
THE EIGENVALUES SLICING LIBRARY (EVSL): ALGORITHMS,
IMPLEMENTATION, AND SOFTWARE

RUIPENG LI∗, YUANZHE XI† , LUCAS ERLANDSON† , AND YOUSEF SAAD†

Abstract. This paper describes a software package called EVSL (for EigenValues Slicing Li-
brary) for solving large sparse real symmetric standard and generalized eigenvalue problems. As its
name indicates, the package exploits spectrum slicing, a strategy that consists of dividing the spec-
trum into a number of subintervals and extracting eigenpairs from each subinterval independently. In
order to enable such a strategy, the methods implemented in EVSL rely on a quick calculation of the
spectral density of a given matrix, or a matrix pair. What distinguishes EVSL from other currently
available packages is that EVSL relies entirely on filtering techniques. Polynomial and rational filter-
ing are both implemented and are coupled with Krylov subspace methods and the subspace iteration
algorithm. On the implementation side, the package offers interfaces for various scenarios including
matrix-free modes, whereby the user can supply his/her own functions to perform matrix-vector
operations or to solve sparse linear systems. The paper describes the algorithms in EVSL, provides
details on their implementations, and discusses performance issues for the various methods.

Key words. Spectrum slicing; Spectral density; Krylov subspace methods; the Lanczos algo-
rithm; Subspace iterations; Polynomial filtering; Rational filtering

1. Introduction. A good number of software packages have been developed in
the past two decades for solving large sparse symmetric eigenvalue problems see, e.g.,
[5, 6, 7, 20, 26, 47, 35]. In most cases, these packages deal with the situation where
a relatively small number of eigenvalues are sought on either end of the spectrum.
Computing eigenvalues located well inside the spectrum is often supported by provid-
ing options in the software that enable one to exploit spectral transformations, i.e.,
shift-and-invert strategies [38]. However, these packages are generally not designed
for handling the situation when a large number of these eigenvalues, reaching in the
thousands or tens of thousands, are sought and when, in addition, they are located
at the interior of the spectrum. Yet, it is now this breed of difficult problems that
is often encountered in modern applications. For example, in electronic structure
calculations, a method such as Density Functional Theory (DFT) will see the num-
ber of ground states increase to very large numbers in realistic simulations. As an
illustration, the 2011 Gordon Bell winning paper [25] showed a calculation on the K-
computer that had as many as 107,292 atoms leading to the computation of 229,824
orbitals (eigenvectors of the Kohn-Sham equation). In the introduction of the same
paper the authors pointed out that “in order to represent actual behavior of genuine
materials, much more computational resources, i.e., more CPU cycles and a larger
storage volume, are needed to make simulations of up to 100,000 atoms.” As a side
note, it is worth mentioning that the article discusses how the orbitals were divided in
3 sets of 76,608 orbitals handled in parallel, a perfect example of spectrum slicing. In
computations related to excited states, e.g., with the Time-dependent Density Func-
tional Theory (TDFT) approach, the situation gets much worse [8] since one needs
to compute eigenvalues that are not only related to occupied states but also those as-

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P. O. Box
808, L-561, Livermore, CA 94551 (li50@llnl.gov). This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-JRNL-746200).
†Department of Computer Science and Engineering, University of Minnesota Twin Cities, Min-

neapolis, MN 55455 ({yxi,erlan086,saad}@umn.edu). Work supported by NSF under grant CCF-
1505970 and by the Minnesota Supercomputer Institute.

1

sociated with a sizable number of unoccupied ones. EVSL is specifically designed to
tackle these challenges and to address standard and generalized symmetric eigenvalue
problems, encountered in large scale applications of the type just discussed.

As a background we will begin with a brief review of the main software packages
currently available for large eigenvalue problems, noting that it is beyond the scope
of this paper to provide an exhaustive survey. We mentioned earlier that most of
the packages that are available today aim at extracting a few eigenvalues. Among
these, the best known is undoubtedly ARPACK which has now become a de-facto
standard for solvers that rely on matrix-vector operations. ARPACK uses the Implic-
itly Restarted Arnoldi Method for the non-symmetric case, and Implicitly Restarted
Lanczos Method for the symmetric case [35]. ARPACK supports various types of
matrices, including single and double precision real arithmetic for symmetric and
non-symmetric cases, and single and double precision complex arithmetic for stan-
dard and generalized problems. In addition, ARPACK can also calculate the Singular
Value Decomposition (SVD) of a matrix. Due to the widespread use of ARPACK,
once development stalled, vendors began creating their own additions to ARPACK,
fracturing what used to be a uniform standard. ARPACK-NG was created as a joint
project between Debian, Octave and Scilab, in an effort to contain this split.

To cope with the large memory requirements required by the use of the (standard)
Lanczos, Arnoldi and Davidson methods, restart versions were developed that allowed
to reuse previous information from the Krylov subspace in clever ways. Thus, TRLan
[54, 53] was developed as a restarting variant of the Lanczos algorithm. It uses the
thick-restart Lanczos method [48], whose generic version is mathematically equivalent
to the implicitly restarted Lanczos (IRL) method. The TRLan implementation sup-
ports both single address memory space and distributed computations [60, 55] and
also supports user provided matrix-vector product functions. More recently, TRLan
was rewritten in C as the α-TRLAN package, which has an added feature of adaptively
selecting the subspace dimensions [60].

As part of the Trilinos project [16], Anasazi provides an abstract framework to
solve eigenvalue problems, enabling the user to choose or provide their own functions
[6]. It utilizes advanced paradigms such as object-oriented programming and poly-
morphism in C++, to enable a robust and easily expandable framework. With the
help of abstract interfaces, it lets users combine and create software in a modular
fashion, allowing them to construct a precise setup needed for their specific problem.
A notable recent addition to Anasazi is the TraceMin eigensolver [43, 27, 44], which
can be viewed as a predecessor of the Jacobi-Davidson algorithm [21].

The BLOPEX package [30] is available as part of the Hypre library [19], and also
as an external package to PETSc [28]. Through this integration, BLOPEX is able to
make use of pre-existing highly optimized preconditioners. BLOPEX uses the Locally
Optimal Block Preconditioned Conjugate Gradient method (LOBPCG) [29], which
can be combined with a user-provided preconditioner. It is aimed at computing a few
extreme eigenvalues of symmetric positive generalized eigenproblems, and supports
distributed computations via the message passing interface (MPI).

SLEPc [26] is a package aimed at providing users with the ability to use a vari-
ety of eigensolvers to solve different types of eigenvalue problems. SLEPc, which is
integrated into PETSc, supports quite a few eigensolvers, with the ability to solve
SVD problems, Polynomial Eigenvalue problems, standard and generalized problems,
and it also allows solving interior eigenvalue problems with shift-and-invert transfor-
mations. SLEPc is written in a mixture of C, C++, and Fortran, and can be run in

2

parallel on many different platforms.

PRIMME [47] is a relatively recent software package that aims to be a robust,
flexible and efficient, ‘no-shortcuts’ eigensolver. It includes a multilevel interface, that
allows both experts and novice users to feel at ease. PRIMME uses nearly optimal
restarting via thick restart and ‘+k restart’ to minimize the cost of restarting. By
utilizing dynamic switching between methods it is able to achieve accurate results
very quickly [47]. The interesting article [51] shows a (limited) comparison of a few
software packages and found the GD+K algorithm from PRIMME to be the best
in terms of speed and robustness for the problems they considered. These problems
originate from quantum dot and quantum wire simulations in which the potential
is given and, to paraphrase the authors, ‘restricts the computation to only a small
number of interior eigenstates from which optical and electronic properties can be
determined’. In fact, the goal is to compute the two eigenvalues that define valence
and conduction bands. There may be thousands of eigenvalues to the left of these
two eigenvalues and the paper illustrates how some codes, e.g., the IRL routine from
ARPACK faces severe difficulties in this case because they are designed for computing
smallest (or largest) eigenvalues.

While the packages mentioned above are used to calculate a limited number of
eigenvalues, the FILTLAN [20], and FEAST [39] packages are, like EVSL, designed
to compute a large number of eigenpairs associated with eigenvalues not necessarily
located at the extremity of the spectrum. Rather than resort to traditional shift-invert
methods, FILTLAN uses a combination of (non-restarted) Lanczos and polynomial
filtering with Krylov projection methods to calculate both the interior and extreme
eigenvalues. In addition, it uses the Lanczos algorithm and partial reorthogonalization
to improve performance [20]. FEAST has been designed with the same motivation
as EVSL, namely to solve the kind of eigenvalue problems that are prevalent in solid
state physics. It can search for an arbitrary number of eigenvalues of Hermitian and
non-Hermitian eigenvalue problems. Written in Fortran, it exploits the well-known
Cauchy integral formula to express the eigenprojector. This formula is approximated
via numerical integration and this leads to a rational filter to which subspace iteration
is applied. Single node and multi-node versions are available via OpenMP and MPI.
The idea of using Cauchy integral formulas has also been exploited by Sakurai and
co-authors [41, 42, 4]. A related software package called z-Pares [18] has been made
available from the University of Tsukuba, which is implemented in Fortran 90/95 and
supports single and double precision. It offers interfaces for both sparse and dense
matrices but also allows arbitrary matrix-vector products via reverse communication.
This code was developed with a high degree of parallelism in mind and, for example,
it can utilize a 2-level distributed parallelism via a pair of MPI communicators.

A number of other packages implement specific classes of methods. Among these
is JADAMILU [7] which focuses on the Jacobi-Davidson framework to which it adds a
battery of preconditioners. It too is geared toward the computation of a few selected
eigenvalues. The above list is by no means exhaustive and the field is constantly
evolving. What is also interesting to note is that these packages are rarely used in ap-
plications such as the ones mentioned above where a very large number of eigenvalues
are computed. Instead, most application packages, including PARSEC [32], CASTEP
[46], ABINIT [24], Quantum Expresso [17], OCTOPUS [2], and VASP [31] implement
their own eigensolvers, or other optimization schemes that bypass eigenvalue problems
altogether. For example, PARSEC implements a form of nonlinear subspace iteration
accelerated by Chebyshev polynomials. In light of this it may be argued that efforts

3

to develop general purpose software to tackle this class of problems may be futile.
The counter-argument is that even if a small subset from a package, or a specific
technique from it, is adapted or retrofitted into the application, instead of the package
being entirely adopted, the effort will be worthwhile if it leads to significant gains.

We end this section by introducing our notation and the terminology used through-
out the paper. The generalized symmetric eigenvalue problem (GSEP) considered is
of the form:

Ax = λBx, (1.1)

where both A and B are n-by-n large and sparse real symmetric and B is positive
definite. When B = I, (1.1) reduces to the standard real symmetric eigenvalue
problem (SEP)

Ax = λx. (1.2)

For generalized eigenvalue problems we will often refer to the Cholesky factor L of
B which satisfies B = LLT , where L is lower triangular. We will also refer to B1/2

the matrix square root of B. It is often the case that L is expensive to compute,
e.g., for problems that arise from 3-D simulations. In this cases, we may utilize the
factorization B = B1/2 · B1/2 and approximate the action of B1/2 by that of a low
degree polynomial in B. If the smallest eigenvalue is λmin and the largest λmax, we
refer to the interval [λmin, λmax] as the spectral interval. We will often use this term
for an interval [a, b] that tightly includes [λmin, λmax].

2. Methodology. This section begins with an outline of the methodologies of
the spectrum slicing algorithms as well as the projection methods for eigenvalue prob-
lems that have been implemented in EVSL. For further reading, the theoretical and
algorithmic details can be found in [36, 57, 58].

2.1. Spectrum slicing. The EVSL package relies on a spectrum slicing ap-
proach to deal with the computation of a very large number of eigenvalues. The idea
of spectrum slicing consists of a divide-and-conquer strategy: the target interval [ξ, η]
that contains many eigenvalues is subdivided into a number of subintervals and the
eigenvalues from each subinterval are then computed independently from the others.
The simplest slicing method would be to divide [ξ, η] uniformly into equal size subin-
tervals. However, when the distribution of eigenvalues is highly nonuniform, some
subintervals may contain many more eigenvalues than others and this will cause a
severe imbalance in the computational time and, especially, in memory usage. EVSL
adopts a more sophisticated slicing strategy based on exploiting the spectral density
that is also known density of states (DOS). The spectral density is a function φ(t) of
real number t that provides for any given t a probability measure for finding eigen-
values near t. Specifically, nφ(t)∆t will give an approximate number of eigenvalues
in an infinitesimal interval surrounding t and of width ∆t. For details, see, e.g., [37].
Formally, the DOS for a Hermitian matrix A is defined as follows:

φ(t) =
1

n

n∑
j=1

δ(t− λj), (2.1)

where δ is the Dirac δ-function or the Dirac distribution, and the λj ’s are the eigenval-
ues of A or B−1A. Written in this formal form, the DOS is not a proper function but
a distribution and it is its approximation by a smooth function that is of interest [37].

4

Notice that if the DOS function φ were available, the exact number of eigenvalues
located inside [ξ, η] could be obtained from the integral∫ η

ξ

nφ(t)dt =

∫ η

ξ

∑
j

δ(t− λj)dt.

Thus, the task of slicing [ξ, η] into ns subintervals that roughly contain the same
number of eigenvalues can be accomplished by ensuring that the integral of φ on each
subinterval is an equal share of the integral on the whole interval, i.e,∫ ti+1

ti

φ(t)dt =
1

ns

∫ η

ξ

φ(t)dt, i = 0, 1, . . . , ns − 1, (2.2)

where [ti, ti+1] denotes each subinterval with t0 = ξ and tns
= η. The values of the

endpoints {ti} can be computed easily by first finely discretizing [ξ, η] with N � ns
evenly spaced points x0 = ξ < x1 < . . . < xN−2 < xN−1 = η and then placing each
ti at some xj such that (2.2) can be fulfilled approximately. Figure 2.1 shows an
illustration of spectrum slicing with DOS.

Clearly, the exact DOS function φ is not available since it requires the knowledge
of the eigenvalues which are unknown. However, there are inexpensive procedures
that provide an approximate DOS function φ̃, with which reasonably well-balanced
slices can usually be obtained. Two types of methods have been developed for com-
puting φ̃. The first method is based on the kernel polynomial method (KPM), see,
e.g., [37] and the references therein, and the second one uses a Lanczos procedure and
the related Gaussian quadrature [57]. These two methods are in general computa-
tionally inexpensive relative to computing the eigenvalues and require the matrix A
only through matrix-vector operations.

The above methods for computing DOS can be extended to generalized eigen-
value problems, Ax = λBx. In addition to the matrix-vector products with A, these
methods require solving systems with B, and also with B1/2 or with LT where L is the
Cholesky factor of B, to generate a correct starting vector. A canonical way to do this
is to obtain the Cholesky factor via a sparse direct method. This may sometimes be
too expensive whereas in many applications that arise from finite element discretiza-
tion, where B is a very well conditioned mass matrix, using iterative methods such as
Chebyshev iterations or the least-squares polynomial approximation discussed in [57]
can become a much more attractive alternative.

2.2. Filtering techniques. An effective strategy for extracting eigenvalues from
an interval [ti, ti+1] that is deep inside the spectrum, is to apply a projection method
on a filtered matrix, where a filter function ρ(t) aims at amplifying the desired eigen-
values located inside [ti, ti+1] and dampening those outside [ti, ti+1]. This is also
referred to as spectral transformation and it can be achieved via a polynomial filter
or a rational one. Both types of filtering techniques have been developed and im-
plemented in EVSL, with a goal of providing different effective options for different
scenarios. The main goal of a filter function is to map the wanted part of the spec-
trum of the original matrix to the largest eigenvalues of the filtered matrix. Figure
2.2 illustrates a polynomial filter for the interval [0, 0.3].

2.2.1. Polynomial filtering. The polynomial filter adopted in EVSL is con-
structed through a Chebyshev polynomial expansion of the Dirac delta function based
at some well-selected point inside the target interval. Since Chebyshev polynomials

5

Fig. 2.1. An illustration of slicing a spectrum into 5 subintervals [ti, ti+1] (i = 0, . . . , 5). The
solid blue curve represents a smoothed DOS and the dotted red lines separate the subintervals.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5

3

t

DOS

Φ
(t
)

Fig. 2.2. An illustration of filtering techniques for real symmetric eigenvalue problems. Left:
The eigenvalues inside [−1, 1] are mapped to the eigenvalues of the filtered matrix, which are the
red dotted points along the blue solid curve. Right: The spectrum of the filtered matrix, where the
wanted eigenvalues in [0, 0.3] are mapped into the largest ones of the filtered matrix. In this case the
filter has been built so that these transformed eigenvalues are larger than 0.8.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

ϱ
(t
)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.5

0

0.5

1

0.0 0.8 1.0

wantedunwanted eigenvalues

are defined over the interval [−1, 1], a linear transformation is needed to map the
eigenvalues of B−1A onto this interval. This is achieved by applying a simple linear
transformation:

Â =
A− cB

d
with c =

λmax + λmin

2
and d =

λmax − λmin

2
, (2.3)

where λmax and λmin are the largest and smallest eigenvalues of B−1A, respectively.
These two extreme eigenvalues can be efficiently estimated by performing a few steps
of the Lanczos algorithm. Similarly, the target interval [ti, ti+1] should be transformed
into [t̂i, t̂i+1] ≡ [(ti−c)/d, (ti+1−c)/d]. Let Tj(t) denote the Chebyshev polynomial of
the first kind of degree j. The k-th degree polynomial filter function ρ(t) for interval

6

[t̂i, t̂i+1] centered at γ takes the form

ρ(t) =

∑k
j=0 µjTj(t)∑k
j=0 µjTj(γ)

, (2.4)

where the expansion coefficients are

µj =

{
1
2 if j = 0

cos(j cos−1(γ)) otherwise
. (2.5)

Notice that the filter function ρ(t) only contains two parameters: the degree k and
the center γ, which are determined as follows. From a lowest degree (which is 2), we
keep increasing k until the values ρ(t̂i) and ρ(t̂i+1) at the boundary of the interval
are less than or equal to a predefined threshold τ , where by default τ = 0.8 and we
have ρ(γ) = 1 by construction. For any degree k that is attempted, the first task is to
select γ so that the filter is “balanced” such that its values at the ends of the interval
are the same, i.e., ρ(t̂i) = ρ(t̂i+1). This can be achieved by applying Newton’s method
to solve the equation

ρ(t̂j)− ρ(t̂j+1) = 0, (2.6)

where the unknown is γ. If ρ(t̂i) and ρ(t̂i+1) do not exceed τ , the selection procedure
terminates and returns the current polynomial of degree k. Otherwise k is increased
and the procedure will be repeated until a maximum allowed degree is reached. There
are situations that very small intervals require a degree of a few thousands.

In order to reduce the oscillations near the boundaries of the interval, it is custom-
ary to introduce damping multipliers to µj . Several damping approaches are available
in EVSL, where the default Lanczos σ-damping [33, Chap. 4] is given by

µ̂j = σkj µj , (2.7)

with

σkj =

{
1 if j = 0
sin(jθk)
jθk

, θk = π
k+1 otherwise

.

An illustration of two polynomial filters with and without the Lanczos σ-damping is
given Figure 2.3, which clearly shows the effect of damping factors for annihilating
oscillations. For additional details on selecting the degree, the balancing procedure,
and damping oscillations of the polynomial filter, we refer to our earlier paper [36].

2.2.2. Rational filtering. The second type of filtering techniques in EVSL is
rational filtering, which can be a better alternative to polynomial filtering in some
cases. Traditional rational filter functions are usually built from the Cauchy integral
representation of the step function h[tj , tj+1]. Formally, the Cauchy integral of the
resolvent yields a spectral projector associated with the eigenvalues inside the interval
[tj , tj+1]. A good approximation of this projector can be obtained by employing a
numerical quadrature rule. Thus, the step function is approximated as follows:

h[tj ,tj+1] =
1

2πi

∫
Γ

1

s− z
ds ≈

2p∑
j=1

αj
(z − σj)

= ρ(z), (2.8)

7

Fig. 2.3. Polynomial filters of degree 16 with the Lanczos σ-damping and without damping for
interval [0.2, 0.4].

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t̂

ρ
(t̂
)

No damping

Lanczos σ

where Γ denotes a circle centered at (tj + tj+1)/2 with radius (tj+1 − tj)/2. The
poles σj ∈ C are taken as the quadrature nodes along Γ and αj are the expansion
coefficients. EVSL implements both Cauchy integral-based rational filters and the
more flexible least-squares (L-S) rational filters discussed in [58]. In general, a L-S
rational filter takes the following form:

ρ(z) =

2p∑
j=1

kj∑
k=1

αjk
(z − σj)k

, (2.9)

where pole σj is repeated kj times with the aim of reducing the number of poles on
one the hand and improving the quality of the filter for extracting eigenvalues on the
other. In particular, if σi is equal to the conjugate of σi+p, (2.9) can be simplified as

ρ(z) = 2<e
p∑
j=1

kj∑
k=1

αjk
(z − σj)k

. (2.10)

In its current implementation, the procedure for constructing the L-S rational filter
starts by choosing the quadrature nodes, i.e., the poles σj . Once the σj ’s are selected,
the coefficients αjk can be computed by solving the following problem

min
∥∥h[tj ,tj+1] − ρ(z)

∥∥2

w
, (2.11)

where the norm is associated with the standard L2 inner product

〈f, g〉 =

∫ ∞
−∞

w(t)f(t)g(t)dt, (2.12)

and the weight function w(t) is taken to be of the form

w(t) =

{
0.01 if tj ≤ t ≤ tj+1

1 otherwise
. (2.13)

8

Since it is desirable to have the same fixed value 1/2 at the boundaries as for the
Cauchy integral filters, the L-S rational filter (2.10) is scaled by 2ρ(tj).

The left panel of Figure 2.4 shows a comparison of a L-S rational filter and two
Cauchy integral rational filters for the interval [−1, 1] both using p = 3 poles. The
Cauchy integral rational filters are constructed by applying the Gauss Legendre rule
and the mid-point rule to discretize (2.8), whereas the L-S rational filter is computed
with the same poles and the coefficients are computed by solving (2.11). In this
example, the L-S rational filter achieves almost the same damping effect as the Gauss
Legendre filter but unlike the other two rational filters, it does not approximate the
step function and amplifies the wanted eigenvalues to much higher values. The right
panel shows three L-S rational filters constructed by repeating only 1 pole located at
σ1 = i (where i is the imaginary unit) for k times. It shows that the L-S rational
filters decay faster across the boundaries as the value of k increases.

Fig. 2.4. Left: Comparison of a least-squares rational filter and two Cauchy integral filters
using the Gaussian Legendre rule and the mid-point rule with p = 3. The L-S rational filter uses
the same poles as the Gaussian Legendre filter. Right: Comparison of L-S rational filters obtained
from repeating one pole located at (0, 1) k times, where k = 2, 4, 6.

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

6

7

8

9

10

t

ρ
(t

)

LS

Mid−pt

Gauss

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

6

7

8

9

10

t

ρ
(t

)

2

4

6

2.3. Lanczos algorithms for standard eigenvalue problems. For a sym-
metric matrix A, the Lanczos algorithm builds an orthonormal basis of the Krylov
subspace

Km := span{q1, Aq1, . . . , A
m−1q1},

where, at step j, the vector Aqj is orthonormalized against qj and qj−1 when j > 1.

βi+1qi+1 = Aqi − αiqi − βiqi−1. (2.14)

In exact arithmetic, the 3-term recurrence would deliver an orthonormal basis of the
Krylov subspace Km but in the presence of rounding, orthogonality between the qi’s
is quickly lost, and a form of reorthogonalization is needed in practice. EVSL uses
full reorthogonalization to enforce the orthogonality to working precision, which is
performed by no more than two steps of the classical Gram-Schmidt algorithm [22, 23]
with the DGKS correction [10]. Let Tm denote the symmetric tridiagonal matrix

Tm = tridiag(βi, αi, βi+1), (2.15)

9

where αi, βi are from (2.14) and define Qm = [q1, q2, . . . , qm]. Let (θi, yi) be an eigen-
pair of Tm. It is well-known that the Ritz values and vectors (θi, Qmyi) can provide
good approximations to extreme eigenvalues and vectors of A with a fairly small value
of m. EVSL adopts a simple non-restart Lanczos algorithm and a thick-restart (TR)
Lanczos algorithm [49, 55] as they blend quite naturally with the filtering approaches.
In addition to TR, another essential ingredient is the inclusion of a “locking” mecha-
nism, which consists of an explicit deflation procedure for the converged Ritz vectors.

2.4. Lanczos algorithms for generalized eigenvalue problems. A straight-
forward way to extend the approaches developed for standard eigenvalue problems to
generalized eigenvalue problems is to transform them into the standard form. Suppose
the Cholesky factorization B = LLT is available, problem (1.1) can be rewritten as

L−1AL−Ty = λy, with y = LTx, (2.16)

which takes the standard form with the symmetric matrix L−1AL−T. The matrix
L−1AL−T does not need to be formed explicitly, since the procedures discussed above
utilize the matrix in the form of matrix-vector products. However, there are situations
where the Cholesky factorization of B needed in (2.16) is not available but where one
can still solve linear systems with the matrix B. In this case, we can express (1.1)
differently:

B−1Ax = λx, (2.17)

which is again in the standard form but with a nonsymmetric matrix. However,
it is well-known that the matrix B−1A is self-adjoint with respect to the B-inner
product and this observation allows one to use standard methods that are designed
for self-adjoint linear operators. Consequently, the 3-term recurrence in the Lanczos
algorithm becomes

βm+1wm+1 = B−1Awm − αmwm − βmwm−1. (2.18)

Note here that the vectors wi’s are now B-orthonormal, i.e.,

(wi, wj)B ≡ (Bwi, wj) =

{
0 i 6= j

1 i = j
.

The Lanczos algorithm for (2.17) is given in Algorithm 1 [40, p.230], where an auxiliary
sequence zj ≡ Bwj is saved to avoid the multiplications with B in the inner products.

2.5. Lanczos algorithms with polynomial and rational filtering. Next,
we will discuss how to combine the Lanczos algorithm with the filtering techniques
in order to efficiently compute all the eigenvalues and corresponding eigenvectors in a
given interval. For standard eigenvalue problem Ax = λx, a filtered Lanczos algorithm
essentially applies the Lanczos algorithm with the matrix A replaced by ρ(A), where
ρ(A) is a filter function of A, in which ρ is either a polynomial or a rational function.
The filtered TR Lanczos algorithm with locking is sketched in Algorithm 2. In this
algorithm, the “candidate set” consists of the Ritz pairs with the Ritz values greater
than the filtering threshold τ . Then, the Rayleigh quotients λi with respect to the
original matrix A are computed. Those that are outside the wanted interval are
rejected. For the remaining candidates, we compute the residual norm ‖Aui− λiui‖2
to test the convergence. The converged pairs (λi, ui) are put in the “locked set” and

10

1: Choose an initial vector w1 with ‖w1‖B = 1. Set β1 = 0, w0 = 0, z0 = 0, and
compute z1 = Bw1.

2: for i = 1, 2, . . . do
3: z := Awi − βizi−1

4: αi = (z, wi)
5: z := z − αizi
6: Full reorthogonalization: z := z −

∑
j(z, wj)zj for j ≤ i

7: w := B−1z
8: βi+1 = (w, z)1/2

9: wi+1 := w/βi+1

10: zi+1 := z/βi+1

11: end for

Algorithm 1: Lanczos algorithm for Ax = λBx

all future iterations will perform a deflation step against those converged Ritz vectors
that are stored in the matrix U , while all the others go to the “TR set” for the next
restart. The Lanczos process is restarted when the dimension reaches m. A test for
early restart is also triggered for every Ncycle steps by checking if the sum of the Ritz
values that are greater than τ no longer varies in several consecutive checks. Once
no candidate pairs are found, we will run one extra restart in order to minimize the
occurrences of missed eigenvalues [20]. In practice, the two stopping criteria for the
inner loop and the outer loop of Algorithm 2 are often found to be effective in that
they achieve the desired goal of neither stopping too early and miss a few eigenvalues,
nor so late that unnecessary additional work is carried out.

Special formulations are needed if we are to implement filtering to a generalized
eigenvalue problem, Ax = λBx. The base problem is

ρ(B−1A)x = ρ(λ)x (2.19)

which is in standard form but uses a nonsymmetric matrix. Multiplying both sides
by B yields the form:

Kx = ρ(λ)Bx, with K = Bρ(B−1A) (2.20)

where we now have a generalized problem with a symmetric matrix K and an SPD
matrix B. An alternative is to set x = B−1y in (2.19) in which case the problem is
restated as:

Ky = ρ(λ)B−1y, with K = ρ(B−1A)B−1, y = Bx (2.21)

where again K is symmetric and B−1 is SPD.
Thus, we can apply Lanczos algorithms, along with a filter ρ that is constructed

for a given interval, to the matrix pencil (K,B) in (2.20) or the pencil (K,B−1) in
(2.21) to extract the desired eigenvalues of (A,B) in the interval. When applying
Algorithm 1 to (2.20), the Ritz vectors that approximate eigenvectors of (A,B) take
the form Wmyi, where Wm = [w1, . . . , wm] and (θi, yi) is eigenpair of Tm. On the
other hand, for (2.21), approximate eigenvectors are of the form: B−1Wmyi = Zmyi,
where Zm = [z1, . . . , zm]. Moreover, for the polynomial filter, the matrix A should be
first shifted and scaled as in (2.3) to ensure that the spectrum of B−1A is contained
in [−1, 1]. In terms of computational cost, the difference between performing the

11

1: Input: symmetric matrix A ∈ Rn×n, initial unit vector q1, filter function ρ and
interval [tj , tj+1]

2: Initialization: q0 := 0, Its := 0, lock := 0, l := 0 and U := []
3: while Its ≤MaxIts do
4: if l > 0 then
5: Perform a special TR step with (I − UUT)ρ(A) and l := l + 1
6: end if
7: for i = l + 1, . . . ,m do
8: Its := Its+ 1
9: Perform a Lanczos step with (I − UUT)ρ(A) and full reorthogonalization

10: if (i− l) mod Ncycle = 0 then
11: told = tnew and tnew =

∑
θj for θj ≥ τ

12: if |tnew − told| < τ1 then
13: break
14: end if
15: end if
16: end for
17: Compute candidate Ritz pairs, i.e., (θj , uj) such that θj ≥ τ
18: Set TR set Q := [] and l := 0
19: for each candidate pair (θj , uj) do
20: Compute λj = uTj Auj
21: if λj /∈ [tj , tj+1] then
22: ignore this pair
23: end if
24: if (λj , uj) has converged then
25: Add uj to locked set U := [U, uj] and lock := lock + 1
26: else
27: Add uj to TR set Q := [Q, uj] and l := l + 1
28: end if
29: end for
30: if No candidates found in two restarts then
31: break
32: end if
33: end while

Algorithm 2: The filtered TR Lanczos algorithm with locking for Ax = λx

Lanczos algorithm with (2.20) and with (2.21) is small, whereas for the rational filter,
it might be often preferable to solve (2.21) with Algorithm 1, since solving systems
with B can be avoided. A few practical details in applying the filters follow. First,
consider applying Algorithm 1 to (2.20) with a polynomial filter ρ. Line 3 of this
algorithm can be stated as follows

z := Bρ(B−1Â)wi − βizi−1 = ρ(ÂB−1)zi − βizi−1, (2.22)

where Â = (A− cB)/d as in (2.3) and note that zi = Bwi. So, applying the filtered
matrix to a vector requires k solves with B and k matrix-vector products with A,
where k is the degree of the polynomial filter. Second, when rational filters are used,
employing Algorithm 1 to the pair (K,B−1) in (2.21), Line 3 of this algorithm becomes

z := ρ(B−1A)B−1wi − βizi−1 = ρ(B−1A)zi − βizi−1, (2.23)

12

where we have set wi = Bzi. Let the rational filter take the form ρ(t) = 2<e
∑
j

∑
k ajk(t−

σj)
−k. The operation of ρ(B−1A) on a vector z can be rewritten as

ρ(B−1A)z = 2<e
p∑
j=1

kj∑
k=1

αjk(B−1A− σjI)−kz = 2<e
p∑
j=1

kj∑
k=1

αjk[(A− σjB)−1B]kz,

which requires
∑
kj matrix-vector products with B and

∑
kj solves with (A− σjB),

where kj denotes the number of the repetitions of the j-th pole. The main operations
involved in the application of the polynomial and rational filters for standard and
generalized eigenvalue problems are summarized in Table 2.1.

Third, when applying Lanczos algorithms to (2.21), the initial vectors z1 and
w1 can be generated by first selecting z1 as a random vector with unit B-norm and
then compute w1 = Bz1 in order to avoid a system solution with B. Finally, Lanczos
algorithms for generalized eigenvalue problems with the same TR and locking schemes
as in Algorithm 2 have also been developed in EVSL, where the deflation takes the
form

(I −BUUT)Ax = λBx,

where U has as its columns the converged Ritz vectors, which are B-orthonormal.

Table 2.1
The computations involving A and B in applying the filters, where k denotes the degree of the

polynomial filter and kj denotes the number of the repetition of pole σj of the rational filter.

standard generalized

polynomial rational polynomial rational

Ax k k

Bx
∑
kj

(A− σjB)−1x
∑
kj

∑
kj

B−1x k

Before closing this section, we point out that in addition to the Lanczos algorithm,
EVSL also includes subspace iteration as another projection method. Subspace iter-
ation is generally slower than Krylov subspace-based methods but it may have some
advantages in nonlinear eigenvalue problems where a subspace computed at a given
nonlinear step can be used as initial subspace for the next step. Note that subspace
iteration requires a reasonable estimate of the number of the eigenvalues to compute
beforehand in order to determine the subspace dimension. This number is readily
available from the DOS algorithm for spectrum slicing.

2.6. Parallel EVSL. This paper focuses on the spectrum slicing algorithms
and the projection methods with filtering techniques that are included in EVSL.
These algorithms were implemented for scalar machines and can take advantage of
standard multi-core computers with shared memory. However, the algorithms in
EVSL were designed with solving large-scale problems on parallel platforms in mind.
It should be clear that the spectrum slicing framework is very appealing for parallel
processing, where two main levels of parallelism can be exploited. At a macro level,
we can divide the interval of interest into a number of slices and map each slice to a
group of processes, so that eigenvalues contained in different slices can be extracted

13

Fig. 2.5. The two main levels of parallelism in EVSL.

S
li

c
e

 1
S

li
c

e
 2

S
li

c
e

 3

Domain 1

Domain 2

Domain 3

Domain 4

Macro−task 1

in parallel. This strategy forms the first level of parallelism across the slices. On
parallel machines with distributed memory, this level of parallelism can be easily
implemented by organizing subsets of processes by groups via subcommunicators in
a message passing model, such as MPI. A second level of parallelism exploits domain
decomposition across the processes within a group, where each process holds the
data in its corresponding domain and the parallel matrix and vector operations are
performed collectively within the group. These two levels of parallelism are sketched
in Figure 2.5. More careful discussions on the parallel implementations, the parallel
efficiency and the scalability of the proposed algorithms are out of the scope of this
paper and will be the object of a future article on the parallel EVSL package (pEVSL),
which is currently under development.

3. The EVSL package. EVSL is a package that provides a collection of spec-
trum slicing algorithms and projection methods for solving eigenvalue problems. In
this section, we address the software design and features of EVSL, its basic function-
alities, and its user interfaces.

3.1. Software design and user interface. EVSL is written in C with an added
Fortran interface and it is designed primarily for large and sparse eigenvalue problems
in both the standard and the generalized forms, where the sparse matrices are stored
in the CSR format. The main functions of EVSL are listed next. Two algorithms
for computing spectral densities, namely, the kernel polynomial method kpmdos and
the Lanczos algorithm landos, and the corresponding spectrum slicers, spslicer and
spslicer2 are included in EVSL. Two filter options are available in EVSL, one based
on Chebyshev polynomial expansions and the other one based on least-squares (L-S)
rational approximations. These are built by the functions find pol and find ratf

respectively. EVSL also includes 5 projection methods for eigenvalue problems:
• Polynomial filtered non-restart Lanczos algorithm ChebLanNr,
• Rational filtered non-restart Lanczos algorithm RatLanNr,
• Polynomial filtered thick-restart Lanczos algorithm ChebLanTr,
• Rational filtered thick-restart Lanczos algorithm RatLanTr, and
• Polynomial filtered subspace iterations ChebSI.

Two auxiliary functions named LanBounds and LanTrbounds implement simple Lanc-
zos iterations and a more reliable thick-restart version to provide sufficiently good
estimations of the smallest and the largest eigenvalues, which are needed to trans-
form the spectrum onto [−1, 1] by the polynomial filtering approach. A subroutine

14

named lsPol computes Chebyshev polynomial expansions that approximate functions
f(t) = t−1 and f(t) = t−1/2 in a least-squares sense. This is used to approximate the
operations B−1v and B−1/2v as required by the DOS algorithms and the polynomial
filtering algorithm for generalized problems. The accuracy of this approximation re-
lies on the condition number of B [57]. For many applications from finite element
discretization, the matrix B is the mass matrix, which is often very well-conditioned
after a proper diagonal scaling. To solve linear systems with A−σjB, EVSL currently
relies on sparse direct methods. Along with the library that contains the above men-
tioned algorithms, test programs are also provided to demonstrate the use of EVSL
with finite difference Laplacians on regular grids and general matrices stored under
the MatrixMarket format.

The algorithms in EVSL can also be used in a ‘matrix-free’ form that relies
on user-defined matrix-vector multiplication functions and functions for solving the
involved linear systems. These functions have the following generic prototypes to
allow common interfaces with user-specific functions:

typedef void (*NAME)(double *x, double *y, void *data)

and

typedef void (*NAME)(double *x Re, double *x Im, double *y Re, double

*y Im, void *data)

for the computations in real and complex arithmetics, where vector x is the input,
vector y is the output and data points to all the required data to perform the function.
Below are two sample code snippets to illustrate the common user interfaces of EVSL.
The first example shows a call to lanDos to slice the spectrum followed by calls to the
polynomial filtering with ChebLanNr to compute the eigenvalues of (A,B) contained
in an interval (ξ, η) with CSR matrices Acsr and Bcsr. A sparse direct solver is first
setup for the solve with B and LT where B = LLT (lines 9-11). Then, a lower and
an upper bounds of the spectrum are obtained by LanTrbounds (line 11). The DOS
is computed by lanDos followed by the spectrum slicing with spslicer2. Finally, we
construct a polynomial filter for each slice using find pol and combine the filter with
ChebLanNr to extract the eigenvalues contained in the slice (lines 15-19).

1 /* Example 1: ChebLanNr for (A,B) */

2 #include "evsl.h"

3 EVSLStart ();

4 SetGenEig ();

5 SetAMatrix (&Acsr);

6 SetBMatrix (&Bcsr);

7 SetupBSolDirect (&Bcsr , &Bsol);

8 SetBSol(BSolDirect , Bsol);

9 SetLTSol(LTSolDirect , Bsol);

10 LanTrbounds (..., &lmin , &lmax);

11 intv [0] = xi; intv [1] = eta; intv [2] = lmin; intv [3] = lmax;

12 lanDos (..., npts , xdos , ydos , &nev_est , intv);

13 spslicer2(xdos , ydos , nslices , npts , sli);

14 for (i = 0; i < nslices; i++) {

15 intv [0] = sli[i]; intv [1] = sli[i+1];

16 find_pol(intv , &pol);

17 ChebLanNr(intv , ..., &pol , &nev , &lam , &Y, &res , ...);

18 }

19 EVSLFinish ();

15

The second example shows a code that uses rational filtering with a call to
RatLanNr. The rational filter is built by find ratf. For each pole of the ratio-
nal filter, we setup a direct solver for the corresponding shifted matrix and save the
data for all the solvers in rat. Once the rational filter is properly setup, RatLanNr
can be invoked with it.

1 /* Example 2: RatLanNr for (A,B) */

2 for (i = 0; i < nslices; i++) {

3 intv [0] = sli[i]; intv [1] = sli[i+1];

4 intv [2] = lmin; intv [3] = lmax;

5 find_ratf(intv , &rat);

6 void **sol = (void **) malloc(num_pole * sizeof(void *));

7 SetupASIGMABSolDirect (&Acsr , &Bcsr , num_pole , rat , sol);

8 SetASigmaBSol (&rat , ASIGMABSolDirect , sol);

9 RatLanNr(intv , ..., &rat , &nev , &lam , &Y, &res , ...);

10 }

3.2. Availability and dependencies. EVSL is available from its website http:
//www.users.cs.umn.edu/~saad/software/EVSL/index.html and also from the de-
velopment website https://github.com/eigs/EVSL. EVSL requires the dense linear
algebra package BLAS [34, 15, 14] and LAPACK [1]. Optimized high performance
BLAS and LAPACK routines, such as those from Intel Math Kernel Library (MKL)
and OpenBLAS [52], and sparse matrix-vector multiplication routines are suggested
for obtaining good performance. For the linear system solves, CXsparse [11] is dis-
tributed along with EVSL as the default sparse direct solver. However, it is possible,
and we highly recommended to configure EVSL with other external high performance
direct solvers, such as Cholmod [9] and UMFpack [12] from SuiteSparse, and Pardiso
[45] with the unified interface prototype. Wrappers with this interface can be easily
written for other solver options.

4. Numerical experiments. In this section, we provide a few examples to
illustrate the performance and ability of EVSL. In the tests we compute interior
eigenvalues of Laplacian matrices and Hamiltonian matrices from electronic structure,
and we also solve generalized eigenvalue problems from a Maxwell electromagnetics
problems. The experiments were carried out on one node of Catalyst, a cluster at
Lawrence Livermore National Laboratory, which is equipped with a dual-socket Intel
Xeon E5-2695 processor (24 cores) and 125 GB memory. The EVSL package was
compiled with the Intel icc compiler and linked with the threaded Intel MKL for the
BLAS/LAPACK and the sparse matrix-vector multiplication routines.

4.1. Laplacian matrices. We begin with discretized Laplacians obtained from
the 5-point and 7-point finite-difference schemes on regular 2-D and 3-D grids. In each
column of Table 4.1, we list the grid sizes for each test case, the size of the matrix
(n), the number of the nonzeros (nnz), the spectral interval ([a, b]), two intervals
of interest from which to extract eigenvalues ([ξ, η]), and the actual numbers of the
eigenvalues contained in [ξ, η], denoted by ν[ξ,η].

Table 4.2 shows test results for computing the eigenvalues of the Laplacians in
the given intervals and the corresponding eigenvectors using ChebLanNr, where ‘deg’
is the degree of the polynomial filter, ‘iter’ indicates the number of Lanczos iterations
and ‘nmv’ stands for the number of matrix-vector products required. For the timings,
we report the time for computing the matrix-vector products (‘t-mv’), the time for
performing the reorthogonalization (‘t-orth’), and the total time to solution (‘t-tot’).

16

Table 4.1
Discretized 5-pt/7-pt Laplacians on 2-D/3-D regular grids.

Grid n nnz [a, b] [ξ, η] ν[ξ,η]

3432 117, 649 586, 873 [0, 7.9998]
[0.40, 0.436] 356

[1.00, 1.033] 347

7292 531, 441 2, 654, 289 [0, 7.9998]
[0.40, 0.410] 446

[1.00, 1.009] 435

10002 1, 000, 000 4, 996, 000 [0, 7.9998]
[0.40, 0.405] 429

[1.00, 1.005] 460

493 117, 649 809, 137 [0, 11.9882]
[0.40, 0.570] 343

[1.00, 1.100] 345

813 531, 441 3, 680, 721 [0, 11.9882]
[0.40, 0.450] 433

[1.00, 1.028] 420

1003 1, 000, 000 6, 940, 000 [0, 11.9882]
[0.40, 0.428] 454

[1.00, 1.018] 475

As shown, the interval that is deeper inside the spectrum requires a higher-degree
polynomial filter and more iterations as well to extract all the eigenvalues, in general.
This makes the computation more expensive than with the other interval for comput-
ing roughly the same number of eigenvalues. This issue was known from the results
in [36]. For the two largest 2-D and 3-D problems, the total time was dominated by
the time of performing the matrix-vector products.

Table 4.2
Polynomial filtered Lanczos algorithm for discretized Laplacians. Times are measured in seconds.

Grid [ξ, η] deg niter nmv
iter

t-mv t-orth t-tot

3432 [0.40, 0.4360] 157 1,290 203,200 10.66 24.11 51.95

[1.00, 1.0330] 256 1,310 336,219 17.39 25.48 66.71

7292 [0.40, 0.4100] 557 1,610 898,330 182.51 168.20 497.78

[1.00, 1.0090] 936 1,590 1,490,547 294.33 179.45 679.08

10002 [0.40, 0.4050] 1,111 1,530 1,702,481 1451.40 308.98 2410.99

[1.00, 1.0050] 1,684 1,670 2,816,108 2402.99 367.49 3804.91

493 [0.40, 0.5700] 43 1,290 55,899 3.81 26.53 41.03

[1.00, 1.1000] 107 1,270 136,449 9.80 24.25 47.00

813 [0.40, 0.4500] 141 1,590 224,905 77.24 189.91 359.61

[1.00, 1.0280] 378 1,570 594,636 191.42 168.33 494.66

1003 [0.40, 0.4280] 248 1,710 425,030 563.36 398.70 1250.26

[1.00, 1.0180] 588 1,830 1,077,689 1357.12 426.17 2314.43

Table 4.3 presents test results when using RatLanNr to solve the same problems
given in Table 4.1. We used the sparse direct solver Pardiso from the Intel MKL to
solve the complex symmetric linear systems when applying the rational filter. Com-
paring the CPU times (t-tot) in this table with those in Table 4.2, we can see that it is
more efficient to use the rational filtered Lanczos algorithm for the 2-D problems than

17

the polynomial filtered counterpart. The numbers in the columns labeled ‘fact-fill’ and
‘fact-time’ are the fill-factors (defined as the ratio of the number of nonzeros of the
factors over the number of nonzeros of the original matrix) and the CPU times for
factoring the shifted matrices, respectively. For the 2-D problems, the fill-factors stay
low and the factorizations are inexpensive. On the other hand, for the 3-D problems,
the sparse direct solver becomes much more expensive: it is not only that the factor-
izations become much more costly, as reflected by the higher and rapidly increasing
fill-factors, but that the solve phase of the direct solver, performed at each iteration,
becomes more time consuming as well. The timings for performing the solves are
shown in the column labeled ‘t-sv’. Consequently, for the 3-D problems the rational
filtered Lanczos algorithm is less efficient than the polynomial filtered algorithm. Fi-
nally, it is worth mentioning that the rational filtered Lanczos algorithm required far
fewer iterations than the polynomial filtered algorithm (about half). This indicates
that the quality of the rational filter is better than the polynomial filter with the de-
fault threshold. Rational filters are much more effective in amplifying the eigenvalues
in a target region while damping the unwanted eigenvalues.

Table 4.3
Rational filtered Lanczos algorithm for discretized Laplacians. Times are measured in seconds.

Grid [ξ, η] niter nsv
fact iter

fill time t-sv t-orth t-tot

3432 [0.40, 0.4360] 590 1,184
10.3 0.62

39.23 6.11 50.45

[1.00, 1.0330] 590 1,184 38.13 5.23 47.66

7292 [0.40, 0.4100] 730 1,464
13.0 2.50

274.70 37.86 339.02

[1.00, 1.0090] 710 1,424 269.14 37.38 331.58

10002 [0.40, 0.4050] 710 1,424
14.1 4.77

534.90 75.46 659.40

[1.00, 1.0050] 750 1,504 559.76 86.11 706.61

493 [0.40, 0.5700] 630 1,264
68.6 1.90

168.56 6.43 180.11

[1.00, 1.1000] 610 1,224 159.86 5.97 170.63

813 [0.40, 0.4500] 750 1,504
149.7 28.77

1850.33 42.14 1923.36

[1.00, 1.0280] 730 1,464 1813.15 40.40 1882.21

1003 [0.40, 0.4280] 810 1,624
186.3 87.64

4343.00 104.30 4510.28

[1.00, 1.0180] 930 1,864 5035.75 127.28 5240.53

4.2. Spectral slicing. In this set of experiments, we show performance results of
the spectrum slicing algorithm with KPM in EVSL, where we computed all the 1, 971
eigenvalues in the interval [0, 1] of the 7-point Laplacian matrix on the 3-D grid of size
49×49×49. The interval [0, 1] was first partitioned into up to 6 slices in such a way that
each slice contains roughly the same number of eigenvalues. Then, ChebLanNr was
used to extract the eigenvalues in each slice individually. The column labeled ν[ξ,η]

in Table 4.4 lists the number of eigenvalues contained in the divided subintervals,
which are fairly close to each other across the slices. For the iteration time ‘t-tol’,
since on parallel machines, a parallelized EVSL code can compute the eigenvalues in
different slices independently, the total time of computing all the eigenvalues in the
whole interval will be the maximum iteration time across all the slices. As shown,
compared with the CPU time required by the solver with a single slice, significant
CPU time reduction can be achieved with multiple slices.

18

With regard to load balancing, the memory requirements were very well balanced
across the slices, since the memory allocation in the Lanczos algorithm is proportional
to the number of eigenvalues to compute. Note also that the iteration times shown
in the column labeled ‘t-tol’ were also reasonably well balanced, except for the first
slice which is a “boundary slice” on the left end of the spectrum. A special type of
polynomial filters were used for boundary slices, which usually have lower degrees than
with the filters for the internal slices. Moreover, the convergence rates for computing
the eigenvalues for boundary slices are typically better, as reflected by the smaller
number of iterations. Therefore, the total iteration time for the first slice is much
smaller than with the other slices. Starting with the second slice, the overall iteration
time did not change dramatically. This is in spite of the fact that the required degree
of the polynomial filter keeps increasing as the slice moves deeper inside the spectrum
leading to a higher cost for applying the filters each time. The explanation is that
in these problems the cost of performing matrix-vector products was insignificant
relative to the cost of the reorthogonalizations.

Table 4.4
Polynomial filtered Lanczos algorithm for computing 1, 971 eigenvalues of a Laplacian of size

493 within [0, 1].

Slices [ξ, η] ν[ξ,η] deg niter nmv
iter

t-mv t-orth t-tot

1 [0.00000, 1.00000] 1,971 5 4,110 22,531 2.07 224.97 353.09

2
[0.00000, 0.65863] 997 6 2,230 14,389 1.34 69.92 107.76

[0.65863, 1.00000] 974 28 3,470 98,190 7.06 173.09 240.64

3

[0.00000, 0.51208] 657 7 1,510 11,241 1.06 34.43 52.09

[0.51208, 0.78294] 662 31 2,390 74,814 5.66 88.42 126.46

[0.78294, 1.00000] 652 46 2,350 108,844 7.79 76.49 116.00

4

[0.00000, 0.42983] 495 8 1,150 9,711 0.92 20.10 30.23

[0.42983, 0.65394] 484 35 1,770 62,504 4.71 44.65 68.66

[0.65394, 0.83844] 502 49 1,850 91,250 6.07 45.80 70.80

[0.83844, 1.00000] 490 62 1,850 115,314 7.65 48.38 76.45

5

[0.00000, 0.37793] 386 8 970 8,162 0.73 15.34 22.46

[0.37793, 0.57373] 401 37 1,450 54,125 4.00 29.74 46.00

[0.57373, 0.73473] 399 53 1,470 78,415 5.73 29.43 48.69

[0.73473, 0.87424] 400 68 1,450 99,136 7.36 29.89 51.41

[0.87424, 1.00000] 385 81 1,430 116,377 8.83 29.51 53.57

6

[0.00000, 0.33926] 329 9 810 7,637 0.68 13.30 20.84

[0.33926, 0.51429] 328 40 1,212 48,808 3.68 23.85 37.20

[0.51429, 0.65913] 340 56 1,230 69,332 4.96 25.57 41.03

[0.65913, 0.78384] 322 72 1,230 89,026 6.29 25.65 44.98

[0.78384, 0.89719] 345 85 1,230 105,065 7.42 26.21 46.52

[0.89719, 1.00000] 307 100 1,190 119,507 8.13 23.93 43.53

4.3. Hamiltonian matrices. In this set of experiments, we computed eigen-
pairs of 5 Hamiltonian matrices from the Kohn-Sham equations for density functional
theory calculations. These matrices are available from the PARSEC group in the
SuiteSparse Matrix Collection [13]. The matrix size n, the number of the nonzeros

19

nnz and the range of the spectrum [a, b] are provided in Table 4.5. Each Hamiltonian
has a number of occupied states of the chemical compound and this number is often
denoted by n0. In Density Functional Theory (DFT), the n0-th smallest eigenvalue
corresponds to the Fermi level. As in [20], we computed all the eigenvalues contained
in the interval [0.5n0, 1.5n0] and the corresponding eigenvectors. The target intervals,
which are denoted by [ξ, η], and the numbers of the eigenvalues inside the intervals
are given in the last two columns of Table 4.5.

Table 4.5
Hamiltonian matrices from the PARSEC set

Matrix n nnz [a, b] [ξ, η] ν[ξ,η]

Ge87H76 112, 985 7, 892, 195 [−1.214, 32.764] [−0.645,−0.0053] 212

Ge99H100 112, 985 8, 451, 295 [−1.226, 32.703] [−0.650,−0.0096] 250

Si41Ge41H72 185, 639 15, 011, 265 [−1.121, 49.818] [−0.640,−0.0028] 218

Si87H76 240, 369 10, 661, 631 [−1.196, 43.074] [−0.660,−0.0300] 213

Ga41As41H72 268, 096 18, 488, 476 [−1.250, 1300.9] [−0.640,−0.0000] 201

We first report in Table 4.6 the performance results of ChebLanNr for computing
the eigenvalues of the Hamiltonians in the target interval. For the first 4 matrices, the
polynomial degrees used in the filters are relatively low so that the cost of the matrix-
vector products is not high relative to the cost of the reorthogonalizations. Extracting
eigenvalues from the last matrix was more challenging because its spectrum is much
wider than the others, with the result that a polynomial filter of a much higher degree
was needed resulting in a much higher cost for matrix-vector products. Similar results
were also reported in [20].

Table 4.6
Numerical results of polynomial filtered Lanczos algorithm for PARSEC matrices.

Matrix deg niter nmv
iter

t-mv t-orth t-tot

Ge87H76 26 990 26,004 28.53 14.88 50.05

Ge99H100 26 1,090 28,642 33.71 17.52 59.18

Si41Ge41H72 32 950 30,682 71.61 28.82 112.11

Si87H76 29 1,010 29,561 46.38 30.27 89.92

Ga41As41H72 172 910 157,065 497.39 29.25 558.26

Next, we present the performance results of RatLanNr in Table 4.7. An issue we
confronted when using this algorithm for this set of matrices is that the factorization
of the shifted matrix becomes prohibitively expensive, in terms of both the memory
requirement as indicated by the high fill-ratios (e.g., the factorization of the last matrix
required 42 GB memory), and the high factorization time (remarkably, this is even
higher than the total iteration time with the polynomial filter). Despite requiring
only about half of the number of iterations that were needed by ChebLanNr, the total
iteration time using the rational filter was still much higher, since the solve phase
of the direct solver was also much more expensive compared with the matrix-vector
products performed in the polynomial filtered Lanczos algorithm.

4.4. Generalized eigenvalue problems: the Maxwell Eigenproblem. We
consider the Maxwell electromagnetic eigenvalue problem with homogeneous Dirichlet

20

Table 4.7
Numerical results of rational filtered Lanczos algorithm for PARSEC matrices.

Matrix niter nsv
fact iter

fill time t-sv t-orth t-tot

Ge87H76 450 904 149.2 120.56 2022.33 4.03 2029.11

Ge99H100 490 984 146.5 152.07 2259.01 4.01 2266.42

Si41Ge41H72 430 864 178.9 447.89 4587.51 7.09 4599.10

Si87H76 450 904 376.9 718.00 7058.93 9.71 7074.30

Ga41As41H72 410 824 378.5 865.43 7456.54 9.97 7472.38

boundary conditions:

∇×∇× ~E = λ~E, λ = ω2/c2, in Ω,

∇ · ~E = 0, in Ω,

~E × ~n = 0, on ∂Ω, (4.1)

where ~E is the electric field, ~n is the unit outward normal to the boundary ∂Ω, ω is the
eigenfrequency of the electromagnetic oscillations, and c is the light velocity. The curl-
curl operator was discretized using a Nédélec finite element space of the second order
in 2D or 3D. Our goal is to find the electromagnetic eigenmodes that are the non-zero
solutions of (4.1). As shown in [3], the discretized problem (4.1) is equivalent to the
matrix eigenvalue problem Ax = λBx, where A is the stiffness matrix corresponding
to the curl-curl operator and B is the mass matrix. It is well-known that the matrix A
has a high-dimensional zero eigenspace spanned by discretized gradients. Therefore,
the desired positive eigenvalues are deep inside the spectrum. In Figure 4.1, we show
the spectrum of B−1A for a 2-D problem on a square disc and the spectrum for a 3-D
problem on a cube. The 2-D problem is of size 3600 (after eliminating the degrees of
freedom on the boundary), where about 32% of the eigenvalues (1137 out of 3600) are
clustered around zero and the smallest eigenvalue that is away from zero is 6.71. The
3-D problem is of size 10800 which also has about 32% of the eigenvalues (3375 out
of 10800) close to zero and the smallest eigenvalue that is away from zero is 19.80. A
few of the non-zero eigenmodes of both problems are illustrated in Figure 4.2.

Fig. 4.1. Spectrum of the Maxwell eigenproblem on a 2-D square-disc and on a 3-D cube

In cases where the knowledge of the kernel space of A is known from the dis-
cretization, say Ker(A) = span {y1, . . . , ym}, this information can be used to design
more efficient specialized Maxwell eigensolvers. For instance, in the Auxiliary Maxwell
Eigensolver (AME) [50], the B-orthogonal projector

P = I − Y (Y TBY)−1Y TB, (4.2)

where Y = [y1, . . . , ym], is applied within LOBPCG to force the iterations to remain
in the subspace Ran(Y)⊥B . The same projection was also exploited in [3] as the

21

Fig. 4.2. An illustration of the 1st, 10th, 18th, 29th, 49th, 59th, 65th and 75th electromagnetic
eigenmodes of the Maxwell eigenproblem on a 2-D square-disc and on a 3-D cube

preconditioner of the implicitly restarted Lanczos algorithm and the Jacobi-Davidson
algorithm. However, we remark here that these solvers are not purely algebraic solvers
since additional information from the discretization is assumed. On the other hand,
with EVSL’s filtering mechanism, it is straightforward to skip the zero eigenvalues
and jump to the desired part of the spectrum. In Table 4.8, we list the 8 Maxwell
eigenvalue problems considered, for which we computed all the eigenvalues in the
given interval [ξ, η] and the corresponding eigenvectors.

Table 4.8
Maxwell eigenvalue problems

Problem n nnz (a, b) (ξ, η) ν[ξ,η]

Max2D-1 14,592 72,200 (0, 9.64× 105) (6, 1200) 96

Max2D-2 59,520 292,216 (0, 4.00× 106) (6, 1200) 96

Max2D-3 235,776 1,175,816 (0, 1.62× 107) (6, 1200) 96

Max2D-4 944,640 4,717,064 (0, 6.50× 107) (6, 1200) 96

Max3D-1 10,800 320,952 (0, 8.96× 103) (19.5, 250) 115

Max3D-2 92,256 2,893,800 (0, 3.66× 104) (19.5, 250) 121

Max3D-3 762,048 24,526,920 (0, 1.47× 105) (19.5, 250) 121

Max3D-4 2,599,200 84,363,432 (0, 3.32× 105) (19.5, 250) 121

We first present the results with ChebLanNr in Table 4.9. For the solves with
B, which is a very well-conditioned mass matrix, we considered using the sparse
direct solver Pardiso and the Chebyshev polynomial expansion by lsPol. These two
methods are indicated as ‘d’ and ‘c’ in the column labeled ‘sv’ of Table 4.9 respectively.
For each problem we present the result with the method for the solves with B that
yielded the better total iteration time. We found that for larger problems, in both 2-D
and 3-D, using the Chebyshev iterations yielded better iteration times, while for the
3 smaller problems using the direct solver was more efficient. In the column ‘niter’,
we give the numbers of the iterations required by the filtered Lanczos algorithm,
which remained roughly the same as the problem sizes increase and thus, so did the
convergence rates. In order to keep such constant convergence rates, the required
degree of the polynomial filter (shown in column ‘deg’) needed to increase, since the
target interval [ξ, η] was unchanged but the spectrum of B−1A becomes wider as the
problem size increases. For the iteration time, the cost of performing the solves with
B (t-sv) dominated the total iteration time (t-tot), which is much more expensive
than the cost of computing the matrix-vector products with A (t-mv) and the cost of
the orthogonalization (t-orth).

22

Table 4.9
Numerical results of the polynomial filtered Lanczos algorithm for Maxwell eigenvalue problems

Problem deg niter sv
fact iter

mem time t-mv t-sv t-orth t-tot

Max2D-1 69 350 d 5 MB 0.19 0.90 31.7 0.32 35.24

Max2D-2 141 350 d 21 MB 0.24 2.75 221.0 1.89 233.63

Max2D-3 284 350 c - - 22.89 616.50 7.07 946.62

Max2D-4 570 350 c - - 279.20 10238.2 45.39 10585.81

Max3D-1 15 530 d 32 MB 0.24 0.34 9.62 0.71 11.42

Max3D-2 30 570 c - - 6.60 185.16 8.08 203.33

Max3D-3 61 590 c - - 137.67 4907.82 78.73 5149.92

Max3D-4 93 570 c - - 774.50 27407.41 529.49 28822.21

Next, we examine the performance of RatLanNr shown in Table 4.10. Pardiso
was used to solve the linear systems with A − σjB required by the rational filter.
Compared with ChebLanNr, fewer iterations were required and the total iteration
time was also much shorter. For the largest 2-D problem, the iteration time required
by RatLanNr was 90 times faster, while for the largest 3-D problem, this speedup
was about 3. In the previous sections, we have seen significant CPU time savings by
using ChebLanNr for the 3-D Laplacians and Hamiltonians compared with RatLanNr.
However, the results presented in this section indicate the opposite. The reason for
the different time efficiency of the two types of methods for standard and generalized
eigenvalue problems can be understood from the computations required to apply the
filter at each step of the Lanczos iterations that are given in Table 2.1. Let k denote
the degree of the polynomial filter and kj denote the number of the repetition of
pole j of the rational filter. In our runs, only one pole, repeated twice, was used,
so we have

∑
kj = 2. For standard eigenvalue problems, each step of ChebLanNr

requires k matrix-vector products with A, whereas each step of RatLanNr needs to
perform

∑
kj solves with A − σjB. For large 3-D problems, it turned out that

it was more expensive to perform the solves than the matrix-vector products, so
ChebLanNr was usually more efficient. However, for the generalized problems, there
are additional k solves with B for each step of ChebLanNr, which makes the application
of the polynomial filter significantly much more expensive. In contrast, RatLanNr

requires
∑
kj matrix-vector products with B additionally, the cost of which is usually

negligible. Consequently, RatLanNr was often found to be much more efficient for
generalized eigenvalue problems than ChebLanNr.

On the other hand, the memory requirement of RatLanNr is much higher than
ChebLanNr, as shown in the columns labeled ‘mem’ of Tables 4.9-4.10, due to the large
memory consumption of the factorization of A−σjB. For the polynomial filtering, we
can avoid any factorization by performing the solves with B with iterative methods
such as the Chebyshev polynomial iterations. For rational filtering, EVSL currently
relies on direct methods to solve the linear systems with the matrices A−σjB, which
are highly indefinite. This is because it is challenging to find efficient iterative methods
to solve linear systems with such matrices.

5. Recommendations, outlook, and closing remarks.

Recommendations: Rational vs. polynomial filtering. Based on our experiments,
we found that when combined with the Lanczos algorithm, rational filtering tends to

23

Table 4.10
Numerical results of the rational filtered Lanczos algorithm for Maxwell eigenvalue problems

Problem niter sv
fact iter

mem time t-mv t-sv t-orth t-tot

Max2D-1 190 d 9 MB 0.10 .04 .95 0.07 1.15

Max2D-2 190 d 39 MB 0.28 .07 4.36 0.74 5.57

Max2D-3 190 d 168 MB 1.02 0.25 24.34 2.98 29.00

Max2D-4 190 d 716 MB 4.31 1.39 100.55 10.52 117.11

Max3D-1 290 d 95 MB 0.23 0.06 4.95 0.18 5.39

Max3D-2 290 d 923 MB 2.45 0.46 94.65 2.28 98.20

Max3D-3 290 d 13 GB 64.53 5.31 1599.72 20.69 1631.30

Max3D-4 290 d 68 GB 649.21 25.21 9419.12 127.74 9609.42

be more efficient than polynomial filtering, for 2-D problems in both the standard and
generalized forms. This is because the factorization of the shifted matrix A− σjB is
generally inexpensive. For large 3-D problems in the standard form, the factorization
of A − σjB becomes too expensive and in these cases using the polynomial filtered
algorithm tends to be more efficient in terms of both CPU time consumption and
memory usage. This can be also true for generalized problems in the situation where
linear systems with B are (very) inexpensive to solve. Finally, for the situations where
solving linear systems with the B matrix is costly, the rational filtered algorithms may
become more efficient in terms of CPU time usage, provided the factorization of A−
σjB is still affordable, although it will usually require much more memory. Otherwise,
when factoring A − σjB becomes prohibitively expensive, then the alternative of
the polynomial filtered algorithm remains a feasible option as long as linear systems
with the matrix B can be efficiently solved. There are situations in finite elements
discretizations that lead to mass matrices B that are very well conditioned once they
are scaled by their diagonals. In these cases, solving a linear system with B and B1/2

is quite inexpensive as it can be carried out with a small number of matrix-vector
products with B, see [57] for details.

Outlook: Parallelism and iterative solvers. A fully parallel version of EVSL using
MPI is currently being developed. It is being tested on a large scale geophysics simula-
tion and will be released soon. Obtaining a scalable parallel rational filtered algorithm
in a parallel distributed memory environment may be rather challenging because of
the limitations of current parallel direct solvers. Polynomial filtered algorithms are
more appealing from this perspective since for standard eigenvalue problems, the ma-
trix A is only involved in matrix-vector products, which can be efficiently parallelized.
Moreover, as already mentioned, for generalized eigenvalue problems in which the B
matrix is well-conditioned, solving systems with B and B1/2 can be achieved via the
application of low degree polynomials in B to the right-hand side.

We have not yet mentioned the possibility of replacing direct solvers by iterative
ones for rational filtering methods, but this is in our future plans. Iterative solvers
that will be used in this context must be able to handle highly indefinite systems, and
methods derived from those in [59, 56] may be suitable. These methods are highly
parallel and must be tuned to the specificity of rational filtering: complex matrices,
availability of spectral information, multiple shifts, etc.

24

Closing remarks. There were attempts more than two decades ago to utilize ideas
based on polynomial filtering for solving interior eigenvalue problems but these were
abandoned because they were generally found not to be competitive relative to the
standard Krylov subspace approaches. Similarly, when the first idea of using Cauchy
integrals came about, it was not adopted right away. With the emergence in recent
years of very large scale electronic structure calculations, and other scientific sim-
ulations, methods that combine filtering and spectrum slicing have become not just
appealing, but also mandatory. Their main appeal lies in the extra level of parallelism
they offer as well as in their intrinsic efficiency due to the reduced orthogonalization
costs that characterize them. Therefore, the reborn versions of spectrum slicing that
have recently emerged constitute a new paradigm that is likely to gain in importance.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, third ed., 1999.

[2] X. Andrade, D. A. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T. Oliveira,
J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. Verstraete,
L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L. Marques, and A. Ru-
bio, Real-space grids and the octopus code as tools for the development of new simula-
tion approaches for electronic systems, Physical Chemistry Chemical Physics, 17 (2015),
pp. 31371–31396.

[3] P. Arbenz, R. Geus, and S. Adam, Solving Maxwell eigenvalue problems for accelerating
cavities, Physical Review Special Topics-Accelerators and Beams, 4 (2001), p. 022001.

[4] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, A numerical method for
nonlinear eigenvalue problems using contour integrals, JSIAM Letters, 1 (2009), pp. 52–55.

[5] J. Baglama, D. Calvetti, and L. Reichel, Algorithm 827: Irbleigs: A matlab program for
computing a few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math. Softw.,
29 (2003), pp. 337–348.

[6] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist, Anasazi software
for the numerical solution of large-scale eigenvalue problems, ACM Trans. Math. Softw.,
36 (2009), pp. 13:1–13:23.

[7] M. Bollhöfer and Y. Notay, JADAMILU: a software code for computing selected eigenvalues
of large sparse symmetric matrices, Comput. Phys. Commun., 177 (2007), pp. 951 – 964.

[8] W. R. Burdick, Y. Saad, L. Kronik, Manish Jain, and James Chelikowsky, Parallel
implementations of time-dependent density functional theory, Comput. Phys. Comm., 156
(2003), pp. 22–42.

[9] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: Cholmod,
supernodal sparse cholesky factorization and update/downdate, ACM Trans. Math. Softw.,
35 (2008), pp. 22:1–22:14.

[10] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and
stable algorithms for updating the gram-schmidt qr factorization, Mathematics of Compu-
tation, 30 (1976), pp. 772–795.

[11] T. Davis, Direct Methods for Sparse Linear Systems, Society for Industrial and Applied Math-
ematics, 2006.

[12] T. A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Softw., 30 (2004), pp. 196–199.

[13] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math.
Softw., 38 (2011), pp. 1:1–1:25.

[14] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Softw., 16 (1990), pp. 1–17.

[15] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended set of fortran
basic linear algebra subprograms, ACM Trans. Math. Softw., 14 (1988), pp. 1–17.

[16] M. Heroux et al., The trilinos project.
[17] P. Giannozzi et al., Quantum expresso. Available from http://www.quantum-espresso.org.
[18] T. Sakurai et al., Parallel eigenvalue solvee.
[19] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in

Computational Science — ICCS 2002, Peter M. A. Sloot, Alfons G. Hoekstra, C. J. Kenneth

25

Tan, and Jack J. Dongarra, eds., Berlin, Heidelberg, 2002, Springer Berlin Heidelberg,
pp. 632–641.

[20] H. R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue
problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220–A2246.

[21] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi-Davidson style QR
and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998),
pp. 94–125.

[22] L. Giraud, J. Langou, M. Rozložńık, and J. Van Den Eshof, Rounding error analysis of the
classical Gram-Schmidt orthogonalization process, Numer. Math., 101 (2005), pp. 87–100.

[23] L. Giraud, J. Langou, and M. Rozloznik, The loss of orthogonality in the Gram-Schmidt
orthogonalization process, Comput. Math. Appl., 50 (2005), pp. 1069 – 1075.

[24] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic,
M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez,
J.-Y. Raty, and D.C. Allan, First-principles computation of material properties: The
ABINIT software project, Computational Materials Science, 25 (2002), pp. 478–492.

[25] Y. Hasegawa, J. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku,
F. Shoji, A. Uno, M. Kurokawa, H. Inoue, I. Miyoshi, and M. Yokokawa, First-
principles calculations of electron states of a silicon nanowire with 100,000 atoms on
the k computer, in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011, ACM,
pp. 1:1–1:11.

[26] V. Hernández, J. E. Román, and V. Vidal, SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems, ACM Trans. Math. Softw., 31 (2005), pp. 351–362.

[27] A. Klinvex, F. Saied, and A. Sameh, Parallel implementations of the trace minimization
scheme tracemin for the sparse symmetric eigenvalue problem, Computers and Mathemat-
ics with Applications, 65 (2013), pp. 460 – 468. Efficient Numerical Methods for Scientific
Applications.

[28] A. Knyazev, M. Argentati, I. Lashuk, and E. Ovtchinnikov, Block Locally Optimal Precon-
ditioned Eigenvalue Xolvers (BLOPEX) in Hypre and PETSc, SIAM Journal on Scientific
Computing, 29 (2007), pp. 2224–2239.

[29] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method, SIAM Journal on Scientific Computing, 23 (2001),
pp. 517–541.

[30] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally optimal
preconditioned eigenvalue xolvers (blopex) in hypre and petsc, SIAM Journal on Scientific
Computing, 29 (2007), pp. 2224–2239.

[31] G. Kresse and J. J. Furthm uller, Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set, Phys. Rev. B, 54 (1996), pp. 11169–11186.

[32] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang, Y. Saad,
and J. R. Chelikowsky, PARSEC the pseudopotential algorithm for real-space electronic
structure calculations: recent advances and novel applications to nano-structure, Phys.
Stat. Sol. (B), 243 (2006), pp. 1063–1079.

[33] C. Lanczos, Applied Analysis, Dover, New York, 1988.
[34] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic linear algebra subpro-

grams for fortran usage, ACM Trans. Math. Softw., 5 (1979), pp. 308–323.
[35] R. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-

Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods, SIAM Publications,
Philadelphia, 1998.
URL http://www.caam.rice.edu/software/ARPACK.

[36] R. Li, Y. Xi, E. Vecharynski, C. Yang, and Y. Saad, A Thick-Restart Lanczos algorithm
with polynomial filtering for Hermitian eigenvalue problems, SIAM J. Sci. Comput., 38
(2016), pp. A2512–A2534.

[37] L. Lin, Y. Saad, and C. Yang, Approximating spectral densities of large matrices, SIAM
review, 58 (2016), pp. 34–65. arXiv: http://arxiv.org/abs/1308.5467.

[38] B. N. Parlett, The Symmetric Eigenvalue Problem, no. 20 in Classics in Applied Mathematics,
SIAM, Philadelphia, 1998.

[39] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79
(2009), p. 115112.

[40] Y. Saad, Numerical Methods for Large Eigenvalue Problems-classics edition, SIAM, Philadel-
phia, 2011.

[41] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using
numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119 – 128. Japan-China

26

Joint Seminar on Numerical Mathematics; In Search for the Frontier of Computational and
Applied Mathematics toward the 21st Century.

[42] T. Sakurai and H. Tadano, CIRR: a Rayleigh-Ritz type method with contour integral for
generalized eigenvalue problems, Hokkaido Mathematical Journal, 36 (2007), pp. 745–757.

[43] A. Sameh and Z. Tong, The trace minimization method for the symmetric generalized eigen-
value problem, Journal of Computational and Applied Mathematics, 123 (2000), pp. 155–
175.

[44] A. H. Sameh and J. A. Wisniewski, A trace minimization algorithm for the generalized
eigenvalue problem, SIAM J. Numer. Anal., 19 (1982), pp. 1243–1259.

[45] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker, Pardiso: a high-performance serial
and parallel sparse linear solver in semiconductor device simulation, Future Generation
Computer Systems, 18 (2001), pp. 69 – 78. I. High Performance Numerical Methods
and Applications. II. Performance Data Mining: Automated Diagnosis, Adaption, and
Optimization.

[46] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark,
and M. C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code,
J. Phys.: Condens. Matter, 14 (2002), pp. 2717–2744.

[47] A. Stathopoulos and J. R. McCombs, PRIMME: Preconditioned iterative multimethod
eigensolver: Methods and software description, ACM Trans. Math. Softw., 37 (2010),
pp. 21:1–21:30.

[48] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson and the
implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245.

[49] , Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods,
SIAM J. Sci. Comput., 19 (1998), pp. 227–245.

[50] P. S. Vassilevski and T. V. Kolev, Parallel eigensolver for H(curl) problems using H1-
auxiliary space AMG preconditioning, tech. report, Lawrence Livermore National Labora-
tory (LLNL), Livermore, CA, 2006.

[51] C. Vömel, S. Z. Tomov, O. A. Marques, A. Canning, L. Wang, and J. J. Dongarra, State-
of-the-art eigensolvers for electronic structure calculations of large scale nano-systems,
Journal of Computational Physics, 227 (2008), pp. 7113 – 7124.

[52] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, Augem: Automatically generate high performance
dense linear algebra kernels on x86 cpus, in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC ’13, New York,
NY, USA, 2013, ACM, pp. 25:1–25:12.

[53] K. Wu, A. Canning, H. D. Simon, and L.-W. Wang, Thick-restart Lanczos method for
electronic structure calculations, J. Comput. Phys., 154 (1999), pp. 156–173.

[54] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,
SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.

[55] , Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix
Anal. Appl., 22 (2000), pp. 602–616.

[56] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections for
general sparse symmetric matrices, SIAM J. Matrix Anal. and Appl., 37 (2016), pp. 235–
259.

[57] , Fast computation of spectral densities for generalized eigenvalue problems, submitted
to SIAM J. Sci. Comput., (2017).

[58] Y. Xi and Y. Saad, Computing partial spectra with least-squares rational filters, SIAM J. Sci.
Comput., 38 (2016), pp. A3020–A3045.

[59] , A rational function preconditioner for indefinite sparse linear systems, SIAM J. Scient.
Comput., 39 (2017).

[60] I. Yamazaki, Z. Bai, H. Simon, L.-W. Wang, and K. Wu, Adaptive projection subspace
dimension for the thick-restart Lanczos method, ACM Trans. Math. Softw., 37 (2010),
pp. 27:1–27:18.

27

