
Computing Planetary Interior Normal Modes with
A Highly Parallel Polynomial Filtering Eigensolver

Jia Shi
Department of Earth, Environmental and

Planetary Sciences, Rice University
Houston, TX, USA

jia.shi@rice.edu

Ruipeng Li
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA, USA
li50@llnl.gov

Yuanzhe Xi
Department of Mathematics and

Computer Science, Emory University
Atlanta, GA, USA
yxi26@emory.edu

Yousef Saad
Department of Computer Science and
Engineering, University of Minnesota

Minneapolis, MN, USA
saad@umn.edu

Maarten V. de Hoop
Department of Computational and

Applied Mathematics, Rice University
Houston, TX, USA
mdehoop@rice.edu

Abstract—A highly parallel algorithm has been developed
and exploited to compute the planetary normal modes of the
elastic-gravitational system, which is approximated via the mixed
finite element method on unstructured tetrahedral meshes. The
eigenmodes of the relevant generalized eigenvalue problem were
extracted by a Lanczos approach combined with polynomial
filtering. In contrast with the standard shift-and-invert and the
full-mode coupling algorithms, the polynomial filtering technique
is ideally suited for solving large-scale 3-D interior eigenvalue
problems since it significantly enhances the memory and compu-
tational efficiency without loss of accuracy. The parallel efficiency
and scalability of this approach are demonstrated on Stampede2
at the Texas Advanced Computing Center. To our knowledge, this
is the first time that the direct calculation of the normal modes
of 3-D strongly heterogeneous planets, in particular, Earth and
Mars, is made feasible via a combination of multiple matrix-free
methods and a separation of the essential spectra.

Index Terms—Eigenvalues and Eigenfunctions; Geophysics

I. INTRODUCTION

The study of planetary normal modes is important for study-
ing the dynamic response to sources including earthquakes
along faults, meteorite impacts, postseismic relaxation, as well
as for analyzing and computing surface and body waves [1],
[2]. The relatively low-lying, but numerous normal modes in
the spectrum of a planet contain essential information about its
large-scale structure and provide constraints on heterogeneity
in geochemical composition, temperature, and anisotropy. For
a review of Earth’s free oscillations, see [3]. Due to the
presence of a fluid outer core, an essential spectrum needs
to be dealt with. The eigenfrequencies can be well measured
using modern seismometers at the surface of the Earth, e.g.,
[4]. The analysis of normal modes has provided evidence
that Earth’s inner core is solid [5] and anisotropic [6]–[9],
and constraints on density variations of Earth’s mantle [10].
More recently, the density structure at the Earth’s core-mantle
boundary was studied using, in particular, Stoneley mode split-
ting observations [11]. Moreover, the normal modes associated

with low-lying eigenfrequencies are used to characterize large
earthquakes; for the great Sumatra earthquake, see [4].

It is believed that the normal modes provide the only way
to study internal planetary density and attenuation, which is
difficult for modern wave-equation based inversion algorithms,
such as the adjoint tomography [12], or waveform inversion
[13]. Additionally, with the InSight (Interior exploration using
Seismic Investigations, Geodesy and Heat Transport) [14]
mission to Mars, which will deploy a single seismic station
on its surface [15] in November 2018, the study of normal
modes on this planet becomes of great interest while the
discontinuities and general heterogeneities are unknown. It is
expected that the investigations of Mars will provide evidence
for early stages of planets that are lost on Earth due to its
active tectonics and large-scale mantle convection. It is indeed
expected that a large interval of eigenfrequencies will be
observable [16]. The fast computation of a large interval of
eigenfrequencies of a large family of generally heterogeneous
models will open a unique way to explore Mars’ interior.
The computational ability of these normal modes will enable
researchers to explore planetary structures, including, density
[10], wave speeds [1], [16], inner core [7], core-mantle bound-
ary [17], etc., even with limited receivers.

However, the current standard approaches to computing
the point spectrum and the associated normal modes have
several limitations. Assuming spherical symmetry, the prob-
lem becomes one-dimensional and the computations in such
models [18]–[20] are still a common practice; these are then
typically used in a perturbation theory to include weak, angular
heterogeneities [1]. Using the normal modes in a spherically
symmetric model as a basis in the matrix representation
leads to the “full-mode coupling” approach [21]–[23]. Such
a Rayleigh-Ritz type of approach works well under the as-
sumption of weak angular heterogeneities, or perhaps very low
eigenfrequencies, but in more strongly heterogeneous models
certainly apparent at higher eigenfrequencies, the matrix that

needs to be diagonalized becomes dense. Moreover, the sepa-
ration of the essential spectrum needs to be carried out.

When considering lateral variations in the density and
elastic moduli, the finite element method (FEM) is, in general,
needed, which demands an entirely different computational
strategy. In this work, we overcame several long-standing com-
plications in the previous work [18] by characterizing and sep-
arating the essential spectrum and introducing a mixed FEM
approach, and reconstructed the elastic-gravitational system on
the entire planet without simplification to resolve the pollution
issue of the associated generalized eigenvalue problem (GEP)
from the essential spectrum. The three major challenges in
solving the GEP resulting from our newly discretized elastic-
gravitational system on a 3-D planet, are the following:

1) A large-scale 3-D GEP. Since it is a 3-D planetary-
scale problem, the degrees of freedom for the dis-
placement will reach several billion, depending on the
target eigenfrequency interval. For an Earth model, we
typically need five hundred thousand elements to capture
the normal modes at 1.0 mHz and five hundred billion
elements for 100.0 mHz.

2) Essential spectrum and computations of a great
number of the interior normal modes. The existence
of the fluid regions results in the presence of an es-
sential spectrum [24]. Although the computation of, for
example, the geostrophic modes is possible, these are not
relevant to seismic studies. We developed a separation
of the essential spectrum, leading to an additional term
that involves solving a sparse linear system internally.

3) No explicit formulation of the stiffness matrix. Since
the separation needs an additional term to deal with the
essential spectrum, it is not always feasible to store the
stiffness matrix explicitly for large-scale 3-D problems.
However, the separation can be handled more efficiently
via a matrix-free scheme. For relatively low eigenfre-
quencies, self-gravitation needs to be computed. This
leads to an additional dense matrix that requires special
methods to perform matrix-vector multiplications.

Our primary goal is to set new standards for the normal
modes of a rotating self-gravitating planetary model. We also
aim to calculate the normal modes ranging from seconds to
rotational modes with years in the timescale, such as the
Chandler wobble of the Earth [25], [26] or the lunar tide mode
[27]. Traditionally, interior normal modes of the resulting large
and sparse GEP have been computed by invoking standard
shift-and-invert approaches, but these often lead to computa-
tional and memory bottlenecks for large 3-D problems. Here,
a novel, highly parallel and memory efficient polynomial
filtered Lanczos algorithm has been developed and exploited
for solving problems of much larger size than those solved by
traditional approaches. A matrix-free scheme whereby the ma-
trix is invoked only via matrix-vector multiplications, allows
us to accommodate a fluid outer core and self-gravitation. The
parallel efficiency and scalability of the proposed algorithm
have been demonstrated on Stampede2 at the Texas Advanced

Computing Center (TACC). The method developed here armed
with several novel high-powered algorithms for calculating
eigenvalues can carry out the calculations accurately. The
flexibility of our computational framework allows us to cope
with multiphysics efficiently. Furthermore, our work will also
lead to a much faster method, i.e., normal mode summation
[1], to calculate synthetic seismogram than the modern seismic
wave simulator [28], which won the Gordon Bell award
in 2003. We show for the first time, to the best of our
knowledge, that direct computation of the normal modes of
3-D heterogeneous planets is feasible via a combination of
multiple effective computational techniques. We demonstrate
the performance of our proposed algorithm and code up to
several hundred million elements, but it is still far from the
limit on current super-computational platforms.

The outline of the paper is as follows. In Section II, we
formulate the GEP from the elastic-gravitational system asso-
ciated with different eigensolvers. In Section III, we introduce
our novel approaches to solve for interior normal modes. In
Section IV, we present the experimental results on up to
12,288 cores as well as the accuracy, efficiency, and scalability.
We conclude and discuss the future work in Section V.

II. PROBLEM FORMULATION AND DISCRETIZATION

In this section, we introduce the GEP that is derived from
the elastic-gravitational system of a non-rotating planet [1],
[29] with different algorithms for solving interior normal
modes. We also review the state-of-the-art eigensolvers and
discuss the challenges encountered when using these algo-
rithms to compute interior normal modes of the GEPs that
are obtained from a 3-D model.

A. Modeling a general planet

Since Earth contains both solid and fluid regions, we use
it as one of our examples and then generalize our approach
to study other terrestrial planets. Our planet also contains
several discontinuities, such as the core-mantle and the inner-
core boundaries, which correspond to geochemical transitions.
To describe the geometry of a general planet, especially their
internal discontinuities, we utilize fully unstructured tetrahe-
dral meshes to build our planetary models, see Figure 1 as
an example. The meshes are generated by using DistMesh
[30] and TetGen [31]. We then model the elastic-gravitational
system of a non-rotating planet.

To study planetary normal modes, we include linear elas-
ticity, compressible fluid, the fluid-solid and free surface
boundary conditions. Discretization of the classical formula [1]
leads to computational difficulties, since non-seismic modes
from compressible fluid pollute the computations of the point
spectrum. In this work, we use a displacement-pressure repre-
sentation [33] explicitly for describing the oscillations of these
non-seismic modes. Effectively, we separate out the essential
spectrum, which contains the non-seismic modes. Hence, we
build the geometry for the target planet and apply Continuous
Galerkin approximation for the redesigned weak formulae. To

Fig. 1. The Preliminary reference Earth Model (PREM) [32]: (a) P wave speed model; (b) S wave speed model; (c) density model with axes. The red-blue
colormaps in (a,b,c) indicate the speed or density values. The gold colormaps in (a,b) indicate the altitudes in meters.

1631.8

3263.5

4895.2

0.000e+00

6.527e+03

Altitude (m)

7.7792

9.7583

11.737

5.800

13.717

Vp (km/s)

(a) Vp

1631.8

3263.5

4895.2

0.000e+00

6.527e+03

Altitude (m)

1.8165

3.633

5.4495

0.000

7.266

Vs (km/s)

(b) Vs

0

5000
X Axis (km)

-6000

-4000

-2000

0

2000

4000

6000

Z Axis (km)

0

5000

X Axis (km) -5000

0

5000 Y Axis (km)

-6000

-4000

-2000

0

2000

4000

6000

Z Axis (km)

-5000
0

5000 Y Axis (km)

5.2221

7.8442

10.466

2.600

13.089

Density

(c) Density

solve the resulted GEP, the system needs to fit the requirements
of the algorithms for solving interior eigenvalue problems.

B. Standard shift-and-invert methods

Standard approaches for computing eigenvalues of a GEP,
Ax = λMx, that are located well inside the spectrum often
resort to exploiting spectral transformations, i.e., shift-and-
invert strategies [34]. They apply projection methods such as
subspace iterations or the Lanczos algorithm to a transformed
matrix of the form (A − σM)−1, where σ is the shift that
is chosen near the desired eigenvalues. State-of-the-art algo-
rithms based on Cauchy integral rational filters such as FEAST
[35] and z-Pares [36]–[38] or the least-squares rational filters
[39] have been designed with the same principles for extracting
interior eigenvalues. These algorithms bear similarities with
the shift-and-invert schemes in that they also require solving
linear systems with A − σM when applying the filtered
matrix, where σ denotes the pole used in the rational filter.
However, in practice, solving such linear systems often leads
to a computational bottleneck, especially on a highly parallel
supercomputer with distributed memory. When computing
interior eigenvalues, the shifted matrix A − σM is highly
indefinite, and this significantly limits the applicability of
iterative methods to solve the linear systems. In general,
finding efficient parallel preconditioners remains a highly
challenging task. Therefore, parallel sparse direct solvers are
usually applied to these linear systems. Note here that this
requires forming all the matrices explicitly. We introduce an
additional variable p to separate out the essential spectra. We
then apply the Continuous Galerkin mixed FEM [40], [41] to
discretize the redesigned system and obtain a GEP:Asg 0 EFS

0 Af Adg

ET
FS AT

dg Ap

usuf
p

 = ω2

Ms 0 0

0 Mf 0

0 0 0

usuf
p

 , (1)

where the matrix components and their corresponding weak
formulae are shown in Table I. The interpretations of dif-
ferent variables are denoted in Table II and S represents
a symmetrization operator as in [29]. However, (1) is not
a conventional eigenvalue problem, since its mass matrix is
positive semi-indefinite. It usually requires techniques such as
the null space purification [42].

Sparse direct methods are usually employed in this context
to solve the shifted linear systems, however, the efficiency and
scalability issues of which in a highly parallel environment
often substantially lower the overall performance of the outer
eigensolver. In the following, we highlight the major difficul-
ties that were encountered when we applied parallel sparse
direct solvers to the linear systems. First and foremost, the
matrix A−σM needs to be formed explicitly to be factorized.
This, however, is not always feasible. In the planetary normal
mode computations, it would be very inefficient to form the
matrix A explicitly and the only affordable operation is to
multiply A with some vectors. Second, it is well-known that
factorizations of the matrices from large-scale 3-D problems
can be both time and memory consuming. Based on our
experimental results, parallel direct solvers would often run out
of memory in the compute node for the large-scale problems
that are presented in Section IV-B. Third, even if the matrix
can be successfully factorized, the solve phase of direct solvers
often runs into scalability issues with increased problem sizes
and larger numbers of processes. This is due to the inherent
sequential nature of the triangular solves, which is also illus-
trated in Section IV-B. We remark here that these issues are
also commonly experienced in many other applications.

C. Polynomial filtering for the GEP

To address the above-mentioned difficulties, polynomial fil-
tering techniques [43]–[45] can be a very appealing alternative
as they do not involve solving linear systems with the highly
indefinite shifted matrices. Instead, the bulk of the computa-
tions are carried out in the form of SpMVs (sparse matrix-
vector multiplication), which are generally much easier to be
parallelized than solving the indefinite linear systems, so that
these types of methods are amenable to parallel processing.

In a nutshell, the idea of polynomial filtering for extracting
eigenvalues from a desired interval is to use a polynomial
to amplify the eigenvalues inside the interval and dampen
the eigenvalues that are outside, just as in the shift-and-
invert scheme but without inverting (A − σM). For a GEP
Ax = λMx, applying matrix polynomial ρ(M−1A) requires
solving linear systems with M . As a consequence, polynomial
filtering algorithms cannot be applied to the GEP of the
form (1) directly, since the matrix M is singular. However,

Table I. MATRICES IN (2) AND (3) WITH THEIR CORRESPONDING WEAK FORMULAE, WHERE THE VARIABLES ARE SHOWN IN TABLE II. SINCE THE
SYSTEM OF A NON-ROTATING PLANET IS HERMITIAN, FOR A BILINEAR EXPRESSION L(u, v), WE USE S{L(u, v)} := 1

2
(L(u, v) + L(v, u)).

matrices physical interpretations corresponding weak formulae∫
ΩS

(cijkl∂xku
s
l)∂xiv

s
j dx+

∫
ΣFS

S{[ρ0]fνs→fi usi gjv
s
j} dx

Asg solid stiffness matrix with reference gravity +

∫
ΩS

S
{

(ρ0usi gi)∂xj v
s
j − ρ0usi (∂xigj)v

s
j − ρ0usi (∂xiv

s
j)gj

}
dx

Af non-seismic modes in the fluid regions
∫

ΩF
ρ0N2

giu
f
i gjv

f
j

‖g‖2
dx

Ap fluid pressure matrices with/without reference gravity
∫

ΩF
−p/κvp dx,

∫
ΩF
−pe/κvp dx

Adg, Ad fluid stiffness matrices with/without reference gravity
∫

ΩF

[
(∂xj p)v

f
j − pρ

0κ−1gjv
f
j

]
dx,

∫
ΩF

(∂xj p
e)vfj dx

AT
dg, A

T
d constraints with/without reference gravity

∫
ΩF

[
ufj ∂xj v

p − ρ0κ−1ufj gj

]
vp dx,

∫
ΩF
ufj ∂xj v

p dx

As solid stiffness matrix without gravity
∫

ΩS
(cijkl∂xku

s
l)∂xiv

s
j dx

EFS, E
T
FS fluid-solid boundary conditions for the solid/fluid regions

∫
ΣFS

p(e)νs→fj vsj dx,

∫
ΣFS
−usjν

f→s
j vp dx

Ms,Mf solid and fluid mass matrix
∫

ΩS
ρ0usjv

s
j dx,

∫
ΩF
ρ0ufj v

f
j dx

Table II. VARIABLES USED IN TABLE I AND THEIR INTERPRETATIONS.
NOTE THE BRUNT-VÄISÄLÄ FREQUENCY N2 = (∇ρ0/ρ0 − gρ0/κ) · g

MEASURES THE STABILITY OF THE LIQUID OUTER CORE.

variables interpretations
ΩS, ΩF, ΣFS solid/fluid regions, fluid-solid boundaries
ρ0, [ρ0]f density and density along ΣFS at the fluid side
c, κ elastic stiffness tensor, bulk moduli
g, N2 reference gravity, Brunt-Väisälä frequency
us, uf displacement fields in the solid/fluid regions
p, pe pressure fields with/without reference gravity

vs, vf , vp test functions for us, uf and pressure
νs→f normal vector from solid to fluid regions
νf→s normal vector from fluid to solid regions

a simple Schur complement trick can fix this problem by first
substituting p via p = −A−1

p ET
Gu, where u = [(us)T, (uf)T]T

assuming that Ap is invertible, and then transforming (1) to(
AG − EGA

−1
p ET

G

)
u = ω2Mu, (2)

where

AG =

[
Asg 0

0 Af

]
, EG =

[
EFS

Adg

]
, M =

[
Ms 0

0 Mf

]
,

Note that p in (1) is not a variable of the Hamiltonian and
does not play a role in the orthonormal condition and system
(2) provides the authentic eigenvalue problem with the same
orthonormal condition as (1).

For most of the high-frequency modes, we do not need
to include the reference gravity. We can then substitute the
pressure field via pe = A−1

p ETu and obtain a simpler system:

(AS − EA−1
p ET)u = ω2Mu, (3)

where

AS =

[
As 0

0 0

]
, E =

[
EFS

Ad

]
,

where the matrix components and their corresponding weak
formulae are also shown in Table I. We obtain the discretized

systems (2) for relatively low normal modes and (3) for all
the higher ones. If the planet does not contain fluid regions,
we can further simplify (2) and (3) to

Asgu
s = ω2Msu

s and Asu
s = ω2Msu

s, (4)

respectively. More details about these simplifications can be
found in [33]. Without loss of generalities, we write (2, 3) and
their simplified systems in (4) as the GEP:

Ax = λMx, (5)

where A represents the elastic-gravitational components, M
indicates the orthogonality condition of the system, x denotes
the displacement field and λ denotes ω2. One of the most
significant advantages of the form (2) over (1) is that the linear
system solutions associated with M and Ap can be solved with
a highly efficient and parallel iterative method. This will be
discussed in detail in Section III-B. Additionally, the problem
size has also been reduced and the singular part in the mass
matrix of (1) is removed. Now it is feasible to design our fully
parallel computational scheme that entirely relies on SpMVs
to solve the interior normal modes of the GEP (5).

III. PARALLEL POLYNOMIAL FILTERED LANCZOS
ALGORITHMS FOR THE GEP

In this section, we present a fully parallel polynomial
filtered Lanczos algorithm that combines several efficient par-
allel approaches to solve the GEP (5) in a matrix-free frame-
work, where all the matrices are required only in the form of
matrix-by-vector products. Current state-of-the-art polynomial
filtering codes, such as FILTLAN [44] and EVSL [46], are
implemented only for a single computation node parallelized
with OpenMP, and the polynomial degrees exploited there are
relatively low. However, as we point out in Section II-C, the
polynomial filtering technique will provide significant advan-
tages over the standard shift-and-invert methods for large-scale
3-D problems when the factorizations of the shifted matrices
are too expensive. Hence, we implemented, to the best of our

knowledge, the first fully parallel polynomial filtered Lanczos
algorithm. The three levels of parallelism in the proposed
approach, enabled by a hybrid parallel computing paradigm,
are listed the following:

1) The coarsest level of parallelism is obtained by the
spectrum slicing approach [45], [47], where the desired
part of the spectrum is first partitioned into intervals with
roughly equal numbers of eigenvalues. Then, a parallel
polynomial filtered Lanczos solver processes on each
interval individually and the eigenvalues in each interval
are extracted independently from other ones. This level
of parallelism is implemented with the Message Passing
Interface (MPI) by splitting the global communicator
into subcommunicators corresponding to the intervals.

2) The second level of parallelism is enabled by domain
decomposition (DD), where the global mesh is first
decomposed in such a way that the couplings between
subdomains are minimized. The global matrices and vec-
tors are distributed across the processes within each sub-
communicator corresponding to the DD and replicated
across the subcommunicators with the same distribution.

3) The finest level of parallelism is supported by shared
memory multithreaded computations running on multi-
core processors. Specifically, the BLAS/LAPACK sub-
routines and the scalar SpMV routines, i.e., local Sp-
MVs on a single process, are threaded with OpenMP.

Additionally, for this application, an efficient parallel solver
is needed for the right-hand-side matrix M and with Ap in
(2) and (3). A simple and efficient parallel iterative method is
introduced and used after adequately scaling the matrices.

A. Lanczos algorithms with polynomial filtering
The polynomial filter should be able to map the wanted

part of the spectrum of the original matrix, independent of
its location in the spectrum, to the largest eigenvalues of the
filtered matrix, so that the transformed problem becomes more
tractable for standard projection methods such as subspace
iterations or the Lanczos algorithm. In this paper, we adopt
the polynomial filtering algorithms recently developed [45]
due to their simplicity and robustness. These polynomial fil-
tering techniques have recently been implemented in a (scalar)
software package named EVSL [46].

The polynomial filter is constructed through a Chebyshev
polynomial expansion of the Dirac delta function based at
some well-selected point inside the target interval. Since
Chebyshev polynomials are defined over the interval [−1, 1],
a linear transformation is needed to map the eigenvalues of
M−1A onto this interval. Figure 2 illustrates a polynomial
filter ρ(t) for the eigenvalues in the interval [0, 0.3], where the
wanted eigenvalues of Ã in (6) are mapped to the eigenvalues
of ρ(Ã) that are larger than 0.8. This is achieved by applying
a simple linear transformation:

Ã :=
A− cM

d
, c =

λmax + λmin

2
, d =

λmax − λmin

2
, (6)

where λmax and λmin are the largest and smallest eigenvalues
of M−1A, respectively. These two extreme eigenvalues can

be efficiently estimated by performing a few steps of the
Lanczos algorithm. Similarly, the target interval [ξ, η] should
be transformed into [ξ, η] := [(ξ− c)/d, (η− c)/d]. In the rest
of this paper, the matrix A and the interval (ξ, η) are assumed
to be shifted and scaled in such a way.

Fig. 2. An illustration of polynomial filtering techniques for symmetric
eigenvalue problems.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

ϱ
(t
)

Polynomial filter ρ(t) for interval

(0, 0.3). The eigenvalues of the

filtered matrix are the red dotted

points along the blue solid curve

The spectrum of filtered matrix

ρ(A), where the wanted eigen-

values in (0, 0.3) are mapped to

the largest eigenvalues

Let Tj(t) denote the Chebyshev polynomial of the first kind
of degree j. The k-th degree polynomial filter function ρ(t)
for the interval [ξ, η] centered at γ takes the form

ρ(t) =

∑k
j=0 µjTj(t)∑k
j=0 µjTj(γ)

, (7)

where the expansion coefficients are

µj =

{
1
2 if j = 0

cos(j cos−1(γ)) otherwise
. (8)

The construction of ρ(t) is simpler than other existing
approaches because it involves only two parameters: the degree
k and the center γ. They are determined systematically as
follows. From some lowest degree, we keep increasing k until
the values ρ(ξ) and ρ(η) are less than or equal to a preselected
threshold τ , which is 0.8 by default, and by construction ρ(t)
takes the value 1 at the center γ. It is also useful to make
sure that the obtained filter is balanced such that its values at
the boundaries are the same, i.e., ρ(ξ) = ρ(η). This can be
achieved by applying Newton’s method to solve the equation

ρ(t̂j)− ρ(t̂j+1) = 0, (9)

where the unknown is γ. The Lanczos σ-damping [48, Chap.
4] multipliers, denoted by σj , are used to reduce the oscilla-
tions near the boundaries of the interval, and these are given
by

σkj =

{
1 if j = 0
sin(jθk)
jθk

, θk = π
k+1 otherwise

.

For a GEP, Ax = λMx, the base form of filtering is

ρ(M−1A)x = ρ(λ)x. (10)

This is now an eigenvalue problem in the standard form but
the matrix involved is nonsymmetric. Multiplying both sides
by M yields the following problem:

Kx = ρ(λ)Mx, with K =Mρ(M−1A), (11)

where K is symmetric and M is symmetric positive definite.
Thus, we can apply the Lanczos algorithm to matrix pencil
(K,M). In the polynomial filtered non-restart Lanczos algo-
rithm, each step of the iterative process consists of a Lanczos
step with K

βi+1zi+1 = Kvi − αizi − βizi−1, (12)

followed by a full reorthogonalization against all the previous
vectors vj’s, where zi ≡ Mvi is an auxiliary sequence saved
to avoid the cost of the multiplications with M in the inner
products. A test for convergence is triggered for every Ncycle
steps after the first Ntest iterations, by checking if the sum
of the Ritz values that are greater than τ , the “bar” value of
the filter, no longer varies in several consecutive checks. After
the Lanczos iterations, the obtained Ritz pairs (θi, ui) are first
tested if the Ritz values θi are greater than τ and then projected
back to the original problem Ax = λMx. Finally, a Ritz pair
(λi, ui) is accepted if λi falls into the desired interval (ξ, η)
and the residual norm is smaller than the given tolerance.

Overall, the multiplication with the filtered matrix K in
each Lanczos step (12) often represents the most expensive
computation, especially when the degree of the polynomial
filter is high. A few practical details in applying K follow.
Computing

Kvi =Mρ(M−1A)vi = ρ(AM−1)zi, (13)

requires k solves with M and k SpMV with A where k is the
degree of the polynomial filter ρ.

B. Solution methods for linear systems with M

The cost of solving linear systems with M obtained from
large 3-D problems by sparse direct methods can be expensive.
For the same reasons as discussed in Section II-B, direct
solvers are often ruled out as a viable option for the large-scale
3-D problems. Additionally, as shown in (13), multiplying the
filtered matrix with a vector requires to perform k solves with
M , as many as the multiplications with A, where k is the
degree of the polynomial. As will be shown in Section IV,
some situations require a degree as high as a few thousand.
Therefore, it is crucial to have a scalable solution method
for applying M−1, and this essentially precludes the use of
parallel sparse direct solvers.

On the other hand, a notable characteristic of the mass ma-
trix M in the context of FEM discretizations is that it is often
very well conditioned with a condition number that can be
bounded by small constants, independent of mesh sizes after a
proper scaling is applied [49]–[51]. This is a notable difference
with the stiffness matrix A. As an important consequence this
will entail a significant computational advantage by allowing
the use of simple iterative methods for applying M−1. In
this work, we adopt a simple diagonal scaling approach that

was also exploited in [47], [52]. Suppose D is the diagonal
matrix that consists of the diagonal entries of M , and let
Â = D−1/2AD−1/2, M̂ = D−1/2MD−1/2 and x̂ = D1/2x.
We solve the following problem,

Âx̂ = λM̂x̂, (14)

that is congruent to Ax = λMx, using the polynomial filtered
Lanczos algorithm, in which the linear systems with M̂ are
solved by performing a fixed number of Chebyshev iterations.
An appealing property of Chebyshev iterations is that there are
no inner products involved, which makes this algorithm very
efficient for distributed memory architectures [53]. Systems
with Ap in (2) and (3), are handled similarly since Ap has the
same property as the mass matrix M .

C. Parallel implementations

Here we present the parallel implementation of the meth-
ods discussed so far, using primarily a DD framework and
exploiting sparse matrix-vector multiplications.

1) Domain decomposition: To fully parallelize our compu-
tations, two quantities, solid and fluid vertices, need to be load
balanced simultaneously due to the multiphysics nature. We
transform an algebraic elements-vertices mesh into a vertices-
to-vertices graph and utilize multi-constraint graph partitioning
algorithm (ParMetis, [54]) to compute a DD such that the
edge-cut is minimized and that each subdomain contains
approximately the same amount of solid and fluid vertices.
Processors communicate with each other to obtain needed
vertices and their related information. Based on the vertices-to-
vertices graph at each processor, we construct the local matrix
nonzero patterns. To generate local row-based matrices, we
include all the elements that are connected to local vertices,
build local submatrices element-wise and add them into the
local Compressed Sparse Row (CSR) format matrix.

2) Parallel sparse matrix-vector multiplications: As shown
in the previous sections, in our polynomial filtered Lanczos
algorithm, all the major matrix operations boil down to SpMVs
with either the matrix A or M . Therefore, the efficiency of
parallel SpMV plays a critical the overall performance of the
algorithm. There is a rich body of research on distributed
memory SpMV, see, e.g., [55]–[61]. Global sparse matrices are
distributed according to the DD based on graph partitioning
algorithms to reduce the communication volume involved in
the SpMV. Each process owns the entire rows of the local
domain which are further split into an “on-process” block
and an “off-process” block. Figure 3 illustrates the storage of
local rows. Global vectors are distributed conformably to the
sparse matrices. We remark that this parallel matrix and vector
distribution scheme is widely used by many other linear solver
and eigensolver packages such as pARMS [62], hypre [63] and
PETSc [64]. A clear advantage of splitting the local rows into
the two blocks is that in the parallel SpMV, the computations
involved in the multiplication with the on-process block can be
overlapped with the communications. The main steps of paral-
lel SpMV implemented with MPI is sketched in Algorithm 1,
where the non-blocking communications are first initiated and

Fig. 3. The storage of local rows of a distributed matrix

Proc i = + AoffdAdiag

ri

ri

ri+1
ri+1

the local SpMV with the on-process submatrix are performed
immediately afterwards so that the communication cost can be
(partially) hidden by overlapping with the local computations.
The SpMV with the off-process submatrix is executed when
the communications finish.

Algorithm 1 Parallel SpMV, y = Av

1: Copy the elements to send from v to sendbuf
2: Post nonblocking MPI Isend(sendbuf, ...)
3: Post nonblocking MPI Recv(recvbuf, ...)
4: Compute scalar SpMV: y = SpMV(Aon-proc, v)
5: MPI Waitall
6: Compute scalar SpMV: y = y + SpMV(Aoff-proc, recvbuf)

IV. COMPUTATIONAL EXPERIMENTS

The experiments in Section IV-A and IV-B were conducted
on Comet, a supercomputer at the San Diego Supercomputer
Center, equipped with an Intel Xeon E5-2680v3 CPU with 24
cores and 128 GB memory on each node. The experiments in
Section IV-C and IV-D were carried out on Stampede2 (Phase
1), a supercomputer at the TACC, each node of which has an
Intel Xeon Phi Knights Landing (KNL) CPU with 68 cores
and 96 GB memory, and on Stampede2 (Phase 2) which has
an Intel Xeon Skylake (SKX) CPU with 48 cores and 192 GB
memory on each node. The code was written in Fortran 90
and compiled with Intel Fortran Compiler with Intel MKL for
high-performance BLAS/LAPACK and scalar SpMV routines.

We used PREM [32] to generate 3-D Earth models and a
simple solid model to mimic the Martian structure, since Mars
is considered as a purely solid planet in many recent tests [65],
[66]. The proposed algorithm was compared with the shift-
and-invert Lanczos methods available from PARPACK [42],
[67], where parallel direct solver MUMPS [68] was used for
solving the involved linear systems with the shifted matrix,
which was first reordered by the nested dissection approach
[69] from ParMetis [54] to reduce fill-ins.

A. Numerical accuracy

We first demonstrate the accuracy of the eigenvalues com-
puted by the proposed polynomial filtered Lanczos algorithm
by comparing them with the ones computed by PARPACK on
a relatively small problem from a two-million-element Earth
model. We verified that there were no missing or spurious
eigenvalues computed by the proposed approach. In Figure 4,
we show that the eigenvalues computed by both algorithms
are very close.

Since our test 3-D Earth model is spherically symmetric, we
can apply the spherical harmonics to reduce the problem to one

Fig. 4. Comparison of the solutions between shift-and-invert and polynomial
filtered Lanczos methods.

0 20 40 60

Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fr
e
q
e

n
c
ie

s
 (

m
H

z
)

poly. filtering

shift-invert

(a) Eigenfrequencies

0 20 40 60

Index

-4

-3

-2

-1

0

1

2

3

re
la

ti
v
e

 e
rr

o
rs

)

×10
-11

(b) Relative errors

dimension. The normal modes from a spherically symmetric
Earth model can be represented via the spherical harmonics
[1] into two different major categories, i.e., the spheroidal and
toroidal modes, which correspond to primarily different seis-
mic waves. Figure 5 illustrates our computed modes: (a1)–(a4)
show different toroidal modes, which have zero displacement
inside liquid outer core; (b1)–(b4) show different spheroidal
modes. The computed normal modes precisely match the semi-
analytic solution of a spherically symmetric Earth model.

B. Memory and computational efficiency

As discussed in Section II-B, standard shift-and-invert meth-
ods can be very memory demanding for factoring A − σM
from large-scale 3-D problems. Figure 6 shows a comparison
of the memory usage between the shift-and-invert Lanc-
zos method and the proposed polynomial filtering Lanczos
method. In Figure 6(a), we present the memory requirement
of the two methods for solving the GEP (5) of five different
solid models, and in Figure 6(b) for solving the GEP (2) of
four different Earth models. The problem sizes were roughly
doubled when we doubled the number of processes, so that
the degrees of freedom on each process was kept about the
same. For the shift-and-invert method, we show the maximum
of the peak memory utilization required by MUMPS over all
the processes (labeled “peak” in the figure) and the average
memory consumption for storing the factors (labeled “avg”).
The shift-and-invert method was not scalable regarding the
memory requirement. In contrast, the polynomial filtering
algorithm was much more efficient and scaled perfectly with
the problem sizes in terms of the memory consumption, where
the memory was mostly used for storing the Lanczos vectors
that are evenly distributed across the processes.

In Table III, we also report the time consumption of different
methods. The first and second two experiments compute 85
and 262 normal modes, respectively. For a smaller number
of normal modes, the polynomial filtering approach shows its
computational advantage while the problem sizes are larger
than 2.5 million. However, for computing a larger number of
normal modes, the standard shift-and-invert method becomes
less effective for many iterations due to the inherent sequential
nature of the triangular solves as we mentioned in Section II-B.

Fig. 5. Illustration of different normal modes from a three-million-element Earth model. (a1) – (a4) illustrate different toroidal modes; (b1) – (b4) illustrate
different spheroidal modes. The colors in (a1) – (a4) represent the magnitudes of the displacement field and the colors in (b1) – (b4) represent the radial
components of the displacement field. The subtitles nTl and nSl represent the notation of the semi-analytic solutions from a spherically symmetric Earth
model [1], [20], where the subscriptions n is the overtone number and l is the spherical-harmonic degree.

0.2

0.4

0.6

0.8

0.000

1.040
Displacement (Mag)

(a1) 0T2

0.4

0.8

1.2

0.000

1.469
Displacement (Mag)

(a2) 0T5

0.2

0.4

0.6

0.8

0.000

0.925
Displacement (Mag)

(a3) 1T1

0.25

0.5

0.75

1

0.001

1.285

Displacement (Mag)

(a4) 1T3

-0.4

0

0.4

-0.541

0.794
Radial component

(b1) 0S2

-1

0

1

-1.318

1.325
Radial component

(b2) 0S7

-1

0

1

-1.368

1.371
Radial component

(b3) 1S5

-0.4

0

0.4

-0.766

0.766
Radial component

(b4) 2S4

Fig. 6. Weak scalability tests of the memory consumption for the shift-and-
invert and the polynomial filtered Lanczos methods.

32 64 128 256 512

number of processes

0

0.5

1

1.5

2

m
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

)

×10 4

0

1

2

3

4

5

6

7

8

s
iz

e
 o

f
th

e
 p

ro
b
le

m

×10 6

3571

1888

 381

2609
1951

 390

4277

2731

 387

8532

3878

 366

19404

 6356

 372

shift-invert (peak)

shift-invert (avg)

poly. filtering

size of the problem

(a) Comparison of different solid models

32 64 128 256

number of processes

0

2000

4000

6000

8000

10000

m
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s
iz

e
 o

f
th

e
 p

ro
b
le

m

×10 6

3289

2065

 443

3634

2591

 434

6165

3609

 455

9494

4321

 448

shift-invert (peak)

shift-invert (avg)

poly. filtering

size of the problem

(b) Comparison of different Earth models

C. Weak scalability analysis

We shall start our performance study with the weak scala-
bility analysis of the proposed algorithm for a set of eight solid
models and a set of seven Earth models that are tabulated in
Table IV, where the number of computation nodes (‘nn’) and
the number of processes (‘np’) used on both the SKX and
KNL CPUs are listed for each problem, and all the cores of

Table III. TIME AND MEMORY COSTS OF DIFFERENT APPROACHES.

size methods nn/np/tds #eigs mem.(MB) total (s)

2,425,349 shift-invert 4/32/3 85 17,013 11040.19
poly. filter 4/96/1 85 384 11723.11

4,778,004 shift-invert 8/64/3 85 24,077 fail
shift-invert 16/64/6 85 19,062 33699.19
poly. filter 8/192/1 85 384 25851.98

1,157,131 shift-invert 2/16/3 262 15,189 11612.50
poly. filter 2/48/1 262 384 13508.17

2,425,349 shift-invert 4/32/3 262 22,274 33525.62
poly. filter 4/96/1 262 384 25660.18

a CPU were used with one process per core. The number of
elements is provided in the table, as well as the problem sizes,
which range from 2 million to 252 million for the solid models
and from 2 million to 128 million for the Earth models.

1) SpMV: We report the performance of our parallel SpMV
implementation on the two Stampede2 machines. As the most
important computational kernel in the proposed algorithm,
the scalability and parallel efficiency of parallel SpMV are
fundamental to the overall performance of the solver. The
times for computing one SpMV with matrix A and with matrix
M for the problems given in Table IV and the corresponding
parallel efficiencies are shown in Figure 7. The parallel SpMV
exhibited good weak scalability as expected in the tests, where
the problem sizes on each process remained roughly constant.
For the Earth model, the matrix A ≡ AG − EA−1

p ET in
(2) was not explicitly formed, and the SpMV with A was
performed by multiplications with AG, E and ET and a solve
with Ap, which was carried out by Chebyshev iterations in
the same way as M . The parallel efficiencies in the sense of
weak scalability, which is defined as Tn0

/Tnp, are reasonably
high, where np is the number of processes, n0 is the smallest
number of processes used, and Tnp and Tn0 are the associated

Table IV. TEST CASES FOR DIFFERENT SOLID AND EARTH MODELS.

Exp SKX
nn/np

KNL
nn/np # of elm. size of A

C1 2/96 2/136 2,067,539 1,038,084
C2 4/192 4/272 4,133,442 2,060,190
C3 8/384 8/544 8,079,387 3,894,783
C4 16/768 16/1088 16,036,734 7,954,392
C5 32/1536 32/2176 32,090,054 15,809,076
C6 64/3072 64/4352 64,187,247 31,138,518
C7 128/6144 128/8704 127,634,594 61,381,362
C8 256/12288 -/- 252,990,545 120,336,519

(a) Solid models with different sizes

Exp SKX
nn/np # of elm. size of AG size of Ap

E1 2/96 1,972,263 1,086,702 70,429
E2 4/192 4,094,031 2,265,129 160,220
E3 8/384 8,000,777 4,466,349 311,655
E4 16/768 16,436,247 9,037,671 658,285
E5 32/1536 32,468,819 17,579,616 1,251,220
E6 64/3072 64,764,730 34,115,040 2,373,354
E7 128/6144 128,501,841 66,028,227 4,367,668

(b) Earth models of different sizes

runtime. Note that there were a few cases where the parallel
efficiency was greater than 1.0. This superlinearity effect is
often seen and typically due to cache hierarchies [70].

2) Computation of a fraction of the spectrum: In this
section, we report the performance of using the polynomial
filtered Lanczos algorithm to compute a fixed fraction of the
spectra, that is we extracted all the eigenvalues located in
interval (ξ, η) such that (ξ − c)/d and (η − c)/d are fixed
to be nearly the same across the solid model problems C1–
C8, and so across the Earth model problems E1–E8, where
c and d are defined as before: c = (λmin + λmax)/2 and
d = (λmax−λmin)/2. Therefore, the degree of the polynomial
filter was roughly the same within the two sets of problems.
Recall that the polynomial filter is determined by only two
parameters, namely the center γ and the “bar” value τ that
is fixed for all the runs in this paper. In Table V, for each
problem, we provide a tight bound of the smallest and the
largest eigenvalues (λmin, λmax), the portion of the entire
spectrum, the degree of the polynomial filter ‘deg’, the number
of the Lanczos iterations required ‘#it’ and the number of the
eigenvalues in the interval ‘#eigs’. The time for computing all
the wanted eigenvalues and the average time for computing
each eigenvalue are tabulated as well running on Stampede2
(Phase 2) with SKX CPUs. The main result we show here is
that the CPU time for computing each eigenvalue stays roughly
the same, so in this sense, the proposed polynomial filtered
Lanczos algorithm is scalable with the problem sizes and the
number of processes.

3) Computing normal modes in a fixed subinterval: An-
other common task in practice is to compute all eigenvalues
in a prescribed interval included in the spectral interval. In this
set of experiments, we present the performance for computing
all the eigenvalues in a given interval, which contains about

Table V. COMPUTATION OF A FRACTION OF THE SPECTRUM

Exp (λmin, λmax) ξ−η
2d

(%) (deg, #it.) #eigs total (s) avg (s)
C1 (-8.4e-7, .617) 3.743e-3 (757,92) 57 1546.95 27.14
C2 (-2.0e-5, 1.11) 3.743e-3 (757,172) 57 2101.43 36.87
C3 (-1.5e-5, 1.11) 3.743e-3 (757,212) 60 2085.34 34.76
C4 (-1.0e-4, 3.52) 3.743e-3 (757,212) 82 4420.75 53.91
C5 (-1.9e-4, 6.31) 3.743e-3 (757,412) 155 7685.94 49.59
C6 (-2.7e-4, 9.43) 3.743e-3 (757,712) 271 12006.64 44.30

(a) Solid models

Exp (λmin, λmax) ξ−η
2d

(%) (deg, #it) #eigs total (s) avg (s)
E1 (-7.0e-7, 2.86) 8.157e-4 (1144,152) 50 2647.56 52.95
E2 (-2.6e-6, 7.27) 8.157e-4 (1140,412) 148 8530.22 57.63
E3 (-7.1e-6, 17.1) 8.157e-4 (1139,1232) 497 26237.35 52.79
E4 (-1.5e-5, 32.0) 8.157e-4 (1138,2672) 1176 60298.53 51.27
E5 (-4.1e-5, 68.5) 8.157e-4 (1138,7170) 3411 172818.0 50.66

(b) Earth models

Table VI. COMPUTATION OF ALL THE EIGENVALUES IN FIXED INTERVALS

Exp (λmin, λmax) (ξ, η) (deg, #it) #eigs total (s)
C1 (-8.4e-6, .617) (3.9e-7,8.9e-5) (271,652) 259 2143.87
C2 (-2.0e-5, 1.11) (3.9e-7,8.9e-5) (365,672) 259 3318.60
C3 (-1.5e-5, 1.11) (3.9e-7,8.9e-5) (364,672) 259 3247.78
C4 (-1.1e-4, 3.52) (3.9e-7,8.9e-5) (649,672) 259 6224.22
C5 (-1.9e-4, 6.31) (3.9e-7,8.9e-5) (869,672) 259 7731.83
C6 (-2.6e-4, 9.43) (3.9e-7,8.9e-5) (1062,672) 259 9287.05
C7 (-4.4e-4, 14.8) (3.9e-7,8.9e-5) (1330,672) 259 11104.54
C8 (-5.6e-4, 20.5) (3.9e-7,8.9e-5) (1566,672) 259 13914.11

(a) Solid models

Exp (λmin, λmax) (ξ, η) (deg, #it) #eigs total (s)
E1 (-7.0e-7, 2.86) (3.9e-7,8.9e-5) (585,612) 257 5369.784
E2 (-2.6e-6, 7.27) (3.9e-7,8.9e-5) (933,632) 262 10083.951
E3 (-7.1e-6, 17.1) (3.9e-7,8.9e-5) (1430,652) 262 16570.223
E4 (-1.6e-5, 32.0) (3.9e-7,8.9e-5) (1957,652) 262 24614.738
E5 (-4.1e-5, 68.5) (3.9e-7,8.9e-5) (2863,652) 262 37793.401
E6 (-6.7e-5, 115.) (3.9e-7,8.9e-5) (3711,652) 262 44962.119
E7 (-1.4e-4, 202.) (3.9e-7,8.9e-5) (4922,652) 262 63054.411

(b) Earth models

the same number of eigenvalues while increasing the sizes
of the problems. In Table VI, we report the performance of
computing eigenvalues in a fixed subinterval for problems
C1–C8 and for problems E1–E7 respectively on Stampede2
(Phase 2) with SKX CPUs. A notable difference in this set of
experiments from the previous one is that the required degree
of the polynomial filter, in general, increases with the problem
sizes, since the spectrum becomes wider as the problem sizes
increase and thus higher degrees are required to construct
the polynomial filter with the same τ value on a relatively
narrower interval. On the other hand, the number of iterations
required to compute all the eigenvalues stayed constant, which
suggests constant average convergence rate for computing
the eigenvalues of increasing size problems. Therefore, as
shown in the table, the total time for computing the desired
eigenvalues increases in proportion to the polynomial degree.

Fig. 7. Weak scalability study for parallel SpMV on TACC Stampede2 Phase 1 (KNL, 68 cores per node) and Phase 2 (SKX, 48 cores per node).

1 10 100 1000

number of nodes

0

0.5

1

1.5

2

2.5

ti
m

e
 (

s
)

×10
-3

Av (KNL)
Mv (KNL)
Av (SKX)
Mv (SKX)

(a) Parallel SpMV time (solid)

1 10 100 1000

number of nodes

0.6

0.8

1

1.2

e
ff

ic
ie

n
c
y

Av (KNL)
Mv (KNL)
Av (SKX)
Mv (SKX)

(b) Parallel efficiency (solid)

1 10 100

number of nodes

0

2

4

6

8

ti
m

e
 (

s
)

×10
-3

Av (SKX)

Mv (SKX)

(c) Parallel SpMV time (Earth)

1 10 100

number of nodes

0.6

0.7

0.8

0.9

1

e
ff
ic

ie
n
c
y

Av (SKX)

Mv (SKX)

(d) Parallel efficiency (Earth)

D. Strong scalability

The last set of experiments tested the strong scalability of
the proposed algorithm to compute the 259 eigenvalues in
the interval (3.948e−7, 8.8826e−5) for problem C3 and the
262 eigenvalues in (3.948e−7, 8.8826e−5) for problem E3.
The degrees of the polynomial filter, the numbers of iterations
required and the total computation times with 384 processes
on 8 SKX CPUs are the same as those shown in Table VI. In
Table VII, we present the performance of solving problem C3
with 192 to 1536 processes, including the times for performing
a SpMV with A and M , the time for a solve with M with
Chebyshev iterations, and the total time for computing the
wanted eigenvalues, which all appear well parallelized with
the increasing numbers of processes. The parallel efficiency in
the strong scalability sense, that is n0Tn0/(npTnp), provided
in the last column of the table demonstrates a good strong
scalability achieved by our eigensolver. Similar results for
problem E3 are shown in Table VII as well.

Table VII. STRONG SCALABILITY TESTS FOR PROBLEMS C3 AND E3.

SKX
nn/np T-Av (s) T-Mv (s) T-M−1v (s) total (s) eff.

4/192 0.003398 0.001180 0.024681 6854.54 1.0
8/384 0.001741 0.000571 0.011874 3247.78 1.1

16/768 0.000687 0.000326 0.006695 1779.14 .96
32/1536 0.000357 0.000239 0.004828 1259.08 .68

(a) Solid model C3

SKX
nn/np T-Av (s) T-Mv (s) T-M−1v (s) total (s) eff.

4/192 0.007920 0.001385 0.029170 34319.28 1.0
8/384 0.004901 0.000639 0.013370 16570.22 1.0

16/768 0.003778 0.000381 0.007847 10071.56 .85

(b) Earth model E3

On Stampede2 (Phase 1) with KNL CPUs, the scalability
and parallel efficiency of the proposed algorithm were similar
as on Phase 2, but the overall performance was found con-
sistently lower. The complete performance results are omitted
in the paper, whereas a comparison of solving (C1–C7) in
Table VI on the two machines is given in Figure 8, which
shows a speedup of up to 2.9 on SKX CPUs.

V. CONCLUSION

We developed and exploited a highly parallel algorithm to
compute the point spectrum of the elastic-gravitational system

Fig. 8. Comparison of solving C1-C7 in Table VI on TACC Stampede2 Phase
1 (KNL) and Phase 2 (SKX).

2 4 8 16 32 64 128

number of nodes

0.5

1

1.5

2

2.5

3

re
la

ti
v
e
 s

p
e
e
d
-u

p

 1

2.3062

 1

2.0923

 1

2.2491

 1

2.3902

 1

2.6018

 1

2.6758

 1

2.9395Stampede2 KNL (scaled)

Stampede2 SKX

describing the normal modes of terrestrial planets. The sys-
tem is discretized with a Continuous Galerkin method, more
precisely, with the mixed FEM on unstructured tetrahedral
meshes on the fluid and solid regions. The normal modes
of the relevant GEP were extracted with a Lanczos approach
combined with polynomial filtering, which can significantly
enhance the memory and computational efficiency without loss
of accuracy. The computational experiments were performed
on Stampede2 at the TACC to demonstrate the high parallel
efficiency and scalability of our proposed approach. We scaled
our algorithm to several hundred million elements, which is
still far from the limit of current supercomputers.

Our future work includes further increasing the degrees
of freedom to capture high-frequency normal modes, and
incorporating self-gravitation leading to an additional dense
matrix that requires special methods to perform matrix-vector
multiplications in the GEP (5). It will also lead us to develop
new methods to explore the inverse spectral problems to study
internal planetary structures, including density, wave speeds,
anisotropy, etc. This work can provide new opportunities
and insights to study large earthquakes and simulate global
seismic waves, and can be generalized to benefit many other
applications as well.

ACKNOWLEDGMENT

J.S and M.dH were supported by the Simons foundation and
XSEDE TG-EAR170019. The work of R.L was performed
under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-753896). Y.X and Y.S were
supported by NSF grants CCF-1318597, DMS-1521573, CCF-
1505970.

REFERENCES

[1] F. A. Dahlen and J. Tromp, Theoretical global seismology. Princeton
University press, 1998.

[2] P. Lognonné, “Planetary seismology,” Annu. Rev. Earth Planet. Sci.,
vol. 33, pp. 571–604, 2005.

[3] J. Woodhouse and A. Deuss, “Theory and observations – Earth’s
free oscillations,” Seismology and Structure of the Earth: Treatise on
Geophysics, vol. 1, p. 31, 2010.

[4] J. Park, T.-R. A. Song, J. Tromp, E. Okal, S. Stein, G. Roult, E. Clevede,
G. Laske, H. Kanamori, P. Davis et al., “Earth’s free oscillations excited
by the 26 December 2004 Sumatra-Andaman earthquake,” Science, vol.
308, no. 5725, pp. 1139–1144, 2005.

[5] A. Dziewonski and F. Gilbert, “Solidity of the inner core of the Earth
inferred from normal mode observations,” Nature, vol. 234, no. 5330,
p. 465, 1971.

[6] J. H. Woodhouse, D. Giardini, and X.-D. Li, “Evidence for inner core
anisotropy from free oscillations,” Geophysical Research Letters, vol. 13,
no. 13, pp. 1549–1552, 1986.

[7] J. Tromp, “Support for anisotropy of the Earth’s inner core from free
oscillations,” Nature, vol. 366, no. 6456, p. 678, 1993.

[8] B. Romanowicz and L. Bréger, “Anomalous splitting of free oscillations:
a reevaluation of possible interpretations,” Journal of Geophysical Re-
search: Solid Earth, vol. 105, no. B9, pp. 21 559–21 578, 2000.

[9] A. Deuss, J. C. Irving, and J. H. Woodhouse, “Regional variation of inner
core anisotropy from seismic normal mode observations,” Science, vol.
328, no. 5981, pp. 1018–1020, 2010.

[10] M. Ishii and J. Tromp, “Normal-mode and free-air gravity constraints
on lateral variations in velocity and density of Earth’s mantle,” Science,
vol. 285, no. 5431, pp. 1231–1236, 1999.

[11] P. Koelemeijer, A. Deuss, and J. Ritsema, “Density structure of Earth’s
lowermost mantle from Stoneley mode splitting observations,” Nature
Communications, vol. 8, 2017.

[12] J. Tromp, C. Tape, and Q. Liu, “Seismic tomography, adjoint meth-
ods, time reversal and banana-doughnut kernels,” Geophysical Journal
International, vol. 160, no. 1, pp. 195–216, 2005.

[13] V. Akcelik, G. Biros, and O. Ghattas, “Parallel multiscale gauss-newton-
krylov methods for inverse wave propagation,” in Supercomputing,
ACM/IEEE 2002 Conference. IEEE, 2002.

[14] W. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S. Asmar, D. Banfield,
L. Boschi, U. Christensen, V. Dehant, W. Folkner et al., “InSight:
a discovery mission to explore the interior of Mars,” in Lunar and
Planetary Science Conference, vol. 44, 2013, p. 1915.

[15] M. Golombek, D. Kipp, N. Warner, I. J. Daubar, R. Fergason, R. L.
Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig et al., “Selection of
the InSight landing site,” Space Science Reviews, vol. 211, no. 1-4, pp.
5–95, 2017.

[16] M. P. Panning, P. Lognonné, W. B. Banerdt, R. Garcia, M. Golombek,
S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N. A. Teanby, J. Tromp
et al., “Planned products of the Mars structure service for the InSight
mission to Mars,” Space Science Reviews, vol. 211, no. 1-4, pp. 611–
650, 2017.

[17] T. Lay, Q. Williams, and E. J. Garnero, “The core–mantle boundary
layer and deep Earth dynamics,” Nature, vol. 392, no. 6675, p. 461,
1998.

[18] R. Buland and F. Gilbert, “Computation of free oscillations of the Earth,”
Journal of Computational Physics, vol. 54, no. 1, pp. 95–114, 1984.

[19] J. Woodhouse and D. Doornbos, “The calculation of eigenfrequencies
and eigenfunctions of the free oscillations of the Earth and the Sun,”
Seismological algorithms, pp. 321–370, 1988.

[20] G. Masters, M. Barmine, and S. Kientz, “Mineos: User Manual Version
1.0. 2,” Cal Inst of Tech, 2011.

[21] A. Deuss and J. H. Woodhouse, “Theoretical free-oscillation spectra: the
importance of wide band coupling,” Geophysical Journal International,
vol. 146, no. 3, pp. 833–842, 2001.

[22] A. Deuss and J. Woodhouse, “Iteration method to determine the
eigenvalues and eigenvectors of a target multiplet including full mode
coupling,” Geophysical Journal International, vol. 159, no. 1, pp. 326–
332, 2004.

[23] D. Al-Attar, J. H. Woodhouse, and A. Deuss, “Calculation of normal
mode spectra in laterally heterogeneous earth models using an iterative
direct solution method,” Geophysical Journal International, vol. 189,
no. 2, pp. 1038–1046, 2012.

[24] B. Valette, “Free oscillations spectrum of an elastic, self-gravitating,
uniformly rotating body with a fluid inclusion,” Comptes Rendus de L
acaemie Des Sciences Serie I-Mathematique, vol. 309, no. 6, pp. 419–
422, 1989.

[25] R. J. O’Connell and A. M. Dziewonski, “Excitation of the Chandler
wobble by large earthquakes,” Nature, vol. 262, no. 5566, p. 259, 1976.

[26] D. A. Yuen and W. Peltier, “Normal modes of the viscoelastic earth,”
Geophysical Journal International, vol. 69, no. 2, pp. 495–526, 1982.

[27] J. Tarpley, “The ionospheric wind dynamoI: Lunar tide,” Planetary and
Space Science, vol. 18, no. 7, pp. 1075–1090, 1970.

[28] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp, “A 14.6 billion degrees
of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the earth
simulator,” in Supercomputing, 2003 ACM/IEEE Conference. IEEE,
2003.

[29] M. V. de Hoop, S. Holman, and H. Pham, “On the system of elastic-
gravitational equations describing the oscillations of the earth,” arXiv
preprint arXiv:1511.03200, 2015.

[30] P.-O. Persson and G. Strang, “A simple mesh generator in MATLAB,”
SIAM review, vol. 46, no. 2, pp. 329–345, 2004.

[31] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator,”
ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 2,
p. 11, 2015.

[32] A. M. Dziewonski and D. L. Anderson, “Preliminary reference Earth
model,” Physics of the earth and planetary interiors, vol. 25, no. 4, pp.
297–356, 1981.

[33] J. Shi, M. V. de Hoop, R. Li, Y. Xi, and Y. Saad, “Fast eigensolver for
computing Earth’s normal modes,” Proceedings of the Project Review,
Geo-Mathematical Imaging Group, vol. 2, pp. 317–345, 2017.

[34] B. N. Parlett, The Symmetric Eigenvalue Problem, ser. Classics in
Applied Mathematics. Philadelphia: SIAM, 1998, no. 20.

[35] E. Polizzi, “Density-matrix-based algorithm for solving eigenvalue
problems,” Phys. Rev. B, vol. 79, p. 115112, Mar 2009. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevB.79.115112

[36] T. Sakurai and H. Sugiura, “A projection method for generalized
eigenvalue problems using numerical integration,” J. Comput. Appl.
Math., vol. 159, no. 1, pp. 119 – 128, 2003, japan-China Joint Seminar
on Numerical Mathematics; In Search for the Frontier of Computational
and Applied Mathematics toward the 21st Century. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037704270300565X

[37] T. Sakurai and H. Tadano, “CIRR: a Rayleigh-Ritz type method with
contour integral for generalized eigenvalue problems,” Hokkaido Math-
ematical Journal, vol. 36, pp. 745–757, 2007.

[38] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura, “A
numerical method for nonlinear eigenvalue problems using contour
integrals,” JSIAM Letters, vol. 1, pp. 52–55, 2009.

[39] Y. Xi and Y. Saad, “Computing Partial Spectra with Least-Squares
Rational Filters,” SIAM J. Sci. Comput., vol. 38, no. 5, pp.
A3020–A3045, 2016. [Online]. Available: http://dx.doi.org/10.1137/
16M1061965

[40] K.-J. Bathe, Finite element procedures. Klaus-Jurgen Bathe, 2006.
[41] T. J. Hughes, The finite element method: linear static and dynamic finite

element analysis. Courier Corporation, 2012.
[42] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide:

solution of large-scale eigenvalue problems with implicitly restarted
Arnoldi methods. Siam, 1998, vol. 6.

[43] Y. Saad, “Filtered conjugate residualtype algorithms with applications,”
SIAM Journal on Matrix Analysis and Applications, vol. 28, no. 3, pp.
845–870, 2006. [Online]. Available: https://doi.org/10.1137/060648945

[44] H. Fang and Y. Saad, “A Filtered Lanczos Procedure for Extreme and
Interior Eigenvalue Problems,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. A2220–A2246, 2012. [Online]. Available:
https://doi.org/10.1137/110836535

[45] R. Li, Y. Xi, E. Vecharynski, C. Yang, and Y. Saad, “A Thick-Restart
Lanczos algorithm with polynomial filtering for Hermitian eigenvalue
problems,” SIAM J. Sci. Comput., vol. 38, no. 4, pp. A2512–A2534,
2016. [Online]. Available: http://dx.doi.org/10.1137/15M1054493

[46] R. Li, Y. Xi, L. Erlandson, and Y. Saad, “The Eigenvalues Slicing
Library (EVSL): Algorithms, Implementation, and Software,” arXiv
preprint arXiv:1802.05215, 2018.

[47] Y. Xi, R. Li, and Y. Saad, “Fast computation of spectral densities for
generalized eigenvalue problems,” submitted to SIAM J. Sci. Comput.,
2017.

[48] C. Lanczos, Applied Analysis, ser. Dover Books on Mathematics. Dover
Publications, 1988.

[49] L. Kamenski, W. Huang, and H. Xu, “Conditioning of finite
element equations with arbitrary anisotropic meshes,” Math. Comput.,
vol. 83, no. 289, pp. 2187–2211, 2014. [Online]. Available:
http://dx.doi.org/10.1090/S0025-5718-2014-02822-6

[50] A. Wathen, “Realistic eigenvalue bounds for the Galerkin mass matrix,”
IMA J. Numer. Anal., vol. 7, no. 4, pp. 449–457, 1987.

[51] A. Wathen and T. Rees, “Chebyshev semi-iteration in preconditioning
for problems including the mass matrix.” Electron. Trans. Numer.
Anal., vol. 34, pp. 125–135, 2008. [Online]. Available: http:
//eudml.org/doc/225663

[52] E. G. Boman, K. Deweese, and J. R. Gilbert, An Empirical Comparison
of Graph Laplacian Solvers, pp. 174–188. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611974317.15

[53] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition.
Philadelpha, PA: SIAM, 2003.

[54] G. Karypis, K. Schloegel, and V. Kumar, “ParMETIS–parallel graph
partitioning and fill-reducing matrix ordering, version 4,” Department
of Computer Science, University of Minnesota, 2014.

[55] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-based de-
composition for parallel sparse-matrix vector multiplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp.
673–693, Jul 1999.

[56] A. Bienz, W. D. Gropp, and L. N. Olson, “TAPSpMV: Topology-
Aware Parallel Sparse Matrix Vector Multiplication,” CoRR, vol.
abs/1612.08060, 2016. [Online]. Available: http://arxiv.org/abs/1612.
08060

[57] R. H. Bisseling and W. Meesen, “Communication balancing in parallel
sparse matrix-vector multiplication.” ETNA. Electronic Transactions
on Numerical Analysis [electronic only], vol. 21, pp. 47–65, 2005.
[Online]. Available: http://eudml.org/doc/128024

[58] B. Uçar and C. Aykanat, “Encapsulating multiple communication-
cost metrics in partitioning sparse rectangular matrices for parallel
matrix-vector multiplies,” SIAM Journal on Scientific Computing,
vol. 25, no. 6, pp. 1837–1859, 2004. [Online]. Available: https:
//doi.org/10.1137/S1064827502410463

[59] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data
distribution method for parallel sparse matrix-vector multiplication,”
SIAM Review, vol. 47, no. 1, pp. 67–95, 2005. [Online]. Available:
https://doi.org/10.1137/S0036144502409019

[60] E. Kayaaslan, C. Aykanat, and B. Uçar, “1.5D Parallel Sparse
Matrix-Vector Multiply,” SIAM Journal on Scientific Computing,
vol. 40, no. 1, pp. C25–C46, 2018. [Online]. Available: https:
//doi.org/10.1137/16M1105591

[61] A. Yoo, A. H. Baker, R. Pearce, and V. E. Henson, “A Scalable
Eigensolver for Large Scale-free Graphs Using 2D Graph Partitioning,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. New
York, NY, USA: ACM, 2011, pp. 63:1–63:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063469

[62] Z. Li, Y. Saad, and M. Sosonkina, “pARMS: a parallel version of the
algebraic recursive multilevel solver,” Numerical linear algebra with
applications, vol. 10, no. 5-6, pp. 485–509, 2003.

[63] R. D. Falgout and U. M. Yang, “hypre: A library of high performance
preconditioners,” in Computational Science — ICCS 2002, P. M. A.
Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 632–641.

[64] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. Gropp, D. Kaushik et al., “PETSc Users
Manual Revision 3.8,” Argonne National Lab.(ANL), Argonne, IL
(United States), Tech. Rep., 2017.

[65] S. Ceylan, M. van Driel, F. Euchner, A. Khan, J. Clinton, L. Krischer,
M. Böse, S. Stähler, and D. Giardini, “From initial models of seismicity,
structure and noise to synthetic seismograms for Mars,” Space Science
Reviews, pp. 1–16, 2017.

[66] J. F. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel,
M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun et al.,
“Preparing for InSight: An Invitation to Participate in a Blind Test for
Martian Seismicity,” Seismological Research Letters, 2017.

[67] K. J. Maschho and D. Sorensen, “A portable implementation of
ARPACK for distributed memory parallel architectures,” in Proceedings
of the Copper Mountain Conference on Iterative Methods, April, 1996,
pp. 9–13.

[68] P. R. Amestoy, I. S. Duff, and J.-Y. L’excellent, “Multifrontal parallel
distributed symmetric and unsymmetric solvers,” Computer methods in

applied mechanics and engineering, vol. 184, no. 2-4, pp. 501–520,
2000.

[69] A. George, “Nested dissection of a regular finite element mesh,” SIAM
Journal on Numerical Analysis, vol. 10, no. 2, pp. 345–363, 1973.
[Online]. Available: https://doi.org/10.1137/0710032

[70] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel
Computing: Design and Analysis of Algorithms. Redwood City, CA,
USA: Benjamin-Cummings Publishing Co., Inc., 1994.

[71] Z. Gimbutas and L. Greengard, “FMMLIB3D 1.2, FORTRAN libraries
for fast multiple method in three dimensions,” 2011.

[72] U. Ayachit, “The paraview guide: a parallel visualization application,”
2015.

VI. ARTIFACT DESCRIPTION APPENDIX

In this appendix, we provide general descriptions of the
code, the software dependencies, compilation, and installation,
and technical details of the experiments.

A. Core models and software dependencies

We provide technical details of the core modules of the code
used in this work.

1) Mesh and model generator: We used several MATLAB
scripts to generate the unstructured tetrahedral mesh as our
input model.

• Algorithm: mesh and model building.
• Program: MATLAB.
• Dependencies: DistMesh [30] for discontinuities, TetGen

[31] for mesh files and FMMLIB3D [71] (built by make
mwrap and make mex-matlab) for the reference
gravity.

• Output: It generated three mesh files that describe the
elements-to-vertices relations, locations of the vertices
and neighbor information of the elements. It also con-
structed the P wave speed (Vp), S wave speed (Vs) and
density files, which are constructed by the user as well.

• Hardwares: We ran it on a workstation for small models.
For generating large models, we used Pittsburgh Super-
computing Center Bridges Large Memory (HPE ProLiant
DL580 servers, 3TB memory).

2) Eigensolver:

• Algorithms: We used ChebLanNR, a polynomial fil-
tered Lanczos method, as the eigensolver, as well as
Chebiter, the Chebyshev iterations for solving the
linear systems with the mass matrix. Both are available
in pEVSL.

• Programming language: C with MPI.
• Compilation: Intel MPI C compiler mpiicc -DUNIX
-O3 -g -Wall -MKL (lp64 & blacs) with In-
tel MKL or MPI C compiler mpicc -lopenblas
-lpthread with OpenBLAS.

• Software dependencies: pEVSL

3) Planetary normal modes: We developed a framework
for the elastic-gravitational system for computing the normal
modes.

• Algorithms: continuous Galerkin mixed finite element
method.

• Programming language: Fortran90 with MPI.
• Compilation: Intel MPI Fortran compiler mpiifort
-c -O3 -qopenmp -MKL (lp64 & blacs)
-lmetis lparmetis chebiter.o -lpevsl
with Intel MKL or MPI Fortran mpif90 with Lapack
and Blas.

• Software dependencies: ParMetis [54] to partition un-
structured graphs with multiple constraints.

• Output: Eigenfrequencies in the prescribed interval as
well as their corresponding eigenfunctions.

B. Comparisons with other methods

For the comparisons with shift-and-invert Lanczos methods
in Section IV-A and IV-B, we used the following packages:

• MUMPS: We applied multifrontal parallel distributed
direct solvers [68] with the nested dissection ordering
from ParMetis to factorize the shifted matrices. The
MUMPS library was built with -lmkl_scalapack,
-lmkl_lapack95 and -lmkl_blacs. Parameter
ICNTL(4) = 2 was set to output the memory usage
in MUMPS.

• PARPACK We applied PARPACK [42], [67] to perform
the shift-and-invert Lanczos method with the factorization
obtained from MUMPS. To make PARPACK library,
Lapack and Blacs are needed as well. We included
dmumps_struc.h in the code to perform the factor-
ization in double precision.

C. Experiment setup

Since our program does not depend on a special hardware,
it should run on most machines. We precomputed all the
experimental models C1–C8 and E1–E8 in Table IV. On Stam-
pede2, we used modules intel/17.0.4, impi/17.0.3 to compile
our codes. In the input text file, we set up the base name
of the mesh files and the directories of the input and output
data paths. We also set up the interval range of the desired
eigenfrequencies and whether or not the reference gravity
was needed to be included. We used the SBATCH system to
submit jobs and usually set “export OMP NUM THREADS
= 1” and “export MV2 ENABLE AFFINITY=0”. Once
we set the number of nodes and the number of tasks
per node, we used ibrun ./plmvcg_Stampede2.out,
where plmvcg_Stampede2.out was our executable file.

D. Execution workflow

During the execution, each process read a piece of the input
mesh and Vs model files. We then utilized ParMetis to partition
the unstructured vertices-to-vertices graph. MPI_ALLTOALL
and MPI_ALLTOALLV were used to redistribute the input data
and load the other model files in parallel. The distributed
matrices were generated on each process. After that, the
required matrix-vector multiplications were set up, and the
parallel Chebyshev iteration method was initialized for the
mass matrices Ap and M . We then estimated the bounds of the
eigenvalues of M−1A and constructed the polynomial filter on
each process. The ChebLanNR solver was then performed to
compute all the normal modes in the prescribed subinterval.
At last, we evaluated the relative errors of the computed
normal modes, which are typical of the order of 10−11. As
a post-processing step, we used ParaView [72] for the data
visualization.

