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SAMPLING AND MULTILEVEL COARSENING ALGORITHMS FOR
FAST MATRIX APPROXIMATIONS*

SHASHANKA UBARU AND YOUSEF SAADf

Abstract. This paper addresses matrix approximation problems for matrices that are large,
sparse and/or that are representations of large graphs. To tackle these problems, we consider
algorithms that are based primarily on coarsening techniques, possibly combined with random
sampling. A multilevel coarsening technique is proposed which utilizes a hypergraph associated with
the data matrix and a graph coarsening strategy based on column matching. Theoretical results are
established that characterize the quality of the dimension reduction achieved by a coarsening step,
when a proper column matching strategy is employed. We consider a number of standard applications
of this technique as well as a few new ones. Among the standard applications we first consider the
problem of computing the partial SVD for which a combination of sampling and coarsening yields
significantly improved SVD results relative to sampling alone. We also consider the Column subset
selection problem, a popular low rank approximation method used in data related applications, and
show how multilevel coarsening can be adapted for this problem. Similarly, we consider the problem
of graph sparsification and show how coarsening techniques can be employed to solve it. Numerical
experiments illustrate the performances of the methods in various applications.

Key words. Singular values, SVD, randomization, subspace iteration, coarsening, multilevel
methods.

AMS subject classifications. 15A69, 15A18

1. Introduction. Many modern applications related to data often involve very
large datasets, but their relevant information lie on a low dimensional subspace. In
many of these applications, the data matrices are often sparse and/or are repre-
sentations of large graphs. In recent years, there has been a surge of interest in
approximating large matrices in a variety of different ways, such as by low rank
approximations [16, 25, 37], graph sparsification [55, 27], and compression [32]. Low
rank approximations include the partial singular value decomposition (SVD) [25] and
Column Subset Selection (the CSS Problem) [7]. A variety of methods have been
developed to efficiently compute partial SVDs of matrices [19, 23], a problem that
has been studied for a few decades. However, traditional methods for partial SVD
computations cannot cope with very large data matrices. Such datasets prohibit
even the use of rather ubiquitous methods such as the Lanczos or subspace iteration
algorithms [49, 50], since these algorithms require consecutive accesses to the whole
matrix multiple times. Computing such matrix approximations is even harder in the
scenarios where the matrix under consideration receives frequent updates in the form
of new columns or rows.

Much recent attention has been devoted to a class of ‘random sampling’ tech-
niques [15, 16, 25] whereby an approximate partial SVD is obtained from a small subset
of the matrix only, or possibly a few subsets. Random sampling is well-established
(theoretically) and is proven to give good results in some situations, see [37] for a
review. In this paper we will consider random sampling methods as one of the tools
to down sample very large datasets. However, because randomized methods assume
no prior information on the data and are independent of the input matrix they are
often termed “data-oblivious” [l]. Because of this feature, they can be suboptimal in
many situations since they do not exploit any available information or structures in
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2 S. UBARU AND Y. SAAD

the matrix. One of the goals of this work is to show that multilevel graph coarsening
techniques [20] can be good alternatives to randomized sampling.

Coarsening a graph (or a hypergraph) G = (V, E) means finding a ‘coarse’ ap-
proximation G = (V, E) to G with |V| < |V, which is a reduced representation of the
original graph G, that retains as much of the structure of the original graph as possible.
Multilevel coarsening refers to the technique of recursively coarsening the original graph
to obtain a succession of smaller graphs that approximate the original graph G. Several
methods exist in the literature for coarsening graphs and hypergraphs [26, 28, 9, 29].
These techniques are relatively more expensive than down-sampling with column norm
probabilities [16] but they are more accurate. Moreover, coarsening methods will be
inexpensive compared to the popular leverage scores based sampling [17] which is
more accurate than norm sampling. For very large matrices, a typical algorithm would
first perform randomized sampling to reduce the size of the problem and then utilize
a multilevel coarsening technique for computing an approximate partial SVD of the
reduced matrix.

Our Contribution. In this paper, we present a multilevel coarsening technique
that utilizes a hypergraph associated with the data matrix and a coarsening strategy
that is based on column matching, and discuss various applications for this technique.
We begin by discussing different approaches to find partial SVD of large matrices,
starting with random sampling methods. We also consider incremental sampling,
where we start with small samples and then increase the size until a certain criterion is
satisfied. The second approach is to replace random sampling, with a form of multilevel
coarsening technique. A middle ground solution is to start with random coarsening
and then utilize multilevel coarsening on the resulting sampled subset. The coarsening
techniques exploit inherent redundancies and structures in the matrix and perform
better than randomized sampling in many cases as is confirmed by the experiments.
We establish theoretical error analysis for a class of coarsening techniques. We also
show how the SVD update approach, see [65] or subspace iteration can be used after
the sampling or coarsening step to improve the SVD results. This approach is useful
when an accurate SVD of a large matrix is desired.

The second low rank approximation problem considered in this paper is that of
column subset selection problem [7, 66] (CSSP) or CUR decomposition [36, 17]. Popular
methods for CSSP use leverage score sampling method for sampling/selecting the
columns. Computing the leverage scores requires a partial SVD of the matrix and this
may be expensive, particularly for large matrices and when the (numerical) rank is not
small. In this work, we show how the graph coarsening techniques can be adapted for
column subset selection (CSSP). The coarsening approach is an inexpensive alternative
for this problem and performs well in many situations.

The third problem we consider is that of graph sparsification [31, 55, 27]. Here,
given a large (possibly dense) graph G, we wish to obtain a sparsified graph G that
has significantly fewer edges than G but still maintains important properties of the
original graph. Graph sparsification allows one to operate on large (dense) graphs
G with a reduced space and time complexity. In particular, we are interested in
spectral sparsifier, where the Laplacian of G spectrally approximates the Laplacian of
G [56, 27, 67]. That is, the spectral norm of the Laplacian of the sparsified graph is close
to the spectral norm of the Laplacian of GG, within a certain additive or multiplicative
factor. Such spectral sparsifiers can help approximately solve linear systems with the
Laplacian of G and to approximate effective resistances, spectral clusterings, random
walk properties, and a variety of other computations. We again show how the graph
coarsening techniques can be adapted to achieve graph sparsifications. We also present
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COARSENING ALGORITHMS FOR MATRIX APPROXIMATIONS 3

a few new applications for coarsening methods, see section 2.

Outline. The outline of this paper is as follows. Section 2, discusses a few
applications of graph coarsening. Section 3 describes existing popular algorithms
that are used for low rank approximation. The graph coarsening techniques and the
multilevel algorithms are described in sec. 4. In particular, we present a hypergraph
coarsening technique based on column matching. We also discuss methods to improve
the SVD obtained from randomized and coarsening methods. In section 5, we establish a
theoretical error analysis for the coarsening method. We also discuss the existing theory
for randomized sampling and subspace iteration. Numerical experiments illustrating
the performances of these methods in a variety of applications are presented in section 6.

2. Applications. We present a few applications of (multilevel) coarsening meth-
ods. In these applications, we typically encounter large matrices, and these are often
sparse and/or representations of graphs.

i. Latent Semantic Indexing. Latent semantic indexing (LSI) is a popular text
mining technique for analyzing a collection of documents that are similar [13, 33, 5, 30].
Given a user’s query, the method is used to retrieve a set of documents from a given
collection that are relevant to the query. Truncated SVD [5] and related methods [30]
are popular tools used in the LSI applications. The argument is that a low rank
approximation preserves the important underlying structure associated with terms
and documents, and removes the noise or variability in word usage [16]. Multilevel
coarsening for LSI was considered in [51]. In this work, we revisit this idea and show
how hypergraph coarsening can be employed in this application.

it. Projective clustering. Several projective clustering methods such as Isomap [58],
Local Linear Embedding (LLE) [47], spectral clustering [10], subspace clustering [43,

], Laplacian eigenmaps [41] and others involve partial eigen-decomposition and SVD
computation of a graph Laplacian. Various kernel based learning methods [39] also
involve SVD computation of large graph Laplacians. In most applications today, the
number of data-points are large and computing the singular vectors (eigenvectors) will
be expensive. Graph coarsening is a handy tool to reduce the number of data-points
in these applications, see [20, 41] for results.

i1i. Figengene analysis. Analysis of gene expression DNA microarray data has
become an important tool when studying a variety of biological processes [2, 46, 44].
In a microarray dataset, we have m genes (from m individuals possibly from different
populations) and a series of n arrays probe genome-wide expression levels in n different
samples, possibly under n different experimental conditions. The data is large with
several individuals and gene expressions, but is known to be of low rank. Hence, it has
been shown that a small number of eigengenes and eigenarrays (few singular vectors)
are sufficient to capture most of the gene expression information [2]. Article [44]
showed how column subset selection (CSSP) can be used for selecting a subset of gene
expressions that describe the population well in terms of spectral information captured
by the reduction. In this work, we show how hypergraph coarsening can be adapted
to choose a good (small) subset of genes in this application.

w. Multilabel Classification. The last application we consider is that of multilabel
classification in machine learning applications [60, 61]. In the multilabel classification
problem, we are given a set of labeled training data {(z;,y;)}? ,, where each z; € RP
is an input feature for a data instance which belongs to one or more classes, and
y; € {0,1}4 are vectors indicating the corresponding labels (classes) to which the data
instances belong. A vector y; has a one at the jth coordinate if the instance belongs
to j-th class. We wish to learn a mapping (prediction rule) between the features and
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4 S. UBARU AND Y. SAAD

the labels, in order to be able to predict a class label vector y of a new data point
z. Such multilabel classification problems occur in many domains such as computer
vision, text mining, and bioinformatics [59, 57], and modern applications involve a
large number of labels.

A popular approach to handle classification problems with many classes is to begin
by reducing the effective number of labels by means of so-called embedding-based
approaches. The label dimension is reduced by projecting label vectors onto a low
dimensional space, based on the assumption that the label matrix Y = [y1,...,yn]
has a low-rank. The reduction is achieved in different ways, for example, by using
SVD in [57] and column subset selection in [6]. In this work, we demonstrate how
hypergraph coarsening can be employed to reduce the number of classes, and yet
achieve accurate learning and prediction.

Article [54] discusses a number of methods that rely on clustering the data first in
order to built a reduced dimension representation. It can be viewed as a top-down
approach whereas coarsening is a bottom-up method.

3. Background. In this section, we review three popular classes of methods used
for calculating the partial SVD of matrices. The first class is based on randomized
sampling. We also consider the column subset selection (CSSP) and graph sparsification
problems using randomized sampling, in particular leverage score sampling. The second
class is the set of methods based on subspace iteration, and the third is the set of
SVD-updating algorithms [68, 65]. We consider the latter two classes of methods as
tools to improve the results obtained by sampling and coarsening methods. Hence, we
are particularly interested in the situation where the matrix A under consideration
receives updates in the form of new columns. In fact when coupling with the multilevel
algorithms (which we will discuss in sec. 4), these updates are not small since the
number of columns can double.

3.1. Random sampling. Randomized algorithms have become popular in recent
years due to their broad applications and the related theoretical analysis developed
which give results that are independent of the matrix spectrum. Several ‘randomized
embedding’ and ‘sketching’ methods have been proposed for low rank approximation
and for computing the partial SVD [38, 35, 25, (2] starting with the seminal work
of Frieze et al. [21]. Drineas et al. [15, 10] presented the randomized subsampling
algorithms, where a submatrix (certain columns of the matrix) is randomly selected
based on a certain probability distribution. Their method samples the columns based
on column norms. Given a matrix A € R™*", they sample its columns such that the
i-th column is sampled with the probability p; given by

_ BIAY)3

pi =
Al

where 8 < 1 is a positive constant and A® is the i-th column of A. Using the above
distribution, ¢ columns are selected and the subsampled matrix C' is formed by scaling
the columns by 1/,/cp;. Then, the SVD of C is computed. The approximations
obtained by this randomization method will yield reasonable results only when there
is a sharp decay in the singular value spectrum.

3.2. Column Subset Selection. Another popular dimensionality reduction
method which we consider in this paper is the column subset selection (CSSP) [7]. If
a subset of the rows is also selected, then the method leads to the CUR decomposi-
tion [36]. These methods can be viewed as extensions of the randomized sampling
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COARSENING ALGORITHMS FOR MATRIX APPROXIMATIONS 5

based algorithms. Let A € R™*" be a large data matrix whose columns we wish to
select and suppose Vi is a matrix whose columns are the top k right singular vectors
of A. Then, the leverage score of the i-th column of A is given by

1 .
b= Z;Hv%(zﬂ:)”%7

the scaled square norm of the i-th row of V. Then, in leverage scores sampling, the
columns of A are sampled using the probability distribution p; = min{1, ¢;}. The most
popular methods for CSSP involve the use of this leverage scores as the probability
distribution for columns selection [17, 7, 36, 8]. Greedy subset selection algorithms
have been also proposed based on the right singular vectors of the matrix [14, 3].
However, these methods may be expensive since one needs to compute the top k
singular vectors. In this work, we see how the coarsened graph, i.e., the columns
obtained by graph coarsening perform in CSSP.

3.3. Graph Sparsification. Sparsification of large graphs has several compu-
tational (cost and space) advantages and has hence found many applications [31,
, 53, 55, 56]. Given a large graph G = (V, E) with n vertices, we wish to find a
sparse approximation to this graph that preserves certain information of the original
graph such as the spectral information [56, 27], structures like clusters within in the

graph [31, 34], etc. Let B € R(E)*™ be the vertex edge incidence matrix of the graph
G, where eth row b, of B for edge e = (u,v) of the graph has a value y/w. in columns
u and v, and zero elsewhere. The corresponding Laplacian of the graph is then given
by K = BTB.

The spectral sparsification problem involves computing a weighted subgraph G
of G such that if K is the Laplacian of G, then z7 Kz is close to 27 Kz for any
x € R™. Many methods have been proposed for the spectral sparsification of graphs,
see e.g., [55, 56, 27, 67]. A popular approach is to perform row sampling of the matrix
B using the leverage score sampling [27]. Considering the SVD of B = UXVT, the
leverage scores /; for a row b; of B can be computed as ¢; = ||u;||3 < 1 using the rows of
U. This leverage score is related to the effective resistance of edge ¢ [55]. By sampling
the rows of B according to their leverage scores it is possible to obtain a matrix B,
such that K = BTB and 27Kz is close to 27 Kz for any x € R". In section 4, we
show how the rows of B can we selected via coarsening.

3.4. Subspace iteration. Subspace iteration is a well-established method used
for solving eigenvalue and singular value problems [23, 49]. We review this algorithm
as it will be exploited later as a tool to improve SVD results obtained by sampling
and coarsening methods. A known advantage of the subspace iteration algorithm
is that it is very robust and that it tolerates changes in the matrix [50]. This is
important in our context. Let us consider a general matrix A € R"*™, not necessarily
associated with a graph. The subspace iteration algorithm can easily be adapted to the
situation where a previous SVD is available for a smaller version of A with fewer rows
or columns, obtained by subsampling or coarsening for example. Indeed, let A4 be a
column-sampled version of A. In matlab notation we represent this as As = A(:, Js)
where J; is a subset of the column index [1 : n]. Let A; be another subsample of A4,
where we assume that J, C J;. Then if A, = U,X,V.I we can perform a few steps of
subspace iteration updates as shown in Algorithm 1.

3.5. SVD updates from subspaces. A well known algorithm for updating the
SVD is the ‘updating algorithm’ of Zha and Simon [(68]. Given a matrix A € R™*"
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6 S. UBARU AND Y. SAAD

Algorithm 1 Incremental Subspace Iteration

Start: U = U,
for i =1 : iter do
V=AU
U=AV
U :=qr(U,0); V:=qr(V,0);
S = UTAtV

if condition then
// Diagonalize S to obtain current estimate of singular vectors and values
[Ru, X, Ry] =svd(S); U :=U;y1Ry; V := Vi1 Ry
end if
end for

and its partial SVD [Uy, X, Vi], the matrix A is updated by adding columns D to it,
resulting in a new matrix Ap = [A, D]. The algorithm then first computes

(1) (I - U ULD = U,R,

the truncated QR decomposition of (I — UyU]') D, where Up € R™*P has orthonormal
columns and R € RP*P is upper triangular. Given (1), one can observe that

T
. Vi O Y. UTD
(2) Ap = [Uy, Up}HD[ ok I,,} 7HD:|: ok % } ,

where I, denotes the p-by-p identity matrix. Thus, if O, Fj, and G, are the matrices
corresponding to the k dominant singular values of Hp € R(k+p)x(~k+”)~ and their left
and right singular vectors, respectively, then the desired updates ¥, Uy, and Vj are
given by

(3) ik = @k, Uk = [Uk, ﬁp]Fk, and Vk = [ ‘gk IO ] Gk .
p

The QR decomposition in the first step eq. (2) can be expensive when the updates
are large so an improved version of this algorithm was proposed in [65] where this
factorization is replaced by a low rank approximation of the same matrix. That is,
for a rank [, we compute a rank-l approximation, (I — UxyUl)D = X;S,Y,". Then, the
matrix Hp is the update equation (3) will be

[ UD
HD‘[O SzYlT}

with U = [Uy, X;]. The idea is that the update D will likely be low rank outside the
previous top k singular vector space. Hence a low rank approximation of (I — U,U]')D
suffices, thus reducing the cost.

In the low rank approximation applications, the rank k will be typically much
smaller than n, and it can be computed inexpensively using the recently proposed
numerical rank estimation methods [63, 64].

4. Coarsening. The previous section discussed randomization methods, which
work well in certain situations, for example, when there is a good gap in the spectrum or
there is a sharp spectral decay. An alternative method to reduce the matrix dimension,
particularly when the matrices are associated with graphs, is to coarsen the data with
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Fi1c. 1. Left: Coarsening / uncoarsening procedure; Right : A sample hypergraph

the help of graph coarsening, perform all computations on the resulting reduced size
matrix, and then project back to the original space. Similarly to the idea of sampling
columns and computing the SVD of the smaller sampled matrix, in the coarsening
methods, we compute the SVD from the matrix corresponding to the coarser data. It
is also possible to then wind back up and correct the SVD gradually, in a way similar

to V-cycle techniques in multigrid [51], this is illustrated in Figure 1(left). See, for
example [70, 51, 20, 45] for a few illustrations where coarsening is used in data-related
applications.

Before coarsening, we first need to build a graph representing the data. This first
step may be expensive in some cases but for data represented by sparse matrices, the
graph is available from the data itself in the form of a standard graph or a hypergraph.
For dense data, we need to set-up a similarity graph, see [10] for a fast algorithm to
achieve this. This paper will focus on sparse data such as the data sets available in
text mining, gene expressions and multilabel classification, to mention a few examples.
In such cases, the data is represented by a (rectangular) sparse matrix and it is most
convenient to use hypergraph models [70] for coarsening.

4.1. Hypergraph Coarsening. Hypergraphs extend the classical notion of
graphs. A hypergraph H = (V, E) consists of a set of vertices V and a set of
hyperedges FE [9, 70]. In a standard graph an edge connects two vertices, whereas
a hyperedge may connect an arbitrary subset of vertices. A hypergraph H = (V, E)
can be canonically represented by a boolean matrix A, where the vertices in V' and
hyperedges (nets) in E are represented by the columns and rows of A, respectively.
This is called the row-net model. Fach hyperedge, a row of A, connects the vertices
whose corresponding entries in that row are non-zero. An illustration is provided
in Figure 1(Right), where V = {1,...,9} and E = {a,...,e} with a = {1,2,3,4},
b=1{3,5,6,7}, c=1{4,7,8,9}, d={6,7,8}, and e = {2,9}.

Given a (sparse) data set of n entries in R™ represented by a matrix A € R™*" we
can consider a corresponding hypergraph H = (V, E) with vertex set V' corresponding
to the columns of A. Several methods exist for coarsening hypergraphs, see, e.g.,
[9, 29]. In this work, we consider a hypergraph coarsening based on column matching,
which is a modified version of the mazimum-weight matching method, e.g., [9, 14].
The modified approach follows the maximum-weight matching method and computes
the non-zero inner product (a(”,a())) between two vertices i and j. Note that,
the inner product between vectors is related to the angle between the vectors, i.e.,

This manuscript is for review purposes only.
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Algorithm 2 Hypergraph coarsening by column matching.
Input: A € R™*" €€ (0,1).
Output: Coarse matrix C' € R™*€,
repeat
Randomly pick i € S; S := S5 — {i}.
Set ip[k] :=0for k=1,...,n,and p = 1.
for all j with a;; # 0 do
for all k with a;; # 0 do
ip[k] := ip[k] + asjak. /) (%)
end for
end for
j = argmax{ip[k] : k € S}
P T2
csql = 4Ha(i)lﬁ)2[ﬁ]a(j7)‘l2~
if [ (csqf > 1=)] then
c®) .= /T ¥ ¢csqa'?). |/ The denser of columns a) and a9
S:=8-{jhp=p+1
else
o) = )
p=p+1.
end if
until S =0

(aD,aDy = [|aD|||[a| cos 6;;. Next, we match two vertices only if the angle between
the vertices (columns) is such that, tan6,; < e, for a constant 0 < ¢ < 1. Another
feature of the algorithm is that it applies a scaling to the coarsened columns in order
to reduce the error. In summary, we combine two columns a(” and a?) if the angle
between them is such that, tan6;; < e. We replace the two columns a? and a9 by

P = (\/1 + cos? 9ij> a®

or a¥), the one that has more nonzeros. This minor modification provides some control
over the coarsening procedure using the parameter € and, more importantly, it helps
establish theoretical results for the method, see section 5.

The vertices can be visited in a random order, or in the ‘natural’ order in which
they are listed. For each unmatched vertex ¢, all the unmatched neighbor vertices j
are explored and the inner product between i and each j is computed. This typically
requires the data structures of A and its transpose, in that a fast access to rows and
columns is required. The vertex j with the highest non-zero inner product (a(?, a()) is
considered and if the angle between them is such that tan6;; < e (or cos? 6;; > H_%)),
then ¢ is matched with 5 and the procedure is repeated until all vertices have been
matched. Algorithm 2 gives details on the procedure.

Note that the loop (*) computes the inner product (ip[k]) of columns ¢ and & of A.
The pairing used by the algorithm relies only on the sparsity pattern. It is clear that
these entries can also be used to obtain a pairing based on the cosine of the angles
between columns i and k. The coarse column ¢ is defined as the ‘denser of columns
a® and ). In other models the sum is sometimes used.

Computing the cosine angle between column 7 and all other columns is equivalent
to computing the i-th row of AT A, in fact only the upper triangular part of the row.
For sparse matrices, the computation of the inner product (cosine angle) between
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COARSENING ALGORITHMS FOR MATRIX APPROXIMATIONS 9

the columns can be achieved inexpensively by modifying the cosine algorithm in [48]
developed for matrix blocks detection.

Computational Cost. The cost of computing all inner products of column i with
columns of A is the sum of number of nonzeros of each columns involved:

)|

Z la],
j=1

where a(¥ is the i-th column and |- | denotes cardinality. If v, (resp. v,) is the
maximum number of nonzeros in each column (resp. row), then an upper bound for
the above cost is nv,.v.. This basic cost is equivalent to computing the upper triangular
part of AT A. Several simplifications and improvements can be added to reduce the
cost. First, we can skip the columns that are already matched. In this way, fewer inner
products are computed as the algorithm progresses. In addition, since we only need
the angle to be such that tanf;; < €, we can reduce the computation cost significantly
by stopping as soon as we encounter a column with which the angle is smaller than the
threshold. Article [11] uses the angle based column matching idea for dense subgraph
detection in graphs, and describes efficient methods to compute the inner products.

4.2. Multilevel SVD computations. Given a sparse matrix A, we can use
Algorithm 2 to recursively coarsen the corresponding hypergraph in the row-net model
level by level, and obtain a sequence of sparse matrices Ay, As, ..., A, with Ag = A,
where A; corresponds to the coarse graph H; of level ¢ for ¢ = 1,...,r, and A,
represents the lowest level graph H,.. This provides a reduced size matrix which likely
is a good representation of the original data. Note that, recursive coarsening will
be inexpensive since the inner products required in the further levels are already
computed in the first level of coarsening.

In the multilevel framework of hypergraph coarsening we apply the matrix ap-
proximation method, say using SVD, to the coarsened data matrix A, € R™*"" at
the lowest level, where n, is the number of data items at coarse level r (n, < n). A
low-rank matrix approximation can be viewed as a linear projection of the columns
into a lower dimensional space. In other words we have a matrix A, € R*"r (d < m).
Applying the same linear projection to A € R™*"™ produces A e Rixn (d < m), and
one can expect that A preserves certain features of A. This linear projection is then
applied to the original data A € R"*"™ to obtain a reduced representation A e Rixn
(d < m) of the original data. The procedure is illustrated in Figure 1 (left). The
multilevel idea is used in the ConstantTimeSVD algorithm proposed in [16].

Another strategy for reducing the matrix dimension is to mix the two techniques:
Coarsening may still be exceedingly expensive for some type of data where there is
no immediate graph available to exploit for coarsening. In this case, a good strategy
would be to downsample first using the randomized methods, then construct a graph
and coarsen it. In section 6, we compare the SVDs obtained from pure randomization
methods against those obtained from coarsening and also randomization + coarsening.

4.3. CSSP and graph sparsification. The multilevel coarsening technique
presented can be applied for the column subset selection problem (CSSP) as well as
for the graph sparsification problem. We can use Algorithm 2 to coarsen the matrix,
which is equivalent to selecting columns of the matrix. The only modification in the
algorithm required is that the columns selected are not scaled. The coarse matrix C
contains few columns of the original matrix A and yet preserves the structure of A.
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Algorithm 3 Incremental SVD
Start: select k columns of A by random sampling or coarsening, define A, as this
sample of columns.
repeat
Update (compute if started) SVD of A, via SVD-update or subspace iteration.
Add columns of A to A,
until converged

For graph sparsification, we can apply the coarsening procedure on the matrix
BT, i.e., coarsen the rows of the vertex edge incidence B, which yields us fewer edges,
B with fewer rows. The analysis in section 5 shows how this coarsening strategy is
indeed a spectral sparsifier, shows #T BT Bz is close to 2T BT Bz. Since we achieve
sparsification via matching, the structures such as clusters within the original graph
are also preserved.

4.4. Incremental SVD. Next, we explore some combined algorithms that im-
prove the randomized sampling and coarsening SVD results significantly. The typical
overall algorithm which we call Incremental SVD algorithm is sketched in Algorithm 3.

A version of this Incremental algorithm has been briefly discussed in [24], where the
basic randomized algorithm is combined with subspace iteration, see Algorithm 8.1 in
the reference. For subspace iteration, we know that each iteration takes the computed
subspace closer to the subspace spanned by the target singular vectors. If the initial
subspace is close to the span of the actual top k singular vectors, fewer iterations will
be needed to get accurate results. The theoretical results established in the following
section, give us an idea how close the subspace obtained from the coarsening technique
will be to the span of the top k singular vectors of the matrix. In such cases, a few
steps of the subspace iteration will then yield very accurate results.

For the SVD-RR update method, it is known that the method performs well when
the updates are of low rank and do not affect the dominant subspace, the subspace
spanned by the top k singular vectors which of interest, too much [65]. Since the
random sampling and the coarsening methods return a good approximation to the
dominant subspace, we can assume that the updates in the incremental SVD are of
low rank, and these updates likely effect the dominant subspace only slightly. Hence,
the SVD-RR update gives accurate results.

5. Analysis. In this section, we establish theoretical results for the coarsening
technique based on column matching. Suppose in the coarsening strategy, we combine
two columns a® and a® if the angle between them is such that, tanf; < e. We
replace the two columns a(® and a® by ¢(P) = (v/1 4 cos26;)a® (or a?), the one with
more nonzeros). We then have the following key result.

LEMMA 5.1. Given A € R™*™ et C' € R™*¢ be the coarsened matrix of A

obtained by one level of coarsening of A with columns a') and a® matched iftanf; <,
for 0 <e< 1. Then,

(4) leT AATz — 27 CCT x| < 3¢|| A%,

for any x € R™ : ||z|| = 1.

Proof. Let (i, E) be a pair of matched column indices with i being the index of
the column that is retained after scaling. We denote by I the set of all indices of the
retained columns and I the set of the remaining columns.

We know that 02(A) = 0;(AAT) = max),; =1 27 AATz, and also 27 AATz =
[ATz||3 =31 (a, 2)2. Similarly, consider 27CCTz = [|[CTz|3 = Y,/ {ci, 2)? =
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Sier(1+c2)(a?, 2)2, where indices ¢; = cos ;. Next, we have,

2T AA Tz — 2TCCTz =1 Y (@, 2)? = (14 &) (a, )|

ieIul iel
<D (@, 2)? = 3 2, 2)?
gej el
= Y [ -, 2)?]
(i,0)€IxT

where the set I x I consists of pairs of indices (1, i) that are matched. Next, we consider
the inner term in the summation. Let the column a(” be decomposed as follows:

a(%) = cia(i) + s;w,

where s; = sinf; and w = ||a”||w with @ a unit vector that is orthogonal to a(¥)
(hence, w L a” and has the same length). Then,

(@D, 2)? — 2

(a(i),x>2| = ‘(cia(i) + siw,x>2 — cf(a(i),x>2
= ‘c?(a(i),@z + 2cisi<a(i),x><w, x) 4 52 (w, x)% — c?(a(i),x>2

= |sin 20;(a"¥, ) (w, z) + sin 62 (w, )?|

Let t; = tan#;, then we have sin26; = 1332 and using the fact that [(w,z)| <

la®| =75 and (a?, z) <7, we get

|sin 20; (), z) (w, x) + sin 6% (w, z)?

.2
0;
< 172 sin 20; {1 + s ]

2sin 0; cos 0;
tan 91 :|

= 1n? sin 26; {1 +

< 2Pti+ (pt)?
B

2 2
<20t + (nt)”.

Now, since our algorithm combines two columns only if tan(6;) < € (or cos? 8 >
1/(1 + €%)), we have

(@, 2)* = o, 2)] < 2P 4 e < Ben?

as € < 1 and 7 > 1. We can further improve the bound to 2ne + (ne)? < 2.5n¢, provided
(ne) < 0.5. Thus, we have

2T AATz — 2T CCTx <3¢ [laW|? < 3e|| A7
i€l O

The above lemma gives us bounds on the Rayleigh Quotients of the coarsened
matrix C'. This result helps to establish the following error bounds.
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THEOREM 5.2. Given A € R™*", let C € R™*¢ be the coarsened malriz of A
obtained by one level coarsening of A with columns a®® and a'? combined if tan6; < e,
for 0 < e < 1. Let Hy be the matrixz consisting of the top k left singular vectors of C
as columns. Then, we have
(5) |A = HyHi Al < [|A — Ay|[F + 6kel| A%

(6) |A — HyHi All3 < [|[A = Agll3 + 6¢]| Alf,
where Ay is the best rank k approximation of A.
Proof. Frobenius norm error: First, we prove the Frobenius norm error bound.
We can express ||A — HHL A||%:
(7) |A = HyHj Al = Tr((A - HyHy; A)T (A — HyHj A))
=Tr(ATA - 2ATH HI A+ ATH, HF H H! A)
=Tr(ATA) - Tr(ATH,H] A)
= | Al — AT Hy | 7
We get the above simplifications using the equalities: || X||% = Tr(X?X) and H] Hy, =
I. Let A for i =1,...,k be the columns of Hj. Then, the second term in the above
equation is [|[AT Hy||2 = S2F_, |ATRO|2.
From Lemma 5.1, we have for each i,

IHATRD 2 = |CTRD|?) = | ATRY|? = o7(O)] < 3e| AllZ

since h("’s are the singular vectors of C'. Summing over k singular vectors, we get
k

(8) AT Hil5 =)~ 07 (O)] < 3ek|| A%
i=1

From the perturbation theory [23, Thm. 8.1.4], we have
|07(C) — o (A)] < [|[AAT = CCT s,
for i =1,...,n. Next, we have

[AAT - CCTla = _max a7 (AAT — CCT)a| < 3¢l Al

from Lemma 5.1. Hence, summing over k singular values,

k k
(9) Y 0i(0) =)o (A)| < Bek|| A7
i=1 i=1
Combining (8) and (9), we get
k
IAT Hy % = > o (A)] < 6ek| All%
i=1

Combining this relation with (7), gives us the Frobenius norm error bound (since

A2 — S8 02 (A) = ||A - Al|%).
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Spectral norm error: Next, we prove the spectral norm error bound. Let H; =
range(Hy,) = span(h™, ... h(*)) and let H,_; be the orthogonal complement of Hj,.
For z € R, let © = oy + Bz, where y € Hy, 2 € Hp—i and o + 82 = 1. Then,

|A— H.HFA|Z = el |27 (A - H . HEF A)|]?
= max [[(ay” + Bz")(A - HpH{ A)|?
Y,z

< max y"(A- HH{A)IP+  max  [|z27(A- HH]A)|?
yerwlyl=1 2€Ha-iillz]|=1

T14H2

max Iz

b
2€H 0 pillzl=1

since o, 8 < 1 and for any y € Hy,y" HyHl =y, so the first term is zero and for
any z € Hn—k, zTHkHE = 0. Next,
17 A2 = 7C)? + (127 A2 — |27 C|)
i1(C) + 3e| Al
Oity1(A) + e[| Al T
14 — A3 + Ge[| Alf7-

IAINA

Since |[|zT A2 — [|z7C|?| < 3¢||A||% from Lemma 5.1, max.cy, ,.|-j=1 |27 C|? =
02,1(C), and [02(C) — 02(A)| < | AAT — OCT |, < 3¢||A|2. 0
We observe that our main Theorem (Theorem 5.2) is similar to the results developed
for randomized sampling, see [15, 16]. For randomized sampling, the error reduces
as the number of columns ¢ that are sampled increases. For coarsening, the error
is smaller if the angles between the columns that are combined are smaller. The
number of columns is related to these angles which in turn depends on the structure
of the matrix. Existing theoretical results for subspace iteration are discussed in the
Appendix.

6. Numerical Experiments. This section describes a number of experiments
to illustrate the performances of the different methods discussed. The latter part of
the section focuses on the performance of the coarsening method in the applications
discussed in section 2.

6.1. SVD Comparisons. In the first set of experiments, we use three term-by-
document datasets and compare the sampling, coarsening and combined methods to
compute the SVD. The tests are with unweighted versions of the CRANFIELD dataset
(1398 documents, 5204 terms), MEDLINE dataset (1033 documents, 8322 terms)
and TIME dataset (425 documents, 13057 terms). We will use these three datasets
in the experiments for column subset selection and in the latent semantic indexing
application examples, which will give us an extensive evaluation of the performances
of the methods compared.

Figure 2 illustrates the following experiment with the three datasets. Results from
four different methods are plotted. The first solid curve (labeled ‘exact’) shows the
singular values of matrix A from 20 to 50 computed using the svds function in Matlab
(the results obtained by the four methods for top twenty singular values were similar).
The diamond curve labeled ‘coarsen’, shows the singular values obtained by one level
of coarsening using Algorithm 2. The star curve (labeled ‘rand’) shows the singular
values obtained by random sampling using column norms, with a sample size equal
to the size obtained with one level of coarsening. We note that the result obtained
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F1G. 3. Second set of results for the CRANFIELD (left) and the MEDLINE datasets (right).

by coarsening is much better than that obtained by random sampling. However, we
know that the approximations obtained by either sampling or coarsening cannot be
highly accurate. In order to get improved results, we can invoke incremental SVD
algorithms, Algorithm 3. The curve with triangles labeled ‘coars+ZS’ shows the
singular values obtained when Zha Simon algorithm was used to improve the results
obtained by the coarsening algorithm. Here, we consider the singular vectors of the
coarse matrix and use the remaining part of the matrix to update these singular vectors
and singular values. We have also included the results obtained by one iteration of
power method [25], i.e., from the SVD of the matrix Y = (AAT)AQ, where  is a
random Gaussian matrix of same size as the coarse matrix. We see that the smaller
singular values obtained from the coarsening algorithms are better than those obtained
by the one-step power method.

As discussed in section 4, a possible way of improving the SVD results obtained by
a coarsening or random sampling step is to resort to subspace iteration or use the SVD
update algorithms as in the first experiment. Figure 3 illustrates such results with
incremental SVD algorithms for the CRANFIELD (left) and the MEDLINE (right)
datasets. We have not reported the results for the TIME dataset since it is hard to
distinguish the results obtained by different algorithms for this case. First, subspace
iteration is performed using the matrix A and the singular vectors obtained from
coarsening or random sampling. The curve ‘coars+subs’ (star) corresponds to the
singular values obtained when subspace iteration was used to improve the SVD obtained
by coarsening. Similarly, for the curve labeled ‘rand+subs’ (triangle up), subspace
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TABLE 1
Low rank approximation: Coarsening, random sampling, and rand4coarsening. FErrorl =

1A - HngAHF,‘ Error2= %Zk %

Dataset n k c Coarsen Rand Sampl Rand+Coars
Errl Err2 Errl Err2 Errl Err2
Kohonen 4470 | 50 1256 86.26 0.366 93.07 | 0.434 93.47 | 0.566
aft01 8205 | 50 1040 913.3 0.299 | 1006.2 | 0.614 985.3 0.598
FA 10617 | 30 1504 27.79 0.131 28.63 0.410 28.38 0.288
chipcool0 20082 | 30 2533 6.091 0.313 6.199 0.360 6.183 0.301
brainpc2 27607 | 30 865 | 2357.5 | 0.579 | 2825.0 | 0.603 | 2555.8 | 0.585
scfxm1-2b 33047 | 25 2567 | 2326.1 - 2328.8 - 2327.5 -
thermomechTC 102158 | 30 6286 | 2063.2 - 2079.7 - 2076.9 -
Webbase-1M 1000005 | 25 | 15625 - - 3564.5 - 3551.7 -
Mean absolute slngular value error, n=8205 Frobenius norm error, n=8205
0.6 T 90
~*— Coarsemng —#— Coarsening
0.55 —6&— sampling |4 89.95 —&— sampling
rand+coars rand+coars

89.9

89.85

IIA-HHA
oa
8 g
~ ©
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0.15} q 89.55
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Fic. 4. Mean absolute singular value errors + Z 14 70" (Left) and Frobenius norm errors
— Hy, F (right) for the three methods for afto1 ataset =
A—HyHFA igh he th hod f d k=30).

iteration was used with the singular vectors obtained from randomized sampling.
We have included the results when the SVD update algorithm was used to improve
the SVD obtained by coarsening (‘coars+7ZS’) and random sampling (‘rand+ZS’),
respectively. These plots show that both the SVD update algorithm and subspace
iteration improve the accuracy of the SVD significantly.

Next, we compare the performances of coarsening and random sampling for
computing the low rank approximation of matrices. We also consider the combined
method of sampling followed by coarsening discussed in the introduction and in section 4.
Table 1 shows comparison results between the three methods, namely, Coarsening,
random sampling, and random sampling+coarsening for low rank approximation of
matrices from various applications. All matrices were obtained from the SuiteSparse
matrix collection: https://sparse.tamu.edu/ [12] and are sparse. The errors reported
are the Frobenius norm error = ||A—Hy H} A||r in computing the rank k; approximation

and the average absolute normalized error in the singular values = + >, |‘”U il for
rank k as listed in third column. The size of the input matrix and the number of
columns in the coarsened/subsampled matrix are listed in the second and fourth
columns, respectively. For very large matrices, the exact singular values cannot be
computed, hence we were unable to report Error2 for the last 3 matrices. For Webbase-
1M (size 10°), it is impractical to do full coarsening. Hence, we only report errors for
random sampling, and random sampling+coarsening.

Figure 4 plots the two errors |A — HyH A||r and + Zk % - oizoil with k = 30 for
the three methods for aft01 dataset when different levels of coarsening were used,
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TABLE 2
CSSP: Coarsening versus leverage score sampling.

Dataset Size | Rank k c Coarsening levSamp
levels | error error
CRAN 1398 25 88 4 496.96 | 501.32
50 88 4 467.49 | 477.25
150 175 3 375.40 | 383.23
MED 1033 50 65 4 384.91 376.23
100 130 4 341.51 339.01
TIME 425 25 107 2 411.71 | 412.77
50 107 2 371.35 | 372.66
50 54 3 389.69 | 391.91
Kohonen 4470 25 981 2 31.89 36.36
Erdos992 6100 50 924 3 100.9 99.29
FA 10617 50 2051 3 26.33 28.37
chipcool0 | 20082 100 1405 4 6.05 6.14

i.e., the number of columns sampled/coarsened were increased. Here for ‘rand+-coars’
we proceed as follows. First, half of the columns are randomly sampled and then a
multilevel coarsening is performed with one level less than the pure coarsening method
reported in the previous column. Hence, we do not have errors for ¢ = n/2. Coarsening
clearly yields better results (lower errors) than the randomized sampling method. The
combined method of random sampling+coarsening works well and performs better
than randomized sampling in most cases. For a smaller number of columns, i.e., more
levels in coarsening, the Frobenius norm error for rand+coarsen approaches that of
full coarsening. However, note that the coarsening procedure is expensive compared
to column norm sampling.

In all the above experiments, we have used maximum matching for coarsening.
The choice of ¢, the parameter that decides the angle for matching does not seem to
affect the errors directly. If we choose smaller €, we will have a larger coarse matrix C
(fewer columns are combined) and the error will be small. If we choose a larger €, more
columns are combined and the results are typically equivalent to just simply using
maximum matching ignoring the angle constraint. Thus, in general, the performance
of the coarsening technique depends on the structure of the considered matrix. If we
have more columns that are close to each other, i.e., make smaller angle between each
other, the coarsening technique will combine more columns, we can choose a smaller e
and yet obtain good results. If the matrix is very sparse or if the columns make large
angles between each other, coarsening might not yield a coarse matrix since it will not
be able to match many columns. Therefore, selecting the smallest € that will yield a
small coarse matrix and yet lead to good approximations will depend on the structure
of the input matrix.

6.2. Column Subset Selection. In the following experiment, we compare the
performance of the coarsening method against the leverage score sampling method
for column subset selection. We report results for the same three term-by-document
datasets used in the first set of experiments. We also include results obtained for a
few sparse matrices from the SuiteSparse matrix collection.

Table 2 presents a few comparisons. The errors reported are the Frobenius
norm errors ||A — PoAl|p, where Po is the projector onto span(C), and C' is the
coarsened /sampled matrix which is computed by the multilevel coarsening method
or using leverage score sampling of A with the top k singular vectors as reported in
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TABLE 3

Graph Sparsification: Coarsening versus leverage score sampling. Error= %ZT w

Ti

Dataset m r ZZEE% Coarsening | levSamp
levels | error error
sprand 1290 | 332 0.29 2 0.541 0.575
1951 499 0.28 2 0.542 0.579
2676 679 0.27 2 0.537 0.580
Maragald | 6005 | 460 0.11 4 0.416 0.569
rosenl 12599 | 1738 0.18 3 0.482 0.304
G1 19176 | 2486 0.14 3 0.549 0.635
bibd13-6 | 25428 | 1619 0.08 4 0.901 0.920

the second column. The number of columns c in each test is reported in the third
column which is the same for both methods. Recall that for CSSP, the coarsening and
sampling algorithms do not perform a post-scaling of the columns that are selected. We
see that the multilevel coarsening method performs very well and is comparable with
leverage score sampling in most cases. Note that the standard leverage score sampling
requires the computation of the r top singular vectors and this can substantially more
expensive than coarsening especially when r is large.

6.3. Graph Sparsification. The next experiment illustrates how the coarsening
method can be used for graph sparsification. We again compare the performance of
the coarsening approach to the leverage score sampling method [27] for graph spectral
sparsification. Recall that spectral sparsification accounts to computing a sparse graph
G that approximates the original graph G such that the singular values of the graph
Laplacian K of G are close to those of K, Laplacian of G.

Table 3 lists the errors obtained when the coarsening and the leverage score
sampling approaches were used to compute a sparse graph G for different sparse
random graphs and few matrices related to graphs from the SuiteSparse database.
Given a graph G, we can form a vertex edge incidence matrix B, such that the
Laplacian K = BT B. Then, sampling/coarsening the rows of B to get B gives us a
sparse graph with Laplacian K = BT B. The type of graph or the names are given in
the first column of the table and the number of rows m in corresponding vertex edge
incidence matrix B is given in the second column. The number of rows r in the coarse
matrix B is listed in the third column. The ratios of sparsity in K and K are also
given. This ratio indicates the amount of sparsity achieved by sampling/coarsening.
Since, we have same number of rows in the coarsened and sampled matrix B, this
ratio will be the same for both methods. The error reported is the normalized mean
\Ui(f()—ffi(K)l’ which

absolute error in the singular values of K and K, Error= Ly, i ()
tells us how close the sparser matrix K is to K spectrally. We see that in most cases,

the coarsening approach performs similarly to or better than leverage score sampling.

6.4. Applications. In this section, we illustrate the performance of the coarsen-
ing technique in the various applications introduced in section 2.

6.4.1. Latent Semantic Indexing. The first application we consider is Latent
Semantic Indexing (LSI) [13, 33]. In LSI, we have a term-document matrix A € R™*",
representing m documents and n terms that frequently occur in the documents, where
A;j is the frequency of the jth term in the i-th document. A query is an n-vector
q € R™, normalized to 1, where the jth component of a query vector is interpreted as
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Fic. 5. LSI results for the MEDLINE dataset on left and TIME dataset on the right.

the frequency with which the jth term occurs in a topic. Typically, the number of
topics to which the documents are related is smaller than the number of unique terms
n. Hence, finding a set of k£ topics that best describe the collection of documents for a
given k, corresponds to keeping only the top k singular vectors of A, and obtaining a
rank k approximation. The truncated SVD and related methods are often used in LSI
applications. The argument is that a low rank approximation captures the important
underlying intrinsic semantic associated with terms and documents, and removes the
noise or variability in word usage [33]. In this experiment, we employ the Coarsen
SVD and leverage score sampling SVD algorithms to perform information retrieval
techniques by Latent Semantic Indexing (LSI) [51].

Given a term-by-document data A € R”™*™ we normalize the data using TF-IDF
(term frequency-inverse document frequency) scaling. We also normalize the columns
to unit vectors. Query matching is the process of finding the documents most relevant
to a given query g € R™.

Figure 5 plots the average precision against the dimension/rank k for MEDLINE
and TIME datasets. When the term-document matrix A is large, the computation of
the SVD factorization can be expensive for large ranks k. The multi-level techniques
will find a smaller set of document vectors, denoted by A, € R™*"r to represent A
(n, < n). For leverage score sampling, we sample A, using leverage scores with &
equal to the rank shown on the z axis. Just like in the standard LSI, we compute the
truncated SVD of A4, = UdEdVdT, where d is the rank. Now the reduced representation
of Ais A = EglUg A. Each query ¢ is transformed to a reduced representation
q= E;lU dT q. The similarity of ¢ and a; are measured by the cosine distance between §
and a for i = 1,...,n. This example clearly illustrates the advantage of the coarsening
method over randomized sampling and leverage scores. The multilevel coarsening
method performs better than the sampling method in this application and in some cases
it performs as well as the truncated SVD method. Multilevel coarsening algorithms
for LSI applications, have been discussed in [51] where additional details can be found.

6.4.2. Projective clustering. The next application we consider is a set of
nonlinear projection based clustering techniques. We illustrate how the multilevel
coarsening methods can be used for data reduction in this application. We consider
three types of nonlinear projection methods, namely, Isomap [58], Local Linear Embed-
ding (LLE) [47] and Laplacian Eigenmaps [4]. Multilevel algorithm have been used in
the clustering application, for example, article [11] uses a multilevel algorithm, based
on MinMaxCut, for document clustering, and Fang et. al. [20] applied the mutlilevel
algorithms for spectral clustering and manifold learning.

Given n data-points, most of the projective clustering methods start by con-
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F1c. 6. Purity and entropy values versus dimensions for three types of clustering for ORL dataset.

structing a graph with edges defined based on certain criteria such as new distance
metrics or manifolds, nearest neighbors, points on a same subspace, etc. The graph
Laplacian corresponding to the graph is considered, and for a given k, the top k
eigenvectors of a shifted Laplacian matrix, whose top eigenvectors correspond to the
bottom eigenvectors of the original graph, are used to cluster the points. We use
the following two evaluation metrics to analyze the quality of the clusters obtained,
namely purity and entropy [69] given by:

K
A 1 A
purity = Z %purity(i); purity(i) = — m]ax(ng), and

i=1 e
K s K nj j
entropy = E —entropy(i); entropy (i E —ZlogK
n n;
i=1 =1

where K is the number of clusters, nz is the number of entries of class j in cluster 1,
and n; is the number of data in cluster i. Here, we assume that the labels indicating
the class to which data belong are available.
In figure 6 we present results for three types of projective clustering methods,
, Isomap, LLE and eigenmaps when coarsening was used before dimensionality
reductlon The dataset used is the popular ORL face dataset [52], which contains 40
subjects and 10 grayscale images each of size 112 x 92 with various facial expressions
(matrix size is 10304 x 400). For the projective methods, we first construct a k-nearest
neighbor graph with £ = 5, and use embedding dimensions p = 10, ...,50. Note that
even though the data is dense, the kNN graph is sparse. The figure presents the purity
and entropy values obtained for the three projective clustering methods for these
different dimensions p with (circle) and without (triangle) coarsening the graph. The
solid lines indicate the results when kmeans was directly used on the data without
dimensionality reduction. We see that the projective methods give improved clustering
quality in terms of both purity and entropy, and coarsening further improves their
results in many cases by reducing redundancy. This method was also discussed in [19]
where additional results and illustrations with other applications can be found.
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TABLE 4
TaggingSNP: Coarsening, Leverage Score sampling and Greedy selection

Data Size ¢ | Coarsen | Lev. Samp. | Greedy
Yaledataset/SORCS3 | 1966 x 53 | 14 | 0.0893 0.1057 0.0494
Yaledataset/PAH 1979 x 32 | 9 | 0.1210 0.2210 0.0966
Yaledataset/HOXB 1953 x 96 | 24 | 0.1083 0.1624 0.0595
Yaledataset/17q25 1962 x 63 | 16 | 0.2239 0.2544 0.1595
HapMap/SORCS3 268 x 307 | 39 | 0.0325 0.0447 0.0104
HapMap/PAH 266 x 88 | 22 | 0.0643 0.0777 0.0311
HapMap/HOXB 269 x 571 | 72 0.0258 0.0428 0.0111
HapMap/17q25 265 x 370 | 47 | 0.0821 0.1190 0.0533

6.4.3. Genomics - Tagging SNPs. The third application we consider is that of
DNA microarray gene analysis. The data from microarray experiments is represented
as a matrix A € R™*", where A;; indicates whether the jth expression level exists
for gene . Typically, the matrix could have entries {—1,0, 1} indicating whether the
expression exists (+1) or not (0) and the sign indicating the order of the sequence.
Article [14] used CSSP with a greedy selection algorithm to select a subset of gene
expressions or single nucleotide polymorphisms (SNPs) from a table of SNPs for
different populations that capture the spectral information (variations) of population.
The subset of SNPs are called tagging SNPs (tSNPs). Here we show how the coarsening
method can be applied in this application to select columns (and thus tSNPs) from
the table of SNPs, which characterize the extent to which major patterns of variation
of the intrapopulation data are captured by a small number of tSNPs.

We use the same two datasets as in [44], namely the Yale dataset and the Hapmap
datset. The Yale dataset! [12] contains a total of 248 SNPs for around 2000 unrelated
individuals from 38 populations each from around the world. We consider four
genomic regions (SORCS3,PAH,HOXB, and 17¢25). The HapMap project® [22]
(phase I) released a public database of 1,000,000 SNP typed in different populations.
From this database, we consider the data for the same four regions. Using the SNP
table, an encoding matrix A is formed with entries {1,0,1} indicating whether the
expression exists (+1) or not (0) and the sign indicating the order of the sequence, see
supplementary material of [44] for details on this encoding. We obtained such encoded
matrices, made available online by the authors of [44], from http://www.asifj.org/.

Table 4 lists the errors obtained from the three different methods, namely, Coars-
ening, Leverage Score sampling and Greedy selection [44] for different populations.
The error reported is given by nnz(fl — A)/nnz(A), where A is the input encoding
matrix, C' is the sampled/coarsened matrix, A = CCtA, is the projection of A onto
C and nnz(A) is the number of elements in A. The greedy algorithm considers each
column of the matrix sequentially, projects the remaining columns onto the considered
column and chooses the column that gives least error as defined above. The algorithm
then repeats the procedure to select the next column and so on. This algorithm is very
expensive but performs very well in practice. We observe that the coarsening algorithm
performs better than leverage score sampling and the performance is comparable to
that of the greedy algorithm in some cases. The coarsening algorithm is inexpensive
compared to leverage score sampling and is significantly cheaper than the greedy
algorithm.

Lhttp://alfred.med.yale.edu/
2https://www.ncbi.nlm.nih.gov /variation /news/NCBI_retiring_HapMap/
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TABLE 5
Multilabel Classification using CSSP (leverage score sampling) and coarsening: Average training
and test errors and PrecisonQk, k =sparsity.

Data Method c Train Err | Train P@Qk | Test Err | Test PQk
Mediamill, d = 101,n = Coars 51 10.487 0.766 8.707 0.713
10000, nt = 2001, p = 120. CSSP 51 10.520 0.782 12.17 0.377
Bibtex, d = 159, n = Coars 80 1.440 0.705 4.533 0.383
6000, nt = 1501, p = 1836. CSSP 80 1.575 0.618 4.293 0.380
Delicious, d = 983,n = Coars 246 50.943 0.639 74.852 0.455
5000, nt = 1000, p = 500. CSSP 246 53.222 0.655 77.937 0.468
Eurlex, d = 3993,n = Coars 500 2.554 0.591 73.577 0.3485
5000, nt = 1000, p = 5000. CSSP 500 2.246 0.504 81.989 0.370

6.4.4. Multilabel Classification. The last application we consider is that of
multilabel classification (MLC). As seen in section 2, the most common approach to
handle large number of labels in this problem is to perform a label dimension reduction
assuming a low rank property of labels, i.e., only few labels are important. In this
section, we propose to reduce the label dimension based on hypergraph coarsening.
Article [6] presented a method for MLC based on CSSP using leverage score sampling.
The idea is to replace sampling by hypergraph coarsening in this method.

Table 5 list the results obtained for MLC when coarsening and leverage score
sampling (CSSP) were used for label reduction in the algorithm of [6] on different
popular multilabel datasets. All datasets were obtained from https://manikvarma.
github.io/downloads/XC/XMLRepository.html. The gist of the ML-CSSP algorithm
is as follows: Given data with a large number of labels Y € B"*¢ where B is a binary
field with entries {0,1}, we reduce the label dimension by subsampling or coarsening
the label matrix, i.e., we reduce the d labels to ¢ < d labels. We then train ¢ binary
classifiers for these reduced c labels. For a new data point, we can predict whether
the data-point belongs to the ¢ reduced labels using the ¢ binary classifiers, by getting
a ¢ dimensional predicted label vector. We then project the predicted vector onto d
dimension and then use rounding to get the final d dimensional predicted vector.

All prediction errors reported (training and test) are Hamming loss errors, number
of classes the predicted label vector differs from the exact label vector. The second
metric used is Precison@k, which is a popular metric used in MLC literature [61]. This
measures the precision of predicting the first k coordinates |supp(§1.x) N supp(y)|/k,
where supp(z) = {i|z; # 0}. In the above results, we chose k =the actual sparsity of
the predicted label vector. This is equivalent to checking whether or not the proposed
method predicted all the labels the data belongs to correctly. Other values of k such
as Precision@k for k = 1, 3,5 are used, where one is checking whether the top 1,3 or 5
labels respectively are predicted correctly, ignoring other and false labels. The better
of the two results is highlighted. In this application too, we see that the coarsening
method performs well and in many cases does better than the CSSP method which is
more expensive.

7. Conclusion. This paper advocated the use of coarsening techniques for three
matrix approximation problems, namely, partial SVD, column subset selection and
graph sparsification, and illustrated how the coarsening methods, and a combination
of sampling and coarsening methods can be applied to solve these problems. We
presented a few (new) applications for the coarsening technique, and demonstrated
via several experiments that the coarsening technique performs very well in practice,
better than the randomized methods in many cases. This is due to the fact that the
coarsening technique exploits the structure of the input matrix. Coarsening is also
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inexpensive compared to leverage score sampling, and yields comparable results. We
also developed theoretical error bounds for the coarsening method. Interesting future
work includes modifying the proposed coarsening technique for online and streaming
settings.
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Appendix A. Existing Theory - Subspace Iteration. Here we discuss the
theoretical results for the subspace iteration algorithm established in the literature.

The subspace iteration algorithm has been employed and analyzed in the literature
since a long time. The most recent analyses of subspace iteration appeared in [25, 24]
and [50]. We present the following theorem which combines the results from [25, 24, 50].

THEOREM A.3 (Deterministic bounds). Given A € R™*" with SVD A =U%V7T
and an initial subspace Q € R™*. Let Vj, be the top k right singular vectors with
0 = VkTQ, and V,_ the bottom n — k right singular vectors with Qg = Vf_kQ. Let
Q be the subspace obtained after q steps of subspace iteration. Then, if Q4 is full rank,
we have

(10) 14 = QQT Al < (1 + |92/} )/ Doy,

Ifo; forj =1,...,k are the singular values obtained after q steps of subspace iteration.
Then, we have

95

11 > g > .
( ) 0 =205 2 - (4q+2)
L 2] 2 ()

In addition we have,

q
g
oy = sl < (%52) 19 - s
J

Thus, we need §2; to be full rank and the error depends on its pseudoinverse, i.e., its
smallest singular value. If the initial subspace is close to the top k singular vectors
V1, then €4 will be well conditioned and the subspace iteration will converge rapidly.
We know that the randomized subsampling as well as the coarsening algorithms give
good approximation to the top k subspace. Hence, the incremental SVD algorithm
presented in section 4 should converge rapidly.
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