-weight matching method and computes295

the non-zero inner product 〈a(i), a(j)〉 between two vertices i and j. Note that,296

the inner product between vectors is related to the angle between the vectors, i.e.,297
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8 S. UBARU AND Y. SAAD

Algorithm 2 Hypergraph coarsening by column matching.

Input: A ∈ Rm×n, ε ∈ (0, 1).
Output: Coarse matrix C ∈ Rm×c.
repeat

Randomly pick i ∈ S; S := S − {i}.
Set ip[k] := 0 for k = 1, . . . , n, and p = 1.
for all j with aij 6= 0 do

for all k with ajk 6= 0 do
ip[k] := ip[k] + aijajk. // (*)

end for
end for
j := argmax{ip[k] : k ∈ S}
csqθ =

ip[j]2

‖a(i)‖2‖a(j)‖2 .

if [ (csqθ ≥ 1
1+ε2 )] then

c(p) :=
√

1 + csqθa(i). // The denser of columns a(i) and a(j)

S := S − {j}; p = p+ 1.
else

c(p) := a(i).
p = p+ 1.

end if
until S = ∅

〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij . Next, we match two vertices only if the angle between298

the vertices (columns) is such that, tan θij ≤ ε, for a constant 0 < ε < 1. Another299

feature of the algorithm is that it applies a scaling to the coarsened columns in order300

to reduce the error. In summary, we combine two columns a(i) and a(j) if the angle301

between them is such that, tan θij ≤ ε. We replace the two columns a(i) and a(j) by302

c(p) =

(√
1 + cos2 θij

)
a(i)303

or a(j), the one that has more nonzeros. This minor modification provides some control304

over the coarsening procedure using the parameter ε and, more importantly, it helps305

establish theoretical results for the method, see section 5.306

The vertices can be visited in a random order, or in the ‘natural’ order in which307

they are listed. For each unmatched vertex i, all the unmatched neighbor vertices j308

are explored and the inner product between i and each j is computed. This typically309

requires the data structures of A and its transpose, in that a fast access to rows and310

columns is required. The vertex j with the highest non-zero inner product 〈a(i), a(j)〉 is311

considered and if the angle between them is such that tan θij ≤ ε (or cos2 θij ≥ 1
1+ε2 )),312

then i is matched with j and the procedure is repeated until all vertices have been313

matched. Algorithm 2 gives details on the procedure.314

Note that the loop (*) computes the inner product (ip[k]) of columns i and k of A.315

The pairing used by the algorithm relies only on the sparsity pattern. It is clear that316

these entries can also be used to obtain a pairing based on the cosine of the angles317

between columns i and k. The coarse column c(p) is defined as the ‘denser of columns318

a(i) and a(j)’. In other models the sum is sometimes used.319

Computing the cosine angle between column i and all other columns is equivalent320

to computing the i-th row of ATA, in fact only the upper triangular part of the row.321

For sparse matrices, the computation of the inner product (cosine angle) between322
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the columns can be achieved inexpensively by modifying the cosine algorithm in [48]323

developed for matrix blocks detection.324

Computational Cost. The cost of computing all inner products of column i with325

columns of A is the sum of number of nonzeros of each columns involved:326

|a(i)|∑
j=1

|a(j)|,327

where a(i) is the i-th column and | · | denotes cardinality. If νc (resp. νr) is the328

maximum number of nonzeros in each column (resp. row), then an upper bound for329

the above cost is nνrνc. This basic cost is equivalent to computing the upper triangular330

part of ATA. Several simplifications and improvements can be added to reduce the331

cost. First, we can skip the columns that are already matched. In this way, fewer inner332

products are computed as the algorithm progresses. In addition, since we only need333

the angle to be such that tan θij ≤ ε, we can reduce the computation cost significantly334

by stopping as soon as we encounter a column with which the angle is smaller than the335

threshold. Article [11] uses the angle based column matching idea for dense subgraph336

detection in graphs, and describes efficient methods to compute the inner products.337

4.2. Multilevel SVD computations. Given a sparse matrix A, we can use338

Algorithm 2 to recursively coarsen the corresponding hypergraph in the row-net model339

level by level, and obtain a sequence of sparse matrices A1, A2, . . . , Ar with A0 = A,340

where Ai corresponds to the coarse graph Hi of level i for i = 1, . . . , r, and Ar341

represents the lowest level graph Hr. This provides a reduced size matrix which likely342

is a good representation of the original data. Note that, recursive coarsening will343

be inexpensive since the inner products required in the further levels are already344

computed in the first level of coarsening.345

In the multilevel framework of hypergraph coarsening we apply the matrix ap-346

proximation method, say using SVD, to the coarsened data matrix Ar ∈ Rm×nr at347

the lowest level, where nr is the number of data items at coarse level r (nr < n). A348

low-rank matrix approximation can be viewed as a linear projection of the columns349

into a lower dimensional space. In other words we have a matrix Âr ∈ Rd×nr (d < m).350

Applying the same linear projection to A ∈ Rm×n produces Â ∈ Rd×n (d < m), and351

one can expect that Â preserves certain features of A. This linear projection is then352

applied to the original data A ∈ Rm×n to obtain a reduced representation Â ∈ Rd×n353

(d < m) of the original data. The procedure is illustrated in Figure 1 (left). The354

multilevel idea is used in the ConstantTimeSVD algorithm proposed in [16].355

Another strategy for reducing the matrix dimension is to mix the two techniques:356

Coarsening may still be exceedingly expensive for some type of data where there is357

no immediate graph available to exploit for coarsening. In this case, a good strategy358

would be to downsample first using the randomized methods, then construct a graph359

and coarsen it. In section 6, we compare the SVDs obtained from pure randomization360

methods against those obtained from coarsening and also randomization + coarsening.361

4.3. CSSP and graph sparsification. The multilevel coarsening technique362

presented can be applied for the column subset selection problem (CSSP) as well as363

for the graph sparsification problem. We can use Algorithm 2 to coarsen the matrix,364

which is equivalent to selecting columns of the matrix. The only modification in the365

algorithm required is that the columns selected are not scaled. The coarse matrix C366

contains few columns of the original matrix A and yet preserves the structure of A.367

This manuscript is for review purposes only.



10 S. UBARU AND Y. SAAD

Algorithm 3 Incremental SVD

Start: select k columns of A by random sampling or coarsening, define As as this
sample of columns.
repeat

Update (compute if started) SVD of As via SVD-update or subspace iteration.
Add columns of A to As

until converged

For graph sparsification, we can apply the coarsening procedure on the matrix368

BT , i.e., coarsen the rows of the vertex edge incidence B, which yields us fewer edges,369

B̃ with fewer rows. The analysis in section 5 shows how this coarsening strategy is370

indeed a spectral sparsifier, shows xT B̃T B̃x is close to xTBTBx. Since we achieve371

sparsification via matching, the structures such as clusters within the original graph372

are also preserved.373

4.4. Incremental SVD. Next, we explore some combined algorithms that im-374

prove the randomized sampling and coarsening SVD results significantly. The typical375

overall algorithm which we call Incremental SVD algorithm is sketched in Algorithm 3.376

A version of this Incremental algorithm has been briefly discussed in [24], where the377

basic randomized algorithm is combined with subspace iteration, see Algorithm 8.1 in378

the reference. For subspace iteration, we know that each iteration takes the computed379

subspace closer to the subspace spanned by the target singular vectors. If the initial380

subspace is close to the span of the actual top k singular vectors, fewer iterations will381

be needed to get accurate results. The theoretical results established in the following382

section, give us an idea how close the subspace obtained from the coarsening technique383

will be to the span of the top k singular vectors of the matrix. In such cases, a few384

steps of the subspace iteration will then yield very accurate results.385

For the SVD-RR update method, it is known that the method performs well when386

the updates are of low rank and do not affect the dominant subspace, the subspace387

spanned by the top k singular vectors which of interest, too much [65]. Since the388

random sampling and the coarsening methods return a good approximation to the389

dominant subspace, we can assume that the updates in the incremental SVD are of390

low rank, and these updates likely effect the dominant subspace only slightly. Hence,391

the SVD-RR update gives accurate results.392

5. Analysis. In this section, we establish theoretical results for the coarsening393

technique based on column matching. Suppose in the coarsening strategy, we combine394

two columns a(i) and a(̂i) if the angle between them is such that, tan θi ≤ ε. We395

replace the two columns a(i) and a(̂i) by c(p) = (
√

1 + cos2 θi)a
(i) (or a(̂i), the one with396

more nonzeros). We then have the following key result.397

Lemma 5.1. Given A ∈ Rm×n, let C ∈ Rm×c be the coarsened matrix of A398

obtained by one level of coarsening of A with columns a(i) and a(̂i) matched if tan θi ≤ ε,399

for 0 < ε < 1. Then,400

(4) |xTAATx− xTCCTx| ≤ 3ε‖A‖2F ,401

for any x ∈ Rn : ‖x‖ = 1.402

Proof. Let (i, î) be a pair of matched column indices with i being the index of403

the column that is retained after scaling. We denote by I the set of all indices of the404

retained columns and Î the set of the remaining columns.405

We know that σ2
i (A) = σi(AA

T ) = max‖x‖=1 x
TAATx, and also xTAATx =406

‖ATx‖22 =
∑n
i=1〈a(i), x〉2. Similarly, consider xTCCTx = ‖CTx‖22 =

∑
i∈I〈ci, x〉2 =407
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i∈I(1 + c2i )〈a(i), x〉2, where indices ci = cos θi. Next, we have,408

|xTAATx− xTCCTx| = |
∑
i∈I∪Î

〈a(i), x〉2 −
∑
i∈I

(1 + c2i )〈a(i), x〉2|409

≤ |
∑
î∈Î

〈a(̂i), x〉2 −
∑
i∈I

c2i 〈a(i), x〉2|410

=
∑

(i,̂i)∈I×Î

[
〈a(̂i), x〉2 − c2i 〈a(i), x〉2

]
411

412

where the set I× Î consists of pairs of indices (i, î) that are matched. Next, we consider413

the inner term in the summation. Let the column a(̂i) be decomposed as follows:414

a(̂i) = cia
(i) + siw,415

where si = sin θi and w = ‖a(i)‖w̄ with w̄ a unit vector that is orthogonal to a(i)416

(hence, w ⊥ a(i) and has the same length). Then,417

|〈a(̂i), x〉2 − c2i 〈a(i), x〉2| =
∣∣∣〈cia(i) + siw, x〉2 − c2i 〈a(i), x〉2

∣∣∣418

=
∣∣∣c2i 〈a(i), x〉2 + 2cisi〈a(i), x〉〈w, x〉+ s2i 〈w, x〉2 − c2i 〈a(i), x〉2

∣∣∣419

= | sin 2θi〈a(i), x〉〈w, x〉+ sin θ2i 〈w, x〉2|420

421

Let ti = tan θi, then we have sin 2θi = 2ti
1+t2i

and using the fact that |〈w, x〉| ≤422

‖a(i)‖ ≡ η and 〈a(i), x〉 ≤ η, we get423

| sin 2θi〈a(i), x〉〈w, x〉+ sin θ2i 〈w, x〉2| ≤ η2 sin 2θi

[
1 +

sin2 θi
2 sin θi cos θi

]
424

= η2 sin 2θi

[
1 +

tan θi
2

]
425

≤ 2η2ti + (ηti)
2

1 + t2i
426

≤ 2η2ti + (ηti)
2.427

Now, since our algorithm combines two columns only if tan(θi) ≤ ε (or cos2 θ ≥428

1/(1 + ε2)), we have429

|〈a(̂i), x〉2 − c2i 〈a(i), x〉2| ≤ 2η2ε+ η2ε2 ≤ 3εη2430

as ε < 1 and η > 1. We can further improve the bound to 2ηε+(ηε)2 ≤ 2.5ηε, provided431

(ηε) ≤ 0.5. Thus, we have432

|xTAATx− xTCCTx| ≤ 3ε
∑
i∈I
‖a(i)‖2 ≤ 3ε‖A‖2F .

433

The above lemma gives us bounds on the Rayleigh Quotients of the coarsened434

matrix C. This result helps to establish the following error bounds.435
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Theorem 5.2. Given A ∈ Rm×n, let C ∈ Rm×c be the coarsened matrix of A436

obtained by one level coarsening of A with columns a(i) and a(̂i) combined if tan θi ≤ ε,437

for 0 < ε < 1. Let Hk be the matrix consisting of the top k left singular vectors of C438

as columns. Then, we have439

‖A−HkH
T
k A‖2F ≤ ‖A−Ak‖2F + 6kε‖A‖2F(5)440

‖A−HkH
T
k A‖22 ≤ ‖A−Ak‖22 + 6ε‖A‖2F ,(6)441

where Ak is the best rank k approximation of A.442

Proof. Frobenius norm error: First, we prove the Frobenius norm error bound.443

We can express ‖A−HkH
T
k A‖2F :444

‖A−HkH
T
k A‖2F = Tr((A−HkH

T
k A)T (A−HkH

T
k A))(7)445

= Tr(ATA− 2ATHkH
T
k A+ATHkH

T
k HkH

T
k A)446

= Tr(ATA)− Tr(ATHkH
T
k A)447

= ‖A‖2F − ‖ATHk‖2F .448

We get the above simplifications using the equalities: ‖X‖2F = Tr(XTX) and HT
k Hk =449

I. Let h(i) for i = 1, . . . , k be the columns of Hk. Then, the second term in the above450

equation is ‖ATHk‖2F =
∑k
i=1 ‖ATh(i)‖2.451

From Lemma 5.1, we have for each i,452

|‖ATh(i)‖2 − ‖CTh(i)‖2| = |‖ATh(i)‖2 − σ2
i (C)| ≤ 3ε‖A‖2F ,453

since h(i)’s are the singular vectors of C. Summing over k singular vectors, we get454

(8) |‖ATHk‖2F −
k∑
i=1

σ2
i (C)| ≤ 3εk‖A‖2F .455

From the perturbation theory [23, Thm. 8.1.4], we have456

|σ2
i (C)− σ2

i (A)| ≤ ‖AAT − CCT ‖2,457

for i = 1, . . . , n. Next, we have458

‖AAT − CCT ‖2 = max
x∈Rn:‖x‖=1

|xT (AAT − CCT )x| ≤ 3ε‖A‖2F ,459

from Lemma 5.1. Hence, summing over k singular values,460

(9)

∣∣∣∣∣
k∑
i=1

σ2
i (C)−

k∑
i=1

σ2
i (A)

∣∣∣∣∣ ≤ 3εk‖A‖2F .461

Combining (8) and (9), we get462 ∣∣∣∣∣‖ATHk‖2F −
k∑
i=1

σ2
i (A)

∣∣∣∣∣ ≤ 6εk‖A‖2F .463

Combining this relation with (7), gives us the Frobenius norm error bound (since464

‖A‖2F −
∑k
i=1 σ

2
i (A) = ‖A−Ak‖2F ).465
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Spectral norm error: Next, we prove the spectral norm error bound. Let Hk =466

range(Hk) = span(h(1), . . . , h(k)) and let Hn−k be the orthogonal complement of Hk.467

For x ∈ Rn, let x = αy + βz, where y ∈ Hk, z ∈ Hn−k and α2 + β2 = 1. Then,468

‖A−HkH
T
k A‖22 = max

x∈Rn:‖x‖=1
‖xT (A−HkH

T
k A)‖2469

= max
y,z
‖(αyT + βzT )(A−HkH

T
k A)‖2470

≤ max
y∈Hk:‖y‖=1

‖yT (A−HkH
T
k A)‖2 + max

z∈Hn−k:‖z‖=1
‖zT (A−HkH

T
k A)‖2471

= max
z∈Hn−k:‖z‖=1

‖zTA‖2,472

since α, β ≤ 1 and for any y ∈ Hk, yTHkH
T
k = yT , so the first term is zero and for473

any z ∈ Hn−k, zTHkH
T
k = 0. Next,474

‖zTA‖2 = ‖zTC‖2 + [‖zTA‖2 − ‖zTC‖2]475

≤ σ2
k+1(C) + 3ε‖A‖2F476

≤ σ2
k+1(A) + 6ε‖A‖2F477

= ‖A−Ak‖22 + 6ε‖A‖2F .478

Since |‖zTA‖2 − ‖zTC‖2| ≤ 3ε‖A‖2F from Lemma 5.1, maxz∈Hn−k:‖z‖=1 ‖zTC‖2 =479

σ2
k+1(C), and |σ2

i (C)− σ2
i (A)| ≤ ‖AAT − CCT ‖2 ≤ 3ε‖A‖2F .480

We observe that our main Theorem (Theorem 5.2) is similar to the results developed481

for randomized sampling, see [15, 16]. For randomized sampling, the error reduces482

as the number of columns c that are sampled increases. For coarsening, the error483

is smaller if the angles between the columns that are combined are smaller. The484

number of columns is related to these angles which in turn depends on the structure485

of the matrix. Existing theoretical results for subspace iteration are discussed in the486

Appendix.487

6. Numerical Experiments. This section describes a number of experiments488

to illustrate the performances of the different methods discussed. The latter part of489

the section focuses on the performance of the coarsening method in the applications490

discussed in section 2.491

6.1. SVD Comparisons. In the first set of experiments, we use three term-by-492

document datasets and compare the sampling, coarsening and combined methods to493

compute the SVD. The tests are with unweighted versions of the CRANFIELD dataset494

(1398 documents, 5204 terms), MEDLINE dataset (1033 documents, 8322 terms)495

and TIME dataset (425 documents, 13057 terms). We will use these three datasets496

in the experiments for column subset selection and in the latent semantic indexing497

application examples, which will give us an extensive evaluation of the performances498

of the methods compared.499

Figure 2 illustrates the following experiment with the three datasets. Results from500

four different methods are plotted. The first solid curve (labeled ‘exact’) shows the501

singular values of matrix A from 20 to 50 computed using the svds function in Matlab502

(the results obtained by the four methods for top twenty singular values were similar).503

The diamond curve labeled ‘coarsen’, shows the singular values obtained by one level504

of coarsening using Algorithm 2. The star curve (labeled ‘rand’) shows the singular505

values obtained by random sampling using column norms, with a sample size equal506

to the size obtained with one level of coarsening. We note that the result obtained507
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Fig. 2. Results for the datasets CRANFIELD (left), MEDLINE (middle), and TIME (right).
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Fig. 3. Second set of results for the CRANFIELD (left) and the MEDLINE datasets (right).

by coarsening is much better than that obtained by random sampling. However, we508

know that the approximations obtained by either sampling or coarsening cannot be509

highly accurate. In order to get improved results, we can invoke incremental SVD510

algorithms, Algorithm 3. The curve with triangles labeled ‘coars+ZS’ shows the511

singular values obtained when Zha Simon algorithm was used to improve the results512

obtained by the coarsening algorithm. Here, we consider the singular vectors of the513

coarse matrix and use the remaining part of the matrix to update these singular vectors514

and singular values. We have also included the results obtained by one iteration of515

power method [25], i.e., from the SVD of the matrix Y = (AAT )AΩ, where Ω is a516

random Gaussian matrix of same size as the coarse matrix. We see that the smaller517

singular values obtained from the coarsening algorithms are better than those obtained518

by the one-step power method.519

As discussed in section 4, a possible way of improving the SVD results obtained by520

a coarsening or random sampling step is to resort to subspace iteration or use the SVD521

update algorithms as in the first experiment. Figure 3 illustrates such results with522

incremental SVD algorithms for the CRANFIELD (left) and the MEDLINE (right)523

datasets. We have not reported the results for the TIME dataset since it is hard to524

distinguish the results obtained by different algorithms for this case. First, subspace525

iteration is performed using the matrix A and the singular vectors obtained from526

coarsening or random sampling. The curve ‘coars+subs’ (star) corresponds to the527

singular values obtained when subspace iteration was used to improve the SVD obtained528

by coarsening. Similarly, for the curve labeled ‘rand+subs’ (triangle up), subspace529
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Table 1
Low rank approximation: Coarsening, random sampling, and rand+coarsening. Error1 =

‖A−HkH
T
k A‖F ; Error2= 1

k

∑
k
|σ̂i−σi|
σi

Dataset n k c Coarsen Rand Sampl Rand+Coars
Err1 Err2 Err1 Err2 Err1 Err2

Kohonen 4470 50 1256 86.26 0.366 93.07 0.434 93.47 0.566
aft01 8205 50 1040 913.3 0.299 1006.2 0.614 985.3 0.598
FA 10617 30 1504 27.79 0.131 28.63 0.410 28.38 0.288
chipcool0 20082 30 2533 6.091 0.313 6.199 0.360 6.183 0.301
brainpc2 27607 30 865 2357.5 0.579 2825.0 0.603 2555.8 0.585
scfxm1-2b 33047 25 2567 2326.1 – 2328.8 – 2327.5 –
thermomechTC 102158 30 6286 2063.2 – 2079.7 – 2076.9 –
Webbase-1M 1000005 25 15625 – – 3564.5 – 3551.7 –
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Fig. 4. Mean absolute singular value errors 1
k

∑
k
|σ̂i−σi|
σi

(Left) and Frobenius norm errors

‖A−HkH
T
k A‖F (right) for the three methods for aft01 dataset (k = 30).

iteration was used with the singular vectors obtained from randomized sampling.530

We have included the results when the SVD update algorithm was used to improve531

the SVD obtained by coarsening (‘coars+ZS’) and random sampling (‘rand+ZS’),532

respectively. These plots show that both the SVD update algorithm and subspace533

iteration improve the accuracy of the SVD significantly.534

Next, we compare the performances of coarsening and random sampling for535

computing the low rank approximation of matrices. We also consider the combined536

method of sampling followed by coarsening discussed in the introduction and in section 4.537

Table 1 shows comparison results between the three methods, namely, Coarsening,538

random sampling, and random sampling+coarsening for low rank approximation of539

matrices from various applications. All matrices were obtained from the SuiteSparse540

matrix collection: https://sparse.tamu.edu/ [12] and are sparse. The errors reported541

are the Frobenius norm error = ‖A−HkH
T
k A‖F in computing the rank k approximation542

and the average absolute normalized error in the singular values = 1
k

∑
k
|σ̂i−σi|
σi

for543

rank k as listed in third column. The size of the input matrix and the number of544

columns in the coarsened/subsampled matrix are listed in the second and fourth545

columns, respectively. For very large matrices, the exact singular values cannot be546

computed, hence we were unable to report Error2 for the last 3 matrices. For Webbase-547

1M (size 106), it is impractical to do full coarsening. Hence, we only report errors for548

random sampling, and random sampling+coarsening.549

Figure 4 plots the two errors ‖A−HkH
T
k A‖F and 1

k

∑
k
|σ̂i−σi|
σi

with k = 30 for550

the three methods for aft01 dataset when different levels of coarsening were used,551
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Table 2
CSSP: Coarsening versus leverage score sampling.

Dataset Size Rank k c Coarsening levSamp
levels error error

CRAN 1398 25 88 4 496.96 501.32
50 88 4 467.49 477.25
150 175 3 375.40 383.23

MED 1033 50 65 4 384.91 376.23
100 130 4 341.51 339.01

TIME 425 25 107 2 411.71 412.77
50 107 2 371.35 372.66
50 54 3 389.69 391.91

Kohonen 4470 25 981 2 31.89 36.36
Erdos992 6100 50 924 3 100.9 99.29
FA 10617 50 2051 3 26.33 28.37
chipcool0 20082 100 1405 4 6.05 6.14

i.e., the number of columns sampled/coarsened were increased. Here for ‘rand+coars’552

we proceed as follows. First, half of the columns are randomly sampled and then a553

multilevel coarsening is performed with one level less than the pure coarsening method554

reported in the previous column. Hence, we do not have errors for c = n/2. Coarsening555

clearly yields better results (lower errors) than the randomized sampling method. The556

combined method of random sampling+coarsening works well and performs better557

than randomized sampling in most cases. For a smaller number of columns, i.e., more558

levels in coarsening, the Frobenius norm error for rand+coarsen approaches that of559

full coarsening. However, note that the coarsening procedure is expensive compared560

to column norm sampling.561

In all the above experiments, we have used maximum matching for coarsening.562

The choice of ε, the parameter that decides the angle for matching does not seem to563

affect the errors directly. If we choose smaller ε, we will have a larger coarse matrix C564

(fewer columns are combined) and the error will be small. If we choose a larger ε, more565

columns are combined and the results are typically equivalent to just simply using566

maximum matching ignoring the angle constraint. Thus, in general, the performance567

of the coarsening technique depends on the structure of the considered matrix. If we568

have more columns that are close to each other, i.e., make smaller angle between each569

other, the coarsening technique will combine more columns, we can choose a smaller ε570

and yet obtain good results. If the matrix is very sparse or if the columns make large571

angles between each other, coarsening might not yield a coarse matrix since it will not572

be able to match many columns. Therefore, selecting the smallest ε that will yield a573

small coarse matrix and yet lead to good approximations will depend on the structure574

of the input matrix.575

6.2. Column Subset Selection. In the following experiment, we compare the576

performance of the coarsening method against the leverage score sampling method577

for column subset selection. We report results for the same three term-by-document578

datasets used in the first set of experiments. We also include results obtained for a579

few sparse matrices from the SuiteSparse matrix collection.580

Table 2 presents a few comparisons. The errors reported are the Frobenius581

norm errors ‖A − PCA‖F , where PC is the projector onto span(C), and C is the582

coarsened/sampled matrix which is computed by the multilevel coarsening method583

or using leverage score sampling of A with the top k singular vectors as reported in584
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Table 3

Graph Sparsification: Coarsening versus leverage score sampling. Error= 1
r

∑
r
|σi(K̃)−σi(K)|

σi(K)

Dataset m r nnz(K̃)
nnz(K) Coarsening levSamp

levels error error
sprand 1290 332 0.29 2 0.541 0.575

1951 499 0.28 2 0.542 0.579
2676 679 0.27 2 0.537 0.580

Maragal4 6005 460 0.11 4 0.416 0.569
rosen1 12599 1738 0.18 3 0.482 0.304
G1 19176 2486 0.14 3 0.549 0.635
bibd13-6 25428 1619 0.08 4 0.901 0.920

the second column. The number of columns c in each test is reported in the third585

column which is the same for both methods. Recall that for CSSP, the coarsening and586

sampling algorithms do not perform a post-scaling of the columns that are selected. We587

see that the multilevel coarsening method performs very well and is comparable with588

leverage score sampling in most cases. Note that the standard leverage score sampling589

requires the computation of the r top singular vectors and this can substantially more590

expensive than coarsening especially when r is large.591

6.3. Graph Sparsification. The next experiment illustrates how the coarsening592

method can be used for graph sparsification. We again compare the performance of593

the coarsening approach to the leverage score sampling method [27] for graph spectral594

sparsification. Recall that spectral sparsification accounts to computing a sparse graph595

G̃ that approximates the original graph G such that the singular values of the graph596

Laplacian K̃ of G̃ are close to those of K, Laplacian of G.597

Table 3 lists the errors obtained when the coarsening and the leverage score598

sampling approaches were used to compute a sparse graph G̃ for different sparse599

random graphs and few matrices related to graphs from the SuiteSparse database.600

Given a graph G, we can form a vertex edge incidence matrix B, such that the601

Laplacian K = BTB. Then, sampling/coarsening the rows of B to get B̃ gives us a602

sparse graph with Laplacian K̃ = B̃T B̃. The type of graph or the names are given in603

the first column of the table and the number of rows m in corresponding vertex edge604

incidence matrix B is given in the second column. The number of rows r in the coarse605

matrix B̃ is listed in the third column. The ratios of sparsity in K̃ and K are also606

given. This ratio indicates the amount of sparsity achieved by sampling/coarsening.607

Since, we have same number of rows in the coarsened and sampled matrix B̃, this608

ratio will be the same for both methods. The error reported is the normalized mean609

absolute error in the singular values of K and K̃, Error= 1
r

∑
r
|σi(K̃)−σi(K)|

σi(K) , which610

tells us how close the sparser matrix K̃ is to K spectrally. We see that in most cases,611

the coarsening approach performs similarly to or better than leverage score sampling.612

6.4. Applications. In this section, we illustrate the performance of the coarsen-613

ing technique in the various applications introduced in section 2.614

6.4.1. Latent Semantic Indexing. The first application we consider is Latent615

Semantic Indexing (LSI) [13, 33]. In LSI, we have a term-document matrix A ∈ Rm×n,616

representing m documents and n terms that frequently occur in the documents, where617

Aij is the frequency of the jth term in the i-th document. A query is an n-vector618

q ∈ Rn, normalized to 1, where the jth component of a query vector is interpreted as619
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Fig. 5. LSI results for the MEDLINE dataset on left and TIME dataset on the right.

the frequency with which the jth term occurs in a topic. Typically, the number of620

topics to which the documents are related is smaller than the number of unique terms621

n. Hence, finding a set of k topics that best describe the collection of documents for a622

given k, corresponds to keeping only the top k singular vectors of A, and obtaining a623

rank k approximation. The truncated SVD and related methods are often used in LSI624

applications. The argument is that a low rank approximation captures the important625

underlying intrinsic semantic associated with terms and documents, and removes the626

noise or variability in word usage [33]. In this experiment, we employ the Coarsen627

SVD and leverage score sampling SVD algorithms to perform information retrieval628

techniques by Latent Semantic Indexing (LSI) [51].629

Given a term-by-document data A ∈ Rm×n, we normalize the data using TF-IDF630

(term frequency-inverse document frequency) scaling. We also normalize the columns631

to unit vectors. Query matching is the process of finding the documents most relevant632

to a given query q ∈ Rm.633

Figure 5 plots the average precision against the dimension/rank k for MEDLINE634

and TIME datasets. When the term-document matrix A is large, the computation of635

the SVD factorization can be expensive for large ranks k. The multi-level techniques636

will find a smaller set of document vectors, denoted byAr ∈ Rm×nr , to represent A637

(nr < n). For leverage score sampling, we sample Ar using leverage scores with k638

equal to the rank shown on the x axis. Just like in the standard LSI, we compute the639

truncated SVD of Ar = UdΣdV
T
d , where d is the rank. Now the reduced representation640

of A is Â = Σ−1d UTd A. Each query q is transformed to a reduced representation641

q̂ = Σ−1d UTd q. The similarity of q and ai are measured by the cosine distance between q̂642

and â for i = 1, . . . , n. This example clearly illustrates the advantage of the coarsening643

method over randomized sampling and leverage scores. The multilevel coarsening644

method performs better than the sampling method in this application and in some cases645

it performs as well as the truncated SVD method. Multilevel coarsening algorithms646

for LSI applications, have been discussed in [51] where additional details can be found.647

6.4.2. Projective clustering. The next application we consider is a set of648

nonlinear projection based clustering techniques. We illustrate how the multilevel649

coarsening methods can be used for data reduction in this application. We consider650

three types of nonlinear projection methods, namely, Isomap [58], Local Linear Embed-651

ding (LLE) [47] and Laplacian Eigenmaps [4]. Multilevel algorithm have been used in652

the clustering application, for example, article [41] uses a multilevel algorithm, based653

on MinMaxCut, for document clustering, and Fang et. al. [20] applied the mutlilevel654

algorithms for spectral clustering and manifold learning.655

Given n data-points, most of the projective clustering methods start by con-656
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Fig. 6. Purity and entropy values versus dimensions for three types of clustering for ORL dataset.

structing a graph with edges defined based on certain criteria such as new distance657

metrics or manifolds, nearest neighbors, points on a same subspace, etc. The graph658

Laplacian corresponding to the graph is considered, and for a given k, the top k659

eigenvectors of a shifted Laplacian matrix, whose top eigenvectors correspond to the660

bottom eigenvectors of the original graph, are used to cluster the points. We use661

the following two evaluation metrics to analyze the quality of the clusters obtained,662

namely purity and entropy [69] given by:663

purity =

K∑
i=1

ni
n

purity(i); purity(i) =
1

ni
max
j

(nji ), and664

entropy =

K∑
i=1

ni
n

entropy(i); entropy(i) = −
K∑
j=1

nji
ni

logK
nji
ni
,665

where K is the number of clusters, nji is the number of entries of class j in cluster i,666

and ni is the number of data in cluster i. Here, we assume that the labels indicating667

the class to which data belong are available.668

In figure 6 we present results for three types of projective clustering methods,669

viz., Isomap, LLE and eigenmaps when coarsening was used before dimensionality670

reduction. The dataset used is the popular ORL face dataset [52], which contains 40671

subjects and 10 grayscale images each of size 112× 92 with various facial expressions672

(matrix size is 10304× 400). For the projective methods, we first construct a k-nearest673

neighbor graph with k = 5, and use embedding dimensions p = 10, . . . , 50. Note that674

even though the data is dense, the kNN graph is sparse. The figure presents the purity675

and entropy values obtained for the three projective clustering methods for these676

different dimensions p with (circle) and without (triangle) coarsening the graph. The677

solid lines indicate the results when kmeans was directly used on the data without678

dimensionality reduction. We see that the projective methods give improved clustering679

quality in terms of both purity and entropy, and coarsening further improves their680

results in many cases by reducing redundancy. This method was also discussed in [19]681

where additional results and illustrations with other applications can be found.682
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Table 4
TaggingSNP: Coarsening, Leverage Score sampling and Greedy selection

Data Size c Coarsen Lev. Samp. Greedy
Yaledataset/SORCS3 1966× 53 14 0.0893 0.1057 0.0494
Yaledataset/PAH 1979× 32 9 0.1210 0.2210 0.0966
Yaledataset/HOXB 1953× 96 24 0.1083 0.1624 0.0595
Yaledataset/17q25 1962× 63 16 0.2239 0.2544 0.1595
HapMap/SORCS3 268× 307 39 0.0325 0.0447 0.0104
HapMap/PAH 266× 88 22 0.0643 0.0777 0.0311
HapMap/HOXB 269× 571 72 0.0258 0.0428 0.0111
HapMap/17q25 265× 370 47 0.0821 0.1190 0.0533

6.4.3. Genomics - Tagging SNPs. The third application we consider is that of683

DNA microarray gene analysis. The data from microarray experiments is represented684

as a matrix A ∈ Rm×n, where Aij indicates whether the jth expression level exists685

for gene i. Typically, the matrix could have entries {−1, 0, 1} indicating whether the686

expression exists (±1) or not (0) and the sign indicating the order of the sequence.687

Article [44] used CSSP with a greedy selection algorithm to select a subset of gene688

expressions or single nucleotide polymorphisms (SNPs) from a table of SNPs for689

different populations that capture the spectral information (variations) of population.690

The subset of SNPs are called tagging SNPs (tSNPs). Here we show how the coarsening691

method can be applied in this application to select columns (and thus tSNPs) from692

the table of SNPs, which characterize the extent to which major patterns of variation693

of the intrapopulation data are captured by a small number of tSNPs.694

We use the same two datasets as in [44], namely the Yale dataset and the Hapmap695

datset. The Yale dataset1 [42] contains a total of 248 SNPs for around 2000 unrelated696

individuals from 38 populations each from around the world. We consider four697

genomic regions (SORCS3,PAH,HOXB, and 17q25 ). The HapMap project2 [22]698

(phase I) released a public database of 1,000,000 SNP typed in different populations.699

From this database, we consider the data for the same four regions. Using the SNP700

table, an encoding matrix A is formed with entries {1, 0, 1} indicating whether the701

expression exists (±1) or not (0) and the sign indicating the order of the sequence, see702

supplementary material of [44] for details on this encoding. We obtained such encoded703

matrices, made available online by the authors of [44], from http://www.asifj.org/.704

Table 4 lists the errors obtained from the three different methods, namely, Coars-705

ening, Leverage Score sampling and Greedy selection [44] for different populations.706

The error reported is given by nnz(Â − A)/nnz(A), where A is the input encoding707

matrix, C is the sampled/coarsened matrix, Â = CC†A, is the projection of A onto708

C and nnz(A) is the number of elements in A. The greedy algorithm considers each709

column of the matrix sequentially, projects the remaining columns onto the considered710

column and chooses the column that gives least error as defined above. The algorithm711

then repeats the procedure to select the next column and so on. This algorithm is very712

expensive but performs very well in practice. We observe that the coarsening algorithm713

performs better than leverage score sampling and the performance is comparable to714

that of the greedy algorithm in some cases. The coarsening algorithm is inexpensive715

compared to leverage score sampling and is significantly cheaper than the greedy716

algorithm.717

1http://alfred.med.yale.edu/
2https://www.ncbi.nlm.nih.gov/variation/news/NCBI retiring HapMap/
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Table 5
Multilabel Classification using CSSP (leverage score sampling) and coarsening: Average training

and test errors and Precison@k, k =sparsity.

Data Method c Train Err Train P@k Test Err Test P@k

Mediamill, d = 101, n =
10000, nt = 2001, p = 120.

Coars 51 10.487 0.766 8.707 0.713
CSSP 51 10.520 0.782 12.17 0.377

Bibtex, d = 159, n =
6000, nt = 1501, p = 1836.

Coars 80 1.440 0.705 4.533 0.383
CSSP 80 1.575 0.618 4.293 0.380

Delicious, d = 983, n =
5000, nt = 1000, p = 500.

Coars 246 50.943 0.639 74.852 0.455
CSSP 246 53.222 0.655 77.937 0.468

Eurlex, d = 3993, n =
5000, nt = 1000, p = 5000.

Coars 500 2.554 0.591 73.577 0.3485
CSSP 500 2.246 0.504 81.989 0.370

6.4.4. Multilabel Classification. The last application we consider is that of718

multilabel classification (MLC). As seen in section 2, the most common approach to719

handle large number of labels in this problem is to perform a label dimension reduction720

assuming a low rank property of labels, i.e., only few labels are important. In this721

section, we propose to reduce the label dimension based on hypergraph coarsening.722

Article [6] presented a method for MLC based on CSSP using leverage score sampling.723

The idea is to replace sampling by hypergraph coarsening in this method.724

Table 5 list the results obtained for MLC when coarsening and leverage score725

sampling (CSSP) were used for label reduction in the algorithm of [6] on different726

popular multilabel datasets. All datasets were obtained from https://manikvarma.727

github.io/downloads/XC/XMLRepository.html. The gist of the ML-CSSP algorithm728

is as follows: Given data with a large number of labels Y ∈ Bn×d, where B is a binary729

field with entries {0, 1}, we reduce the label dimension by subsampling or coarsening730

the label matrix, i.e., we reduce the d labels to c < d labels. We then train c binary731

classifiers for these reduced c labels. For a new data point, we can predict whether732

the data-point belongs to the c reduced labels using the c binary classifiers, by getting733

a c dimensional predicted label vector. We then project the predicted vector onto d734

dimension and then use rounding to get the final d dimensional predicted vector.735

All prediction errors reported (training and test) are Hamming loss errors, number736

of classes the predicted label vector differs from the exact label vector. The second737

metric used is Precison@k, which is a popular metric used in MLC literature [61]. This738

measures the precision of predicting the first k coordinates |supp(ŷ1:k) ∩ supp(y)|/k,739

where supp(x) = {i|xi 6= 0}. In the above results, we chose k =the actual sparsity of740

the predicted label vector. This is equivalent to checking whether or not the proposed741

method predicted all the labels the data belongs to correctly. Other values of k such742

as Precision@k for k = 1, 3, 5 are used, where one is checking whether the top 1,3 or 5743

labels respectively are predicted correctly, ignoring other and false labels. The better744

of the two results is highlighted. In this application too, we see that the coarsening745

method performs well and in many cases does better than the CSSP method which is746

more expensive.747

7. Conclusion. This paper advocated the use of coarsening techniques for three748

matrix approximation problems, namely, partial SVD, column subset selection and749

graph sparsification, and illustrated how the coarsening methods, and a combination750

of sampling and coarsening methods can be applied to solve these problems. We751

presented a few (new) applications for the coarsening technique, and demonstrated752

via several experiments that the coarsening technique performs very well in practice,753

better than the randomized methods in many cases. This is due to the fact that the754

coarsening technique exploits the structure of the input matrix. Coarsening is also755
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inexpensive compared to leverage score sampling, and yields comparable results. We756

also developed theoretical error bounds for the coarsening method. Interesting future757

work includes modifying the proposed coarsening technique for online and streaming758

settings.759
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Appendix A. Existing Theory - Subspace Iteration. Here we discuss the934

theoretical results for the subspace iteration algorithm established in the literature.935

The subspace iteration algorithm has been employed and analyzed in the literature936

since a long time. The most recent analyses of subspace iteration appeared in [25, 24]937

and [50]. We present the following theorem which combines the results from [25, 24, 50].938

939

Theorem A.3 (Deterministic bounds). Given A ∈ Rm×n with SVD A = UΣV T940

and an initial subspace Ω ∈ Rn×k. Let Vk be the top k right singular vectors with941

Ω1 = V Tk Ω, and Vn−k the bottom n− k right singular vectors with Ω2 = V Tn−kΩ. Let942

Q be the subspace obtained after q steps of subspace iteration. Then, if Ω1 is full rank,943

we have944

(10) ‖A−QQTA‖ ≤ (1 + ‖Ω2‖‖Ω†1‖)1/(4q+2)σk+1.945

If σ̃j for j = 1, . . . , k are the singular values obtained after q steps of subspace iteration.946

Then, we have947

(11) σj ≥ σ̃j ≥
σj√

1 + ‖Ω2‖2‖Ω†1‖2
(
σk+1

σj

)(4q+2)
.948

In addition we have,949

‖qj − uj‖ ≤
(
σk+1

σj

)q
‖Ω(j) − uj‖.950

Thus, we need Ω1 to be full rank and the error depends on its pseudoinverse, i.e., its951

smallest singular value. If the initial subspace is close to the top k singular vectors952

V1, then Ω1 will be well conditioned and the subspace iteration will converge rapidly.953

We know that the randomized subsampling as well as the coarsening algorithms give954

good approximation to the top k subspace. Hence, the incremental SVD algorithm955

presented in section 4 should converge rapidly.956
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