
A HIERARCHICAL LOW-RANK SCHUR COMPLEMENT
PRECONDITIONER FOR INDEFINITE LINEAR SYSTEMS ∗

GEOFFREY DILLON† , VASSILIS KALANTZIS† , YUANZHE XI† , AND YOUSEF SAAD†

Abstract. Nonsymmetric and highly indefinite linear systems can be quite difficult to solve by
iterative methods. This paper combines ideas from the Multilevel Schur Low-Rank preconditioner
developed by Y. Xi, R. Li, and Y. Saad [SIAM J. Matrix Anal., 37 (2016), pp. 235–259] with
classic block preconditioning strategies in order to handle this case. The method to be described
generates a tree structure T that represents a hierarchical decomposition of the original matrix. This
decomposition gives rise to a block structured matrix at each level of T . An approximate inverse of
the original matrix based its block LU factorization is computed at each level via a low rank property
that characterizes the difference between the inverses of the Schur complement and another block of
the reordered matrix. The low rank correction matrix is computed by several steps of the Arnoldi
process. Numerical results illustrate the robustness of the proposed preconditioner with respect to
indefiniteness for a few discretized Partial Differential Equations (PDEs) and publicly available test
problems.

Key words. block preconditioner, Schur complements, multilevel, low rank approximation,
Krylov subspace methods, domain decomposition, Nested Dissection ordering.

AMS subject classifications. 65F08, 65F10, 65F50, 65N55, 65Y05

1. Introduction. This paper focuses on the solution of large nonsymmetric
sparse linear systems

Ax = b (1.1)

via Krylov subspace methods where A ∈ Cn×n and b ∈ Cn. When solving (1.1)
it is often necessary to combine one of these Krylov methods with some form of
preconditioning. For example, a right-preconditioning method would solve the system
AM−1u = b,M−1u = x, in place of (1.1). Other variants include left and 2-sided
preconditioners. Ideally, M is an approximation to A such that it is significantly
easier to solve linear systems with it than with the original A.

A commonly used preconditioner is the Incomplete LU (ILU) factorization of A,
where A ≈ LU = M . ILU preconditioners can be very effective for certain types of
linear systems. However, if the original matrix A is poorly conditioned or highly in-
definite (A has eigenvalues on both sides of the imaginary axis) then ILU methods can
fail due to very small pivots or unstable factors [12, 42]. Another disadvantage of ILU
methods is their poor performance on high-performance computers, e.g., those with
GPUs [33] or Intel Xeon Phi processors. Algebraic multigrid (AMG) is another popu-
lar technique for solving problems arising from discretized PDEs. Multigrid methods
are provably optimal for a wide range of SPD matrices and also perform well in par-
allel. However, without specialization, multigrid will fail on even mildly indefinite
problems. Sparse approximate inverses emerged in the 1990s as alternatives to ILU
factorizations [9, 13, 22]. These methods were mostly abandoned due to their high
cost both in terms of arithmetic and memory usage. A subsequent class of precon-
ditioners were based on rank-structured matrices [10]. Two such types of matrices
are H2-matrices [23, 24] and hierarchically semiseparable (HSS) matrices [49, 50, 51].

∗This work was supported by NSF under grant DMS-1521573 and by the Minnesota Supercom-
puting Institute.
†Address: Department of Computer Science & Engineering, University of Minnesota, Twin Cities.

{gdillon,kalan019,yxi,saad}@umn.edu

1

Both of these forms are the result of a partition of the original matrix where some
of the off-diagonal blocks are approximated by low rank matrices. These ideas have
been used to develop both sparse direct solvers and preconditioners [52]. Similarly, it
also is possible to exploit preconditioners based on hierarchical LU factorizations [4].

In this paper we focus on approximate inverse preconditioners which are based
on low rank corrections. Such approaches include the Multilevel Low-Rank (MLR)
[32], the Schur complement low rank (SLR) preconditioner [34], and the Multilevel
Schur complement Low-Rank (MSLR) preconditioner [46]. The idea behind the MSLR
preconditioner is to combine a multilevel Hierarchical interface decomposition (HID)
ordering [25] along with an efficient Schur complement approximation. This approach
is shown to be much less sensitive to indefiniteness than the classical ILU and domain
decomposition based methods. However, MSLR is designed for symmetric problems.
This paper presents a preconditioner that incorporates a modified hierarchical low
rank approximation of the inverse Schur complement from the MSLR preconditioner
into a block preconditioner based on the block LU factorization of A. The resulting
method will be called a Generalized Multilevel Schur complement Low-Rank (GM-
SLR) preconditioner. Two characteristics of GMSLR are worth highlighting. First
GMSLR is designed to be applicable to a wide range of problems. The preconditioner
is nonsymmetric and it changes at each iteration, since it incorporates inner solves,
and flexible GMRES [40] is used as the accelerator. The method also performs well for
symmetric matrices. As observed in [7, Section 10.1.2], the loss of symmetry incurred
by application of a nonsymmetric preconditioner is not a major concern provided that
good approximations to certain blocks of A are available. The numerical experiments
will confirm this observation. Second, a property that is inherited from MSLR is
that the GMSLR preconditioner computes a recursive, multilevel approximation to
the inverse of the Schur complement. GMSLR is a block preconditioner with inner
sub-solves required at every outer iteration. These inner solves can themselves be
preconditioned in order to reduce computational costs. One of these required inner
solves is with the Schur complement, i.e., we must solve Sy = g. For most problems,
this inverse Schur complement approximation turns out to be an effective precondi-
tioner for these inner solves. Since an important goal of this paper is to deal with
indefinite problems, we explored another improvement targetted specifically at such
problems. This improvement consists of a well-established strategy [20, 35, 39, 45, 48]
of adding complex shifts to the diagonal prior to performing any of the ILU factoriza-
tions required by GMSLR. In the case of GMSLR, this entails modifying the diagonal
of coefficient matrix at each level by adding a complex scalar. As is the case for
other (standard) preconditioners [39, 48] this strategy also has the effect of improv-
ing robustness while decreasing the fill-in required by GMSLR, especially for highly
indefinite problems such that those arising from Helmholtz problems.

We note at this point that our focus is on a purely algebraic viewpoint where
A is a general sparse indefinite matrix that does not necessarily originate from the
discretization of a Partial Differential Equation. Therefore, we do not consider ap-
proaches based on hierarchical matrices.

This paper is organized as follows. In Section 2 we briefly review the HID ordering.
Section 3 has a brief overview of block preconditioning that motivates the need for
the low rank property of the inverse of the Schur complement. The details of the
Schur complement approximation are given in Section 4. In Section 5 we present
the preconditioner construction process. A two level analysis of the preconditioned
eigenvalues is presented in Section 6. Then, in Section 7, we present some numerical

2

results from test problems and problems from the SuiteSparse matrix collection [17].
Concluding remarks and some ideas for future work can be found in Section 8.

2. HID ordering. Reordering the original system matrix A is essential for the
performance of direct as well as iterative methods [8, 31, 38, 43]. GMSLR uses one
such reordering technique known as the Hierarchical Interface Decomposition (HID)
[25]. This ordering has also been used in the context of hierarchical linear system
solvers [5] but is applicable to a wide class of sparse matrices, not just those that
originate from PDEs. An HID ordering can be obtained in a number of ways. A
particular method for obtaining such an ordering is the well known nested dissection
method [21]. Nested dissection recursively partitions the adjacency graph of A into
two disjoint subgraphs and a vertex separator in such a way that the removal of the
vertices of the separator from the original graph results in the two disjoint subgraphs.
Each level of bisection produces a new separator and new subgraphs. This level
information can be represented by an HID tree T . The matrix itself is reordered
according to level, starting with level 0 and ending with level L− 1.

Since we assume that A is large, sparse, and nonsymmetric, then an HID ordering
has the multilevel, recursive structure

Al =

(
Bl Fl

El Cl

)
and Cl = Al+1 for l = 0 : L− 1. (2.1)

In this notation, A0 denotes the original matrix A after HID ordering whereas AL

is the submatrix associated with the Lth level connector. The Bl block itself has a
block diagonal structure due to the block independent set ordering [43], making solves
with Bl ideally suited for parallel computation. Figure 2.1 shows an example of the
HID ordering for a 3D convection-diffusion operator discretized with the standard
7-point finite difference stencil. The left subfigure plots the non-zero pattern of the
entire matrix. The right subfigure is a close-up view of the non-zero pattern of the
coupling of the interface variables at the root level.

3. Block Preconditioning. Domain decomposition reordering gives rise to lin-
ear systems of the form

A =

(
B F
E C

)
, (3.1)

see [2, 11]. Similar block structured matrices also arise from the discretization of
systems of partial differential equations. In these coupled systems, the individual
blocks usually correspond to differential/integral operators, however in this context
they represent different sets of unknowns (interior, interface, coupling) that result
from domain decomposition. There is a large body of work on preconditioning these
systems mostly from the point of view of saddle point systems, see [6, 7, 28, 36, 37].
For examples of preconditioning other coupled systems of PDEs, see [14, 26, 27].

At the initial (root) level GMSLR uses a block triangular preconditioner of the
form

P =

(
B̃0 F0

0 S̃0

)
(3.2)

where B̃0 is an approximation to the (1, 1) block of A0 and S̃0 is an approximation
to the Schur complement S0 = C0 − E0B

−1
0 F0.

3

0 2000 4000 6000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000
7000 7500 8000

7000

7200

7400

7600

7800

8000

Fig. 2.1: A 4-level HID ordered 3D convection-diffusion matrix with zero Dirichlet
boundary conditions. The red (solid) lines separate the different levels. The green
(dashed) lines separate subdomains located at the same level. Left: The original matrix
is discretized on a 32× 32× 32 regular grid with the standard 7-point stencil. Right:
close-up view of the non-zero pattern of the coupling of the interface variables at the
root level.

In the ideal case where B̃0 = B0 and S̃0 = S0, it is well known that the matrix
A0P−1

ideal has a quadratic minimal polynomial, which means that GMRES will converge
in two iterations [28, 37]. Therefore the total cost of the procedure based on the ideal
form of (3.2) is 2 linear solves with B0 and two linear solves with S0 plus additional
sparse matrix-vector products. This is made clear by looking at the factored form of
P−1
ideal:

P−1
ideal =

(
B0 F0

S0

)−1

=

(
B−1

0

I

)(
I −F0

I

)(
I

S−1
0

)
. (3.3)

This choice corresponds to using only the upper triangular part of the block LU
factorization of A0 as a preconditioner. If both parts of this factorization are used,
i.e., if our preconditioner is of the form

P−1 =

(
B−1

0

I

)(
I −F0

I

)(
I

S−1
0

)(
I

−E0B
−1
0 I

)
, (3.4)

then in the ideal case we have an exact inverse of A0 and a Krylov method will
converge in a single iteration at the total cost of two solves with B0 and one solve
with S0. Thus, in all, using (3.4) saves one S0 solve over (3.3).

The scenario just described involves ideal preconditioners (3.3) and (3.4) which
are however not practical since they involve the exact computation of S−1

0 . In practice,

B̃0 and S̃0 are approximated, at the cost of a few extra outer iterations. With these
approximations in place it turns out that there is little difference in practice between
these two options and, based on our experience, we prefer to use (3.2). This issue will
be revisited at the end of Section 7.1.1.

Similar to [34], we solve linear systems with the B blocks by using incomplete LU
(ILU) factorizations. Approximations to the Schur complement are typically tailored
specifically to the problem being studied (e.g. the pressure convection diffusion [19]
and least-squares commutator [18] preconditioners for Navier-Stokes). However, in

4

our framework, the block form of A is the result of a reordering of the unknowns and
so our Schur complement approximation is inherently algebraic and not based on the
physics of the problem. We base our Schur complement approximation on ideas from
[34, 46].

4. Schur complement approximation. GMSLR is an extension of the MSLR
preconditioner of [46] based on approximating the block LDU factorization of (2.1):

Al =

(
I

ElB
−1
l I

)(
Bl

Sl

)(
I B−1

l Fl

I

)
(4.1)

at every level l = 0, . . . L− 1. We write the Schur complement as

Sl =
(
I − ElB

−1
l FlC

−1
l

)
Cl ≡ (I −Gl)Cl. (4.2)

Let the complex Schur decomposition of Gl be

Gl = ElB
−1
l FlC

−1
l = WlRlW

H
l (4.3)

where Wl is unitary and Rl is an upper triangular matrix whose diagonal contains
the eigenvalues of Gl. Substituting (4.3) into (4.2) we get that

Sl =
(
I −WlRlW

H
l

)
Cl = Wl (I −Rl)W

H
l Cl. (4.4)

Then, the Sherman-Morrison-Woodbury formula yields the inverse of Sl:

S−1
l = C−1

l Wl(I −Rl)
−1WH

l = C−1
l

[
I +Wl((I −Rl)

−1 − I)WH
l

]
(4.5)

which reduces to

S−1
l = C−1

l + C−1
l Wl

[
(I −Rl)

−1 − I
]
WH

l . (4.6)

Some observations about the matrix S−1
l − C−1

l will be stated in the next section.
In our algorithm, we do not compute the full Schur decomposition of Gl, just the

kl × kl leading submatrix of Rl and the first kl Schur vectors. These choices give rise
to the following inverse Schur complement approximation.

Definition 4.1. Let Gl = ElB
−1
l FlC

−1
l , l = 0 . . . L − 1 and Gl = WlRlW

H
l be

its Schur decomposition at level l. Let Wl,kl
be the matrix of the first kl Schur vectors

(kl < s) of Wl. If we define Rl,kl
to be the kl × kl leading principal submatrix of Rl,

then the approximate lth level inverse Schur complement S̃−1
l,kl

is given by

S̃−1
l,kl

= C−1
l (I +Wl,kl

Hl,kl
WH

l,kl
). (4.7)

where

Hl,kl
= [(I −Rl,kl

)−1 − I]. (4.8)

The inverse Schur complement approximation in (4.7) will be used at every level
l = 0, . . . , L − 1. Due to the potential large size of the Cl blocks, we can only afford
to factor CL−1 (i.e., at the top level) since it is the smallest of all the Cl blocks.
For l 6= L − 1 we use a slightly modified version of the recursive scheme of [46] for
approximating the action of C−1

l on a vector. The details of this approximation will
be shown in Section 5.

5

4.1. Low rank property of S−1
l −C

−1
l . Consider the inverse Schur complement

formula given by (4.6). In this section we claim that for certain problems, the matrix
S−1
l −C

−1
l is of low rank. If this is the case, then (4.7) will be a good approximation

to (4.6). The only assumption we make on the blocks Bl, Cl is that they have LU
factorizations, i.e.,

Bl = LBl
UBl

, Cl = LCl
UCl

. (4.9)

In practice we will use incomplete LU factorizations, so instead

Bl ≈ LBl
UBl

, Cl ≈ LCl
UCl

.

Note that for large, 3D problems, the number of interface points (i.e., the size of the
Cl block) can be quite large, making this factorization too costly. This is part of the
motivation for the multilevel decomposition.

To see that S−1
l − C−1

l is usually of low rank, again define the matrix Gl by

Gl = ElB
−1
l FlC

−1
l = (Cl − Sl)C

−1
l . (4.10)

Let γi, i = 1, . . . , s be the eigenvalues of Gl (and also Rl) and define Xl ≡ Cl(S
−1
l −

C−1
l). By equation (4.6) the eigenvalues θ1, θ2, · · · , θs−1, θs of Xl are given explicitly

by

θi =
γi

1− γi
, i = 1, . . . s (4.11)

since (I −Gl)
−1 − I = Gl(I −Gl)

−1.
As long as the eigenvalues γi of Gl are not clustered at 1, the eigenvalues θi of

Xl will be well separated. This in turn means that S−1
l − C−1

l can be approximated
by a low rank matrix. This was studied in detail in [46, Section 2] for the symmetric
case, where a theoretical bound for the numerical rank was established.

4.2. Building the low rank correction. We use Arnoldi’s method [1] to build
the low rank correction matrices in (4.7). This approximation can be efficient if the
desired eigenpairs of Gl are on the periphery of the spectrum. However, as we shall
see in the numerical results, this is simply not the case for some of the more indefinite
problems. A particular remedy is to take more steps of Arnoldi’s method.

Taking m steps of Arnoldi’s method on Gl yields the Krylov factorizations:

GlUm = UmHm + hm+1,mum+1e
T
m

UT
mGlUm = Hm

where Um is an orthonormal matrix and Hm is a Hessenberg matrix whose eigenvalues
(also called Ritz values) are good estimates to the extreme eigenvalues of Gl. We then
take the complex Schur factorization of Hm

QHHmQ = T. (4.12)

We can reorder the kl eigenvalues closest to 1 we wish to deflate so that they
appear as the first kl diagonal entries of T [3, 44]. The low rank matrices in (4.7) are
approximated by :

Rl,kl
≈ T1:kl,1:kl

and Wl,kl
≈ UmQ:,1:kl

. (4.13)

6

5. Preconditioner construction process. In this section we show how the
low rank property discussed in the previous section is used to build an efficient pre-
conditioner. The only assumption we make is that each of the Bl, Cl blocks are
non-singular. This assumption is typically satisfied unless the original matrix has a
block of all zeros (e.g. a saddle point system). At the end of this section we also
present an analysis of the computational and memory costs of this preconditioner.

5.1. 3-level scheme. We illustrate the steps taken to solve Ax = b with a 3-level
example.
Step 0: Apply a 3-level HID ordering to the original matrix A and right hand side b.

Call the resulting reordered matrix and right hand side A0, b0 respectively.
Step 1: At this level (only) we use the block triangular matrix

U−1
0 =

(
B0 F0

S0

)−1

=

(
B−1

0

I

)(
I −F0

I

)(
I

S−1
0

)
as a right preconditioner for A0 i.e., we solve A0U−1

0 u = b0. Here we approx-
imately factor B0 by ILU and approximate the Schur complement by

S−1
0 ≈ S̃−1

0 = C−1
0 (I +W0H0W

T
0)

where H0 and W0 are taken from (4.8) and (4.13) respectively. To solve with
C0, we refer to (2.1) and move from level 0 to level 1.

Step 2: At level 1, we have

C−1
0 = A−1

1 =

(
I −B−1

1 F1

I

)(
B−1

1

S−1
1

)(
I

−E1B
−1
1 I

)
where S−1

1 is approximated by C−1
1 plus a low rank correction:

S−1
1 ≈ S̃−1

1 = C−1
1 (I +W1H1W

T
1).

Next we move up a level again to define an approximate inverse for C1,
referring again to (2.1).

Step 3: At level 2 we have:

C−1
1 = A−1

2 =

(
I −B−1

2 F2

I

)(
B−1

2

S−1
2

)(
I

−E2B
−1
2 I

)
.

Similarly to Step 2, we now approximate S−1
2 by C−1

2 plus a low rank correc-
tion term, i.e.,

S−1
2 ≈ S̃−1

2 = C−1
2 (I +W2H2W

T
2).

At this level, we decide that C2 is sufficiently small and compute its ILU
factorization: C2 ≈ LC2

UC2
.

In order to apply the preconditioner U−1
0 , the actual algorithm starts at level 2

and proceeds up to level 0. For this particular example, that means we start forward-
backward solving with the ILU factorization of C2 since C−1

2 is needed in order to
apply S−1

2 . Now that the action of S−1
2 is available we can then approximate A−1

2

and the pattern continues until we hit level 0, i.e.,

LC2UC2 → C−1
2 → S̃−1

2 → A−1
2 → S̃−1

1 → A−1
1 → S̃−1

0 → U−1
0 .

Once C−1
l (or its action on a vector) is available, the low rank correction matrices

Wl, Hl can be computed.

7

5.2. General Case. When computing the partial Schur decomposition of the
matrix Gl, we need to be able to compute matrix vector products with the matrix
ElB

−1
l FlC

−1
l at each level l. We already have the factors of Bl, so any matrix-vector

product with B−1
l can be computed with one forward and one backward substitution.

The same does not hold true for Cl, since we only compute its factorization at level
L − 1. However, we already have an approximate factorization of A−1

l+1 and since

C−1
l = A−1

l+1 we can use this approximation to apply C−1
l to a vector. The construction

of the preconditioner is summarized in Algorithm 1. The details of the recursively
defined product of C−1

l with a vector b are given in Algorithm 2.

Algorithm 1 Generalized Multilevel Schur Low-Rank (Construction phase)

1: procedure GMSLR
2: Apply an L-level reordering to A (A0 = reordered matrix).
3: for level l from L− 1 to 0 do
4: if l = L− 1 then
5: Compute ILU factorization of CL−1, CL−1 ≈ LCL−1

UCL−1

6: end if
7: Compute ILU factorization of Bl, Bl ≈ LBl

UBl
.

8: Perform kl steps of the Arnoldi process . Call Algorithm 2 to apply C−1
l

[Vl,Kl] = Arnoldi(ElU
−1
Bl
L−1
Bl
FlC

−1
l , kl)

9: Compute the complex Schur decomposition Kl = WTWT .
10: Compute Wl,kl

= VlW and set Rl,kl
= T1:kl,1:kl

.
11: Compute Hl = (I −Rl,kl

)−1 − I = Rl,kl
(I −Rkl

)−1.
12: end for
13: end procedure

Algorithm 2 Approximation of y = C−1
l b for l ≥ 1 and y = U−1

0 b

1: procedure RecursiveSolve(l, b)
2: if l = L− 1 then
3: return y = U−1

CL−1
L−1
CL−1

b
4: else
5: Split b = (bT1 , b

T
2)T conformingly with the blocking of Cl

6: Compute z1 = U−1
Bl+1

L−1
Bl+1

b1
7: Compute z2 = b2 − El+1z1
8: if 1 ≤ l < L− 1 then
9: Compute w2 = Wl+1,kl+1

Hl+1W
T
l+1,kl+1

z2
10: Compute y2 = RecursiveSolve(l + 1, z2 + w2)
11: Compute y1 = z1 − U−1

Bl+1
L−1
Bl+1

Fl+1y2
12: else
13: Solve the system S0y2 = z2 with S̃−1

0 as a right preconditioner
14: Compute y1 = U−1

B0
L−1
B0

(b1 − F0y2)
15: end if
16: return y = (yT1 , y

T
2)T

17: end if
18: end procedure

8

Similarly to MSLR the HID ordering gives rise to Bl matrices that are block-
diagonal in structure, and so all of these blocks can be factored in parallel. Further-
more, the triangular solves associated with Bl can also be done in parallel for each
block. In addition, while Algorithm 2 generally provides an accurate approximation
to C−1

l , we must point out that due to the presence of the inner solve at level l = 0
(Line 13 of Algorithm 2), GMSLR is (potentially) more expensive per iteration than
MSLR. This expense can be lessened somewhat by the fact that the inner solve can
only require 1-2 digits of accuracy without radically affecting the convergence rate of
the outer solve.

5.3. Computational and memory complexity of the preconditioner. Let
mem(ILU(Bl)) denote the memory cost associated with the storage of the incomplete
factorization of Bl. Then the total memory cost µL

GMSLR of the GMSLR precondi-
tioner using L levels is:

µL
GMSLR =

(
L−1∑
l=0

[
mem(ILU(Bl)) + max{2slkl + k2l , 2s

2
l + s2l }

])
+mem(ILU(CL−1)),

where the second term inside the summation accounts for the memory cost associated
with the partial Schur decompositions of order 1 ≤ kl ≤ sl at levels 0 ≤ l ≤ L−1, and
sl denotes the number of interface variables at level l, i.e., the leading dimension of
each Cl. For simplicity, we treat the upper triangular matrix Hl,kl

as a dense matrix.
In the case where the incomplete factorization of matrices Bl, l = 0, . . . , L − 1, and
CL−1 are obtained by a thresholded version of ILU, with a maximum number of
non-zero entries per row equal to τ , the above memory cost is bounded by

µL
GMSLR ≤

(
L−1∑
l=0

[
2τdl + max{2slkl + k2l , 2s

2
l + s2l }

])
+ 2τsL−1,

where dl denotes the leading dimension of Bl.
To obtain an estimate of the computational cost to apply the GMSLR precondi-

tioner at the root level l ≡ 0, we need to consider the computational cost associated
with all intermediate levels. Let trisol(ILU(Bl)) and trisol(ILU(CL−1)) denote the

cost of the triangular solves with Bl and CL−1 respectively and let γ
(L−1)
GMSLR denote

the cost associated with level l = L − 1. At level l = L − 2, the cost to apply the
GMSLR preconditioner is equal to the sum of the cost to apply the preconditioner
at level l + 1 = L − 1 and the cost 2trisol(ILU(BL−2)) + O(sL−2kL−2), where we
assumed that kL−2 � sL−2. Continuing in the same spirit, we finally get that the

cost to apply the GMSLR preconditioner at level l, γ
(l)
GMSLR, is equal to

γ
(l)
GMSLR = γ

(l+1)
GMSLR + 2trisol(ILU(Bl)) +O(slkl), l = 0, . . . , L− 2,

where

γ
(L−1)
GMSLR = trisol(ILU(CL−1)) + 2trisol(ILU(BL−1)) +O(sL−1kL−1).

6. Eigenvalue Analysis. This section studies the spectra of linear systems pre-
conditioned by GMSLR. We only consider a 2 level decomposition since the recursive
nature of both algorithms makes the analysis difficult. In what follows, let B̃0 denote

9

0.4 0.6 0.8 1 1.2

k
0
=

2
Spectra of S0S̃0

−1

0.4 0.6 0.8 1 1.2

k
0
=

5

0.6 0.7 0.8 0.9 1 1.1

k
0
=

10

0.7 0.8 0.9 1 1.1

ℜe λ(S0S̃0
−1
)

k
0
=

20

-1 -0.5 0 0.5 1 1.5

k
0
=

2

Spectra of S0S̃0
−1

0 0.5 1 1.5

k
0
=

5

0.2 0.4 0.6 0.8 1 1.2

k
0
=

10

0.6 0.7 0.8 0.9 1 1.1

ℜe λ(S0S̃0
−1
)

k
0
=

20

Fig. 6.1: The spectrum of S0S̃
−1
0 for different values of k0 ≡ k1 (L = 2). Left: c = 0.0.

Right: c = 0.5.

an approximation to B0 and S̃0 the GMSLR approximation to the Schur complement
S0 = C0 − E0B

−1
0 F0 respectively. GMSLR starts with a 2× 2 block partition of the

original matrix A, i.e.,

A0 =

(
B0 F0

E0 C0

)
(6.1)

where B0 is nB × nB and C0 is s× s.
As was already seen, the GMSLR preconditioner is based on the block-LU fac-

torization of (6.1), so at level 0 we have

A0 =

(
B0 F0

E0 C0

)
=

(
I 0

E0B
−1
0 I

)(
B0 F0

0 S0

)
= L0U0,

and the preconditioner Ũ−1
0 is

Ũ−1
0 =

(
B̃−1

0 0
0 I

)(
I −F0

0 I

)(
I 0

0 S̃−1
0

)
.

A simple calculation shows that

A0Ũ−1
0 =

(
B0B̃

−1
0 (I −B0B̃

−1
0)F0S̃

−1
0

E0B̃
−1
0 S0S̃

−1
0

)
. (6.2)

If we assume that B̃0 = B0, then (6.2) simplifies to

A0Ũ−1
0 =

(
I 0

E0B
−1
0 S0S̃

−1
0

)
, (6.3)

which has eigenvalues λ(A0Ũ−1
0) = {1, λ(S0S̃

−1
0)}.

Convergence will be rapid if the eigenvalues of S0S̃
−1
0 are also close to 1. To

illustrate the influence the rank has on convergence, we show in Figure 6.1 the spectra
of S0S̃

−1
0 for a small test problem. Here A is the discretized shifted Laplacian operator

−∆u − cu = f with c = 0.0 (left figure) and c = 0.5 (right figure) and homogeneous

10

Dirichlet boundary conditions. For reference, when c = 0.5, this 8000× 8000 matrix
has 35 negative eigenvalues. This is a matrix selected for illustrative purposes, so we
use two levels with equal ranks k0, k1 and compute the exact LU factorization of B0.
As the ranks k0, k1 increase, the real part of the eigenvalues of S0S̃

−1
0 clusters more

tightly around 1.

7. Numerical experiments. All experiments were run on a single node of the
Mesabi Linux cluster at the Minnesota Supercomputing Institute. This node has a
memory of 64 GBs and consists of two sockets each having a twelve core 2.5 GHz Intel
Haswell processor. The GMSLR preconditioner was written in C++ and compiled
by Intel’s C++ compiler using −O3 optimization. Simple thread-level parallelism was
achieved with OpenMP with a maximum of 24 threads. The Bl blocks are factored by
the ILUT routine from ITSOL. The Intel Math Kernel Library (MKL) was used for
the BLAS and LAPACK routines. We use flexible GMRES [40] with a fixed restart
size of 40 as the outer solver, denoted by GMRES(40). The inner solve in step 14
of Algorithm 2 is also done with FGMRES. Unless otherwise noted, we follow the
methodology of [32, 41, 46] where the right hand side vector b is given by Ae = b
where e is the vector of all ones.

The HID ordering was obtained by the function PartGraphRecursive from the
METIS [30] package. The diagonal blocks of each Bl, Cl, l = 0, . . . , L − 1, were
reordered using the approximate minimum degree (AMD) ordering [15, 16] in order
to reduce the fill-in generated by their ILU factorizations. In our experiments the
reported preconditioner construction time comes from the factorization of the Bl

blocks and the computation of the low rank correction matrices. The reordering time
is regarded as preprocessing and is therefore not reported. Similarly, the iteration
time is the combined time spent on the inner and outer solves.

The parameters we are most interested in varying are: the number L of levels in
the HID and the maximum rank used in the low rank correction, i.e., the number of
steps of Arnoldi’s method (see Section 4.2), denoted by rk. In particular we set kl
in (4.13) to be equal to rk for any l = 0, . . . , L − 1, and thus all Arnoldi vectors are
included in the low rank correction terms.

We use the following notation in the results that follow:

• fill = nnz(prec)
nnz(A) , where nnz denotes the number of non-zero entries of the input

matrix;
• p-t: wall clock time to build the preconditioner (in seconds);
• its: number of outer iterations of preconditioned GMRES(40) required for
‖rk‖2 < 10−6. We use “F” to indicate that GMRES(40) did not converge
after 500 iterations;

• i-t: wall clock time for the iteration phase of the solver.
• rk: max rank used in building the low rank corrections.

The value of nnz(prec) is the sum of the non-zero entries associated with the
incomplete factorizations (ILU) and Low-Rank Correction (LRC) terms. These quan-

tities are computed as
∑L−1

l=0 [(nnz(UBl
) + nnz(LBl

)] +
(
nnz(UCL−1

) + nnz(LCL−1
)
)

for ILU, and
∑L−1

l=0

[
2dlrk + rk2

]
for LRC, respectively.

7.1. Problem 1. We begin our tests with the symmetric indefinite problem:

−∆u− cu = f in Ω,

u = 0 on ∂Ω, (7.1)

11

0 50 100 150 200 250

10
1

10
2

rk

In
n

e
r

it
e

ra
ti
o

n
s

tol=1e−3

tol=1e−5

tol=1e−7

tol=1e−9

Fig. 7.1: Number of inner iterations in GMSLR as a function of rk for different
values of the drop tolerance tol in the incomplete factorizations. We set L = 2.

where Ω = (0, 1)3. The discretization is via finite differences with the standard 7-
point stencil in 3D. This test problem is useful for testing robustness with respect
to definiteness. For reference, GMRES preconditioned by standard AMG fails to
converge when applied to (7.1) with even a small positive shift on a 32 × 32 regular
mesh.

7.1.1. Varying the number of levels. First, we study the effect of adding
more levels to the preconditioner. We solve (7.1) with c > 0 in order to make the
problem indefinite. In the cases where c > 0, we shift the diescretized Laplacian
operator by sI, where s = h2c for mesh size h. For this first example, we set s =
0.5. The associated coefficient matrix has 163 negative eigenvalues. The maximum
rank was fixed at 50. By Table 7.1 we can see that, as L grows larger, the ILU
fill-factor decreases monotonically while the low rank correction fill-factor increases
monotonically. The optimal number of levels occurs when these two quantities are
roughly equal. For this particular example, we pick Lopt = 6 as it strikes the right
balance of fill, iteration count, and total computational time. Note that as L increases,
so does the number of interface variables at the root level, s0. This can be verified
immediately by looking at Table 7.2 where we list s0 for all values of L from L = 2
to L = 6. Figure 7.1 plots the number of inner iterations performed by GMSLR as a
function of the rank rk for different values of the drop tolerance (denoted by tol) in
the ILU factorizations.

Finally, recall that we could have used the inexact version of (3.4) instead of
(3.2). For SPD problems there is not a significant difference in the results obtained
by either preconditioner. However, as shown in Table 7.2, for an indefinite problem
such as (7.1) with s = 0.5, (3.2) performs better. The likely explanation for this
behavior is that (3.2) involves fewer solves with the Bl matrices which are highly
indefinite and therefore admit poor ILU factorizations.

7.1.2. Varying the maximum rank in the low rank corrections. Next, we
keep the number of levels fixed, but increase the maximum rank. We again solve (7.1)

12

Table 7.1: The fill factor and iteration counts for solving (7.1) with s = 0.5 on a
323 grid with the FGMRES-GMSLR method. Here, the maximum rank for the LRC
matrices was fixed at 50.

L ILU fill LRC fill fill p-t i-t its
2 34.61 .23 34.84 5.16 1.25 16
3 21.03 .68 21.71 .986 2.69 16
4 15.64 1.35 16.99 .382 1.03 12
5 8.69 2.46 11.15 .169 .97 19
6 5.56 3.96 9.52 .172 .95 17

Table 7.2: Comparison between GMSLR with only using U−1
0 and GMSLR with L−1

0

and U−1
0 on (7.1) with s = 0.5 on a 323 grid. The maximum rank was fixed at 50.

GMSLR - U−1
0 only GMSLR - U−1

0 L
−1
0

L s0 p-t i-t its p-t i-t its
2 1,024 5.16 1.25 16 5.15 3.59 47
3 2,016 .986 2.69 16 1.01 5.24 37
4 2,977 .382 1.03 12 .391 2.88 34
5 4,955 .169 .97 19 .181 1.49 27
6 6,699 .172 .95 17 .176 1.43 24

with s = 0.5 discretized on a 323 regular grid. The ILU fill factor is constant because
we are keeping the number of levels fixed at 6. The fill factor from the low rank
corrections increases at an almost constant rate. Increasing the maximum rank has
the unfortunate effect of increasing the fill-factor and the preconditioner construction
time. As we see in Table 7.3, the effect of increasing the rank (at least for this model
problem) is difficult to predict. As a general rule, it seems as though a large maximum
rank is unavoidable for highly indefinite problems.

Table 7.3: Iteration counts for solving (7.1) with s = 0.5 on a 323 grid with the
FGMRES-GMSLR method. The number of levels was fixed at 6.

rk ILU fill LRC fill fill p-t i-t its
20 5.56 1.58 7.14 .091 1.34 24
30 5.56 2.37 7.93 .118 1.14 19
40 5.56 3.17 8.73 .139 1.04 18
50 5.56 3.96 9.52 .174 .972 17
60 5.56 4.75 10.31 .208 1.29 22
70 5.56 5.24 10.8 .221 1.35 24
80 5.56 5.99 11.55 .291 .968 15

7.1.3. Increasingly indefinite problems. The model problem (7.1) becomes
significantly more difficult to solve as s increases. Here, we increase s from 0 to
1 while tuning the maximum rank and number of levels to compensate for solving
this increasingly difficult problem. We report the results that give the best balance

13

between iteration count and fill in Table 7.4. The fill factor increases dramatically for
two reasons: first, we must increase the rank of the low rank correction and second,
we must keep the number of levels low, which, as was observed in Section 7.1.1, leads
to increased fill-in for the same drop tolerance. If the rank is too low or the number of
levels is too high, GMRES(40) simply will not converge. Recall that the construction
of the low rank correction is based on finding approximate eigenvalues of the matrix
ElU

−1
Bl
L−1
Bl
FlC

−1
l using Arnoldi’s method. When B0 is indefinite, as is the case here,

the eigenvalues we seek get pushed deeper inside the spectrum, i.e. they become
interior eigenvalues. Since the Arnoldi process does a poorer job for these interior
eigenvalues than it does for extreme ones, we are forced to take more Arnoldi steps
in order to approximate them.

Table 7.4: Results of solving symmetric linear systems with increasing shift values s
on a 323 regular mesh with GMSLR.

s L max rank fill p-t i-t its
0 8 20 5.89 .109 .068 3

.25 6 30 7.59 .117 .449 8
.5 6 50 9.52 .174 .973 17
.75 5 80 12.77 .291 .826 13
1.0 5 120 13.73 .406 1.87 29

7.2. Problem 2. The second problem of interest is nonsymmetric:

−∆u− α · ∇u− cu = f in Ω,

u = 0 on ∂Ω, (7.2)

where Ω = (0, 1)3, α ∈ R3. This problem is simply a shifted convection-diffusion
equation, again discretized by the 7-point finite difference stencil. As before we shift
the discretized convection-diffusion operator by sI where s = h2c.

7.2.1. Varying the number of levels. In this next set of experiments we fix
α = [.1, .1, .1] and solve (7.2) in 3D with no shift and then with a shift of s =
.25. As before, we start by increasing the number of levels. The results of the first
problem with a maximum rank of 20 are in Table 7.5. These results are comparable
to those obtained from the SPD problem (7.1) with s = 0, i.e., for this problem, the
convergence rate is not adversely affected by the loss of symmetry.

Next, we solve (7.2) with s = .25. The shift significantly increases the number
of eigenvalues with negative real parts, so we increase the maximum rank to 50. The
results can be found in Table 7.6. It is interesting to note that the fill from the low
rank correction is almost exactly the same as in Table 7.1. This is due to the fact
that both problems used a maximum rank of 50 to build the low rank corrections.

7.3. Problem 3. The third model problem is a Helmholtz equation of the form(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω). (7.3)

In this formulation, ∆ is the Laplacian operator, ω the angular frequency, v(x) the
velocity field, and s(x, ω) is the external forcing function with corresponding time-
harmonic wave field solution u(x, ω). The computational domain is the unit cube

14

Table 7.5: The fill factor and iteration counts for solving (7.2) with no shift and
α = [.1, .1, .1] on a 323 grid with the FGMRES-GMSLR method. Here, the maximum
rank for the LRC matrices was fixed at 20.

L ILU fill LRC fill fill p-t i-t its
2 11.69 .092 11.78 .505 .159 7
3 10.13 .272 10.4 .234 .079 6
4 8.8 .539 9.34 .126 .044 5
5 6.47 .983 7.46 .09 .041 5
6 4.89 1.58 6.47 .086 .074 4
7 3.8 2.34 6.14 .092 .066 4
8 2.53 3.35 5.88 .116 .066 3

Table 7.6: The fill factor and iteration counts for solving (7.2) with s = .25 and
α = [.1, .1, .1] on a 323 grid with the FGMRES-GMSLR method. Here, the maximum
rank for the LRC matrices was fixed at 50.

L ILU fill LRC fill fill p-t i-t its
2 24.11 .23 24.34 2.03 .88 16
3 15.44 .681 16.12 .58 .61 13
4 11.64 1.35 12.99 .237 .381 12
5 7.25 2.46 9.71 .149 .91 19
6 5.16 3.96 9.12 .167 .741 13
7 3.91 5.86 9.77 .214 1.00 14
8 2.56 8.39 10.95 .288 4.54 53

Ω = (0, 1)3 where we again use the seven-point finite difference discretization on a
regular mesh. The Perfectly Matched Layer (PML) boundary condition is used on all
faces of Ω. The resulting linear systems are complex non-Hermitian. If we assume
that the mean of v(x) is 1 in (7.3), then the wave number is ω/(2π) and λ = 2π/ω is
the wavelength. The number of grid points in each dimension is N = qω/(2π) where
q is the number of points per wavelength. As a result, the discretized system is of size
n = N3 ×N3.

Table 7.7: Results from solving (7.3) on a sequence of 3D meshes with GMSLR. All
problems have q = 8 points per wavelength. The second set of results is with a small
complex shift added to the B` matrices.

GMSLR - no shift GMSLR w/ complex shift
ω/(2π) n = N3 L rk fill p-t i-t its fill p-t i-t its

2.5 203 5 16 3.79 .063 .318 14 3.56 .062 .205 17
3 303 6 16 5.18 .156 .308 13 4.72 .135 .547 16
5 403 7 16 6.19 .282 1.94 57 5.43 .251 .556 17
6 503 7 16 8.16 .768 3.52 54 6.64 0.54 1.3 21
8 603 8 16 7.73 .867 29.53 F 6.52 0.73 2.05 21
10 803 9 16 7.85 1.57 65.57 F 6.64 1.4 6.31 28

15

We test the performance of the GMSLR preconditioner on 6 cubes, setting q = 8,
and report the results in Table 7.7. Since q is fixed, an increase in the wave number
means an increase in N , so the higher frequency problems lead to much larger linear
systems. In these experiments, we set the inner solve tolerance to 10−2 or a maximum
of 10 iterations. Results reported under the legend “GMSLR - no shift” stand for
the regular GMSLR preconditioner. Results reported under the legend “GMSLR
w/ complex shift” stand for runs where the GMSLR preconditioner was built by first

shifting Bl by σ =
(∑dl

j=1(Bl)jj/dl

)
∗ .05∗i. Without a complex shift, these problems

can be much more difficult, especially as the matrix size grows. Indeed, for the last two
examples no convergence was achieved after 300 outer iterations. On the other hand,
the shift benefits all test problems as it allows for an increased number of levels (and
thus less fill-in introduced by ILU) while also keeping the number of outer iterations
relatively small (the number of outer iterations only increased from 17 to 28 as the
matrix size grew from 203 to 803).

7.4. General sparse matrices. To further illustrate the robustness of the GM-
SLR preconditioner, we tested it on several large, nonsymmetric matrices from the
SuiteSparse Matrix Collection [17]. These matrices come from a wide range of ap-
plication areas, not just PDEs. As a benchmark, we also tested ILUT for these
nonsymmetric matrices. Information about the matrices is shown in Table 7.8. Table
7.9 shows the results of these experiments. The ILUT parameters were chosen such
that the fill of both methods was comparable.

Table 7.8: Set of nonsymmetric test matrices from the SuiteSparse Matrix Collection
where nnz is the number of nonzero entries in the matrix.

Matrix Order nnz SPD Origin
cbuckle 13,681 676,515 yes structural problem
epb2 25,228 175,027 no thermal problem
wang4 26,068 177,196 no semiconductor device problem

barrier2− 1 113,076 3,805,068 no semiconductor device problem
Cage12 130,228 2,032,536 no directed weighted graph
offshore 259,789 4,242,673 yes electromagnetics problem
CoupCons 416,800 22,322,336 no structural problem
AtmosModd 1,270,432 8,814,880 no atmospheric model
AtmosModL 1,489,752 10,319,760 no atmospheric model
Cage14 1,505,785 27,130,349 no directed weighted graph

Transport 1,602,111 23,500,731 no CFD problem

Results are shown in Table 7.9, where F indicates a failure to converge in 500
iterations. As can be seen, for these problems, GMSLR is superior to ILUT. It is
worth adding that ILUT is a highly sequential preconditioner both in its construction
and its application. In contrast, GMSLR is by design a domain decomposition-type
preconditioner that offers potential for excellent parallelism.

Figure 7.2 plots the value of i-t and p-t as both L and the drop tolerance “tol”
of the incomplete factorizations are varied for matrices “barrier2-1” and “offshore”.
In agreement with the results reported so far, an increase in the value of L reduces
the time to construct and apply the preconditioner. On the other hand, an increase
in the value of L might also lead to a larger number of inner iterations necessary to

16

Table 7.9: Comparison between GMSLR and ILUT preconditioners for solving the
above problems. ILUT parameters were chosen so that the fill factor was close to that
of GMSLR. Both sets of tests use the same reordered matrix.

Matrix
GMSLR ILUT

fill L rk p-t i-t its fill p-t i-t its
cbuckle 2.13 5 5 .22 .10 9 2.27 .38 .32 22
epb2 3.63 5 15 .23 .13 4 3.43 .98 .76 19
wang4 4.83 2 35 .14 .08 13 4.92 .45 .41 18

barrier2− 1 3.72 5 10 .60 1.91 6 3.69 44.19 14.32 F

Cage12 0.95 5 25 .23 .28 4 1.00 .24 .31 5
offshore 0.99 12 35 1.27 2.35 5 1.09 1.02 1.60 10
CoupCons 1.82 10 16 1.68 .64 5 1.64 17.49 2.03 23
AtmosModd 5.86 10 4 1.23 3.05 11 5.68 8.10 8.60 47
AtmosModL 5.81 11 4 1.67 2.12 7 6.03 11.35 6.37 30
Cage14 1.54 6 4 3.10 .89 4 1.57 5.09 0.70 4

Transport 2.52 11 4 1.85 7.45 23 2.59 27.91 59.7 116

2 3 4 5 6 7

10
0

10
1

barrier2−1

of levels (L)

T
im

e
 (

s
)

p−t, tol=1e−4

i−t, tol=1e−4

p−t, tol=1e−6

i−t, tol=1e−6

2 3 4 5 6 7

10
0

10
1

offshore

of levels (L)

T
im

e
 (

s
)

p−t, tol=1e−4

i−t, tol=1e−4

p−t, tol=1e−6

i−t, tol=1e−6

Fig. 7.2: Amount of time spent on building the GMSLR preconditioner and solving
the linear system as the number of levels L and the drop tolerance tol in the incomplete
factorizations vary. The rank rk was fixed to 10.

achieve convergence, and thus might lead to higher iteration times.

8. Conclusion. The GMSLR preconditioner combines several ideas. First is the
HID ordering method, which has a recursive multilevel structure. The (1, 1) block of
each level of this structure is block diagonal, which means that solves with this block
are easily parallelizable. Motivated by the block LU factorization of the reordered
matrix, we use a block triangular preconditioner at the bottom level of the HID tree.
For the other levels, we use approximate inverse factorizations exploiting a recursive
relationship between the different levels. Finally, we approximate the inverse Schur
complement at each level of the HID tree via a low rank correction technique.

17

Because it is essentially an approximate inverse preconditioner, GMSLR is ca-
pable of solving a wide range of highly indefinite problems that would be difficult
to solve by standard methods such as ILU. The numerical experiments we showed
confirm this. Additional benefits of GMSLR include its inherent parallelism and its
fast construction.

GMSLR is also promising for use in eigenvalue computations, especially in the
context of rational filtering eigenvalue solvers where complex, indefinite linear systems
need be solved [29, 47]. The factorization of these systems can be slow and costly
for large 3D problems. We plan on investigating the use of Krylov subspace methods
preconditioned by GMSLR to solve such systems. Among other objectives, we also
plan to implement and publicly release a fully parallel, domain-decomposition based
version of GMSLR.

Acknowledgements. The authors would like to thank the Minnesota Supercom-
puting Institute for the use of their extensive computing resources and the anonymous
referees for their careful reading of this paper and helpful suggestions.

REFERENCES

[1] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue
problem, Quarterly of Applied Mathematics, 9 (1951), pp. 17–29.

[2] O. Axelsson and B. Polman, Block preconditioning and domain decomposition methods II,
Journal of Computational and Applied Mathematics, 24 (1988), pp. 55–72.

[3] Z. Bai and J.W. Demmel, On swapping diagonal blocks in real Schur form, Linear Algebra
and its Applications, 186 (1993), pp. 75–95.

[4] M. Bebendorf, Why finite element discretizations can be factored by triangular hierarchical
matrices, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1472–1494.

[5] M. Bebendorf and T. Fischer, On the purely algebraic data-sparse approximation of the
inverse and the triangular factors of sparse matrices, Numerical Linear Algebra with Ap-
plications, 18 (2011), pp. 105–122.

[6] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. of Computational
Physics, 182 (2002), pp. 418–477.

[7] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numerica, 14 (2005), pp. 1–137.

[8] M. Benzi, D. Szyld, and A. Van Duin, Orderings for incomplete factorization preconditioning
of nonsymmetric problems, SIAM J. Sci. Comput., 20 (1999), pp. 1652–1670.

[9] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, SIAM J. Sci. Comput., 19 (1998), pp. 968–994.

[10] D. Cai, E. Chow, Y. Saad, and Y. Xi, SMASH: Structured matrix approximation by sep-
aration and hierarchy., Preprint ys-2016-10, Dept. Computer Science and Engineering,
University of Minnesota, Minneapolis, MN, (2016).

[11] E. Chow and Y. Saad, Approximate inverse techniques for block-partitioned matrices, SIAM
J. Sci. Comput., 18 (1997), pp. 1657–1675.

[12] , Experimental study of ILU preconditioners for indefinite matrices, J. Comput. Appl.
Math., 86 (1997), pp. 387–414.

[13] , Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Com-
put., 19 (1998), pp. 995–1023.

[14] E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R.P. Pawlowski, and L. Chacón, A new ap-
proximate block factorization preconditioner for two-dimensional incompressible (reduced)
resistive MHD, SIAM J. Sci. Comput., 35 (2013), pp. B701–B730.

[15] P.R. Amestoy T.A. Davis and I.S. Duff, An approximate minimum degree ordering algo-
rithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[16] , Algorithm 837: An approximate minimum degree ordering algorithm, ACM Trans.
Math. Software, 30 (2004), pp. 381–388.

[17] T.A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Software, 38 (2011), p. 1.

[18] H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block precondition-
ers based on approximate commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651–1668.

18

[19] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers,
Oxford University Press, Oxford, 2005.

[20] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik, A novel multigrid based preconditioner
for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27 (2006), pp. 1471–1492.

[21] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[22] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[23] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[24] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[25] P. Hénon and Y. Saad, A parallel multistage ILU factorization based on a hierarchical graph
decomposition, SIAM J. Sci. Comput., 28 (2006), pp. 2266–2293.

[26] V. E. Howle and R. C. Kirby, Block preconditioners for finite element discretization of
incompressible flow with thermal convection, Numerical Linear Algebra with Applications,
19 (2012), pp. 427–440.

[27] V. E. Howle, R. C. Kirby, and G. Dillon, Block preconditioners for coupled fluids problems,
SIAM Journal of Scientific Computing, 35 (2013), pp. S368–S385.

[28] I. C. F. Ipsen, A note on preconditioning nonsymmetric matrices, SIAM Journal on Scientific
Computing, 23 (2001), pp. 1050–1051.

[29] V. Kalantzis, Y. Xi, and Y. Saad, Beyond AMLS: Domain decomposition with rational
filtering, arXiv preprint arXiv:1711.09487, (2017).

[30] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput, 20 (1998), pp. 359–392.

[31] E.-J. Lee and J. Zhang, Hybrid reordering strategies for ILU preconditioning of indefinite
sparse matrices, Journal of Applied Mathematics and Computing, 22 (2006), pp. 307–316.

[32] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices,
SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.

[33] , GPU-accelerated preconditioned iterative linear solvers, J. Supercomput., 63 (2013),
pp. 443–466.

[34] R. Li, Y. Xi, and Y. Saad, Schur complement-based domain decomposition preconditioners
with low-rank corrections, Numerical Linear Algebra with Applications, 23 (2016), pp. 706–
729.

[35] M. Magolu Monga Made, R. Beauwens, and G. Warzee, Preconditioning of discrete
Helmholtz operators perturbed by a diagonal complex matrix, Comm. in Numer. Meth.
in Engin., 16 (2000), pp. 801–817.

[36] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differ-
ential equations, Numerical Linear Algebra with Applications, 18 (2010), pp. 1–40.

[37] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite
linear systems, SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972.

[38] D. Osei-Kuffour, R. Li, and Y. Saad, Matrix reordering using multilevel graph coarsening
for ILU preconditioning, SIAM J. Sci. Comput., 37 (2015), pp. A391–419.

[39] Daniel Osei-Kuffuor and Yousef Saad, Preconditioning helmholtz linear systems, Appl.
Numer. Math., 60 (2010), pp. 420–431.

[40] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14
(1993), pp. 461–469.

[41] , ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM J.
Sci. Comput., 17 (1996), pp. 830–847.

[42] , Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2nd ed. ed., 2003.
[43] Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse

linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359–378.
[44] G.W. Stewart, Algorithm 506: Hqr3 and exchng: Fortran subroutines for calculating and

ordering the eigenvalues of a real upper Hessenberg matrix, ACM Transactions on Mathe-
matical Software, 2 (1976), pp. 275–280.

[45] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, Spectral analysis of the discrete Helmholtz
operator preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29 (2007),
pp. 1942–1958.

[46] Y. Xi, R. Li, and Y. Saad, An Algebraic Multilevel Preconditioner with Low-Rank Corrections
for Sparse Symmetric Matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.

[47] Y. Xi and Y. Saad, Computing partial spectra with least-squares rational filters, SIAM Journal
on Scientific Computing, 38 (2016), pp. A3020–A3045.

19

[48] , A rational function preconditioner for indefinite sparse linear systems, SIAM Journal
on Scientific Computing, 39 (2017), pp. A1145–A1167.

[49] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix algorithms,
SIAM Journal on Matrix Anal. Appl., 37 (2016), pp. 1279–1303.

[50] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 44–72.

[51] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[52] J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan, Fast sparse selected inversion, SIAM Journal
on Matrix Anal. Appl., 36 (2015), pp. 1283–1314.

20

