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Abstract

Computational methods in Materials science have made huge strides in recent years and
parallel computing methodologies have played a major role in enabling such a progress. The
goal of this chapter is to discuss the current state of the art in computational materials science as
it stands today, illustrating advances in the development of parallel algorithms and the impact
such algorithms have had in the area. The paper is intended to be accessible to a diverse
scientific computing audience. The focus of the paper will be the Density Functional Theory
methodology and the solution of the eigenvalue problems that are encountered in solving the
resulting equations.
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1 Introduction
Among the many jobs running at any given time of a high-performance computing facility today,
it is likely that those related to quantum mechanical calculations will figure prominently. The
numerical simulations that arise from the modeling of matter are very demanding both in terms
of memory and computational power. These simulations combine ideas and techniques from a
variety of disciplines including physics, chemistry, applied mathematics, numerical linear algebra,
and computer science.

Determining matter’s electronic structure can be a major challenge: The number of particles
is large [a macroscopic amount contains ≈ 1023 electrons and nuclei] and the physical problem is
intrinsically complex.

The most significant change in computational methods used in materials in the past two decades
has undoubtedly been the systematic use of parallel processing. This revolution in methodology
has taken some time to unravel and then mature. For example, it was not clear in the early 1990s
whether massively parallel computing could be achieved with vector processors or if a message
passing interface would be best. There were phases in which programming models and languages
took different directions. As architectures changed over the years, the software and techniques
have been in constant flux. At the same time algorithms have also evolved considerably, in part to
cope with the new computing environments and the enormous power afforded by new hardware.

Most of the gains in speed combine advances from 3 areas: simplifications or improvements
from physical models, effective numerical algorithms, and powerful hardware+software tools.
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In terms of physical models, the biggest advances in nanotechnology were made in the sixties
with the emergence of Density Functional Theory (DFT) which made it possible to approximate
the initial problem by one which involves unknowns that are functions of only one space variables
instead of N space variables, for N -particle systems in the original Schrödinger equation. Thus
instead of dealing with functions in R3N we only need to handle functions in R3. DFT provides (in
principle) an exact method for calculating the ground state energy and electron density of a system
of interacting electrons using exchange-correlation density functionals, and a set of single electron
wavefunctions solution of an eigenvalue equation.

The number of atoms contained in nanostructures of technological interests usually range from
few hundreds to many thousands posing a unique challenge for DFT electronic structure mod-
eling and computation. Many modeling advances were made in designing various discretization
techniques to accommodate atomistic systems with high level of accuracy. In addition, since both
system size and number of needed eigenpairs to compute the electron density depend linearly on
the number of atoms, progress in electronic structure calculations are tied together with advances
in eigenvalue algorithm and their scalability on parallel architectures.

The goal of this paper is not to provide another exhaustive review of the state of the art in ma-
terials but rather to discuss the impact that parallel processing has had on the design of algorithms.
From physics to algorithms, we will begin with a review of the basics, and then discuss the recent
advances made in electronic structure calculations using appropriate discretization schemes and
new parallel algorithms that can fully capitalize on modern HPC computing platforms.

2 Quantum descriptions of matter
Consider N nucleons of charge Zn at positions {Rn} for n = 1, · · · , N and M electrons at posi-
tions {ri} in space, for i = 1, · · · ,M . The non-relativistic, time-independent Schrödinger equation
that describes the physical state of the system can be written as:

H Ψ = E Ψ (1)

where the many-body wavefunction Ψ is of the form

Ψ ≡ Ψ(R1,R2,R3, · · · ; r1, r2, r3, · · · ) (2)

and E is the total electronic energy. The HamiltonianH in its simplest form can be written as

H(R1,R2,R3, · · · ; r1, r2, r3, · · · ) =
N∑
n=1

−~2∇2
n

2Mn

+
1

2

N∑
n,n′=1,
n6=n′

ZnZn′e2

|Rn −Rn′|

+
M∑
i=1

−~2∇2
i

2m
−

N∑
n=1

M∑
i=1

Zne
2

|Rn − ri|
+

1

2

M∑
i,j=1
i 6=j

e2

|ri − rj|
(3)

Here, Mn is the mass of the nucleon, ~ is Planck’s constant divided by 2π, m is the mass of the
electron, and e is the charge of the electron.

The above Hamiltonian includes the kinetic energies for each nucleon (first sum inH), and each
electron (3rd sum), the inter-nuclei repulsion energies (2nd sum), the nuclei-electronic (Coulomb)
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attraction energies (4th sum), and the electron-electron repulsion energies (5th sum). Each Lapla-
cian ∇2

n involves differentiation with respect to the coordinates of the nth nucleon. Similarly the
term∇2

i involves differentiation with respect to the coordinates of the ith electron.
In principle, the electronic structure of any system is completely determined by (1) by finding

the wavefunction Ψ that minimizes the energy < Ψ|H|Ψ > over all normalized wavefunctions Ψ.
The function Ψ has a probabilistic interpretation: for the minimizing wavefunction Ψ,

|Ψ(R1, · · · ,RN ; r1, · · · , rM)|2d3R1 · · · d3RNd
3r1 · · · d3rM

represents the probability of finding nucleon 1 in volume |R1 + d3R1|, nucleon 2 in volume |R2 +
d3R2|, etc. However, solving (1) is not practically feasible for systems that include more than just
a few atoms.

The main computational difficulty stems from the nature of the wavefunction which depends
on all coordinates of all particles (nuclei and electrons) simultaneously. To give an illustration of
this, imagine we have 10 Atoms each with 14 electrons [e.g., Silicon]. This represents a total of
15∗10 = 150 particles. The wavefunction in its form without spin is Ψ(R1, · · · , R14, r1, ......, r140)
and it must be discretized. A simple scheme would be some finite difference method. If we use
100 points for each of the 150 coordinates we would get a huge number of unknowns:

# Unknowns = 100︸︷︷︸
part.1

× 100︸︷︷︸
part.2

× · · · × 100︸︷︷︸
part.150

= 100150

The original Schrödinger equation (1) can be viewed as an eigenvalue problem: we need com-
pute the smallest eigenvalue and associated eigenvector of the Hamiltonian. It can also be viewed
from the point of view of optimization since finding the smallest eigenpair is known to be equiva-
lent to finding the wavefunction Ψ that minimizes the Rayleigh quotient:

E =< Ψ|H|Ψ >≡
∫

Ψ∗HΨ d3R1 d
3R2 d

3R3 · · · . d3r1 d3r2 d3r3 · · ·∫
Ψ∗Ψ d3R1 d3R2 d3R3 · · · . d3r1 d3r2 d3r3 · · ·

(4)

The symbols bra (for < |) and ket (for | >) are common in chemistry and physics. When
applying the Hamiltonian to a state function Ψ the result is another state function: Φ = |H|Ψ >.
The inner product of this function with another function Θ is < Θ|Φ > which is a scalar.

The first, and basic, approximation made to reduce complexity is the Born-Oppenheimer or
adiabatic approximation. This approximates separates the nuclear and electronic degrees of free-
dom: exploiting the fact that the nuclei have a much bigger mass than the electrons, it can be
assumed that the electrons will respond “instantaneously” to the nuclear coordinates. This allows
one to treat the nuclear coordinates as classical parameters. For most condensed matter systems,
this assumption is highly accurate [79, 29]. Under this approximation the first term in (3) vanishes
and the second becomes a constant, so we end up with the simplified Hamiltonian:

H(r1, r2, r3, · · · ) =
M∑
i=1

−~2∇2
i

2m
−

N∑
n=1

M∑
i=1

Zne
2

|Rn − ri|
+

1

2

M∑
i,j=1
i 6=j

e2

|ri − rj|
. (5)

This simplified Hamiltonian is often taken as a practical replacement of the original problem.
Its eigenfunctions determine the states. There are infinitely many states, labeled 1, 2, · · · by

increasing eigenvalue. Each eigenvalue represents an ’energy’ level of the state. The state with
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lowest energy (smallest eigenvalue) is the ground state. It determines stable structures, mechanical
deformations, phase transitions, and phonons. States above the ground state are known as ‘excited
states’. They are used to study many body effects, quasi-particles, electronic band gaps, optical
properties, etc.

A direct numerical treatment of the Schrödinger equation using the simplified many-body
Hamiltonian (5), leads to a deceptively simple linear eigenvalue problem which is still intractable
because of its exponential growing dimension with the number of electrons. This limitation has
historically motivated the need for lower levels of sophistication in the description of the electronic
structure using a single electron picture approximation where the size of the Hamiltonian operator
scales linearly with the number of electrons. It is within the single-electron picture that first-
principle electronic structure calculations are usually performed [49] using either (post) Hartree-
Fock type methods widely used in quantum chemistry, or as an alternative to wave function based
methods, the Density Functional Theory (DFT) associated with the Kohn-Sham equations [31, 36].
The next Section will be reviewing the electronic structure modeling process using DFT.

3 Density Functional Theory and the Kohn-Sham equation
A breakthrough in the solution of the Schrödinger equation came with the discovery of Density
Functional Theory. In a series of papers, Hohenberg, Kohn, and Sham established a theory in
which the many body wave function was replaced by one-electron orbitals [48, 31, 36]. The basic
idea is that the state of the system will now be expressed in terms of the the charge density ρ, which
is a distribution of probability, i.e., ρ(r1)d

3r1 represents - in a probabilistic sense - the number of
electrons (all electrons) in the infinitesimal volume d3r1. It is easy to calculate the charge density
from a given wavefunction. The fundamental theorem which these authors were able to state is that
this mapping is one-to-one, i.e., given the charge density it should be possible to obtain the ground
state wavefunction. In essence there is a certain Hamiltonian – as defined by a certain potential
(that depends on ρ) whose minimum energy is reached for the ground state Ψ. Kohn and Sham
wrote this Hamiltonian as

HKS =
~2

2m
∇2 + VN(ρ) + VH(ρ) + Vxc(ρ) (6)

where VN(ρ) is the external potential VH(ρ) is the Hartree potential and Vxc(ρ) is the exchange
correlation potential. Note the dependence on the charge density ρwhich is itself implicitly defined
from the set of occupied eigenstates φi, i = 1, · · · , N of (6) by:

ρ(r) = 2

occup∑
j=1

|φj(r )|2, (7)

where N is the number occupied states (i.e. number of electrons) and the factor 2 accounts for the
electron spin.
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3.1 The Kohn Sham equation
We can now write the Kohn-Sham equation [36] for the electronic structure of matter as(

−~2∇2

2m
+ VN(r) + VH(r) + Vxc[ρ(r)]

)
φi(r) = Eiφi(r) (8)

As stated above the charge density is defined in terms of the orbitals φi given by (7).
Given a charge density ρ the Hartree Potential VH is the solution of Poisson equation:

∇2VH = −4πρ(r) (9)

The exchange & correlation potential Vxc is unknown in theory but it is approximated by a potential
in different ways, the simplest of which is the Local Density Approximation (LDA).

Therefore, this equation is usually solved “self-consistently” in the sense that if a given ρin, as
obtained from a set of occupied states φi(r), i = 1, · · · , N is utilized to compute new occupied
states from (6), and a new charge density ρout is then computed according to (7) then ρ and ρout

should be the same. The SCF procedure takes some initial approximate charge to estimate the
exchange-correlation potential and this charge is used to determine the Hartree potential from (9).
These approximate potentials are inserted in the Kohn-Sham equation and the total charge density
determined as in (7). The “output” charge density is used to construct new exchange-correlation
and Hartree potentials. The process is repeated until the input and output charge densities (or
potentials) are close enough. This process is illustrated in Figure 1.

Figure 1: The Self-Consistent Field Iteration.

DFT has been widely used in computational material science and quantum chemistry over
the past few decades, since it provides (in principle) an exact method for calculating the ground
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state density and energy of a system of interacting electrons using a non-linear single electron
equation associated with exchange-correlation (XC) functionals. In practice, the reliability of DFT
depends on the numerical approximations used for the XC terms that range from the simplest
local density approximation (LDA) to more advanced schemes which are still the subject of active
research efforts [14, 65, 70]. Solutions of the DFT/Kohn-Sham problem are routinely used in
the calculations of many ground state properties including: total energy and ionization potential;
and, via perturbation: crystal-atomic structure, ionic forces, vibrational frequencies and phonon
bandstructure.

3.2 Pseudopotentials
When discretizing the KS equation, we run into a major difficulty which arises from the different
scales of the lengths involved. The inner (core) electrons are highly localized and tightly bound
compared to the outer (valence electrons). Another major advance in the solid-state physics field
was the advent of pseudopotential techniques which remove the core states from the problem and
replacing the all electron potential by one that replicates only the chemically active, valence elec-
tron states[16]. This is possible because the physical properties of solids depend much more on the
valence electrons than on the core electrons. The whole art is then to construct pseudopotentials
that reproduce the valence state properties such as the eigenvalue spectrum and the charge density
outside the ion core.

3.3 Discretization
One can identify three main discretization techniques that have been widely used over the past four
decades by both the quantum chemistry and the solid-state physics communities [49]: (i) the plane
wave expansion scheme, (ii) the linear combination of atomic orbitals (LCAO) (along with the
dominant use of Gaussian local basis sets), and (iii) the real-space mesh techniques (also loosely
called “numerical grids”) based on finite difference method (FDM), finite element method (FEM),
spectral element or wavelets methods. Each of these approaches have pros and cons.

3.3.1 Planewaves

Planewave bases have been very popular in materials science and solid-state physics for performing
bandstructure calculations. For example, in the context of pseudopotentials methods, planewave
bases can be quite effective in representing the orbitals for crystalline periodic matter, requiring a
small number of planewaves. This leads to a compact representation of the Schrödinger operator.
The resulting matrix is dense in Fourier (plane wave) space, but it is not formed explicitly. Instead,
matrix-vector product operations are performed with the help of fast Fourier transforms. This plane
wave approach is akin to spectral techniques used in solving certain types of partial differential
equations [24]. The plane wave basis used is of the form:

ψk(r) =
∑
G

α(k,G) exp (i(k + G) · r) (10)

where k is the wave vector, G is a reciprocal lattice vector and α(k,G) represent the coefficients
of the basis. Thus, each planewave is labeled by a wavevector which is a triplet of 3 integers,
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i.e., k = (k1,k2,k3). The vector parameter G translates the periodicity of the wavefunction with
respect to a lattice which attempts to describe a crystalline structure of the atoms.

3.3.2 LCAO

An appealing approach uses a basis set of orbitals localized around the atoms. This is the approach
for example taken in the SIESTA code [68] where, with each atom a, is associated a basis set of
functions which combine radial functions around a with spherical harmonics:

φalmn(r) = φaln(ra)Ylm(r̂a)

where ra = r−Ra.
In contrast to plane wave methods, LCAO techniques cannot be universally and systematically

improved towards convergence. On the positive side, LCAO benefits from a large collection of
local basis sets that has been refined along the years by the quantum chemistry community to obtain
high-level of accuracy in simulations. Atomic orbital basis also yields much smaller matrices and
requires less memory than plane wave methods. The sparsity of the matrices depends on how many
neighboring atoms are accounted for in the linear combination.

A popular basis employed with pseudopotentials is that of Gaussian orbitals[13, 32, 17, 33].
Gaussian bases have the advantage of yielding analytical matrix elements provided the potentials
are also expanded in Gaussians. However, the implementation of a Gaussian basis is not as straight-
forward as with plane waves. For example, numerous indices must be employed to label the state,
the atomic site, and the Gaussian orbitals used.

3.3.3 Real-space Methods

When applied to electronic structure calculations, real-space mesh techniques exhibit the following
significant advantages: (i) they avoid deriving global basis sets for a specific problem by employing
universal mathematical approximations at local regions in the physical space; (ii) they can easily
handle the treatment of various boundary conditions such as Dirichlet, Neumann, or mixed (such
as self-energy functions useful in transport problems [59]); (iii) they produce very sparse matrices
and are cast as linear scaling electronic structure discretization methods; (iv) they allow to solve
the Poisson equation for electrostatics using the same numerical grid; (v) they can benefit from
the recent advances made in mathematical modeling techniques and numerical algorithm design
including multigrids, domain decomposition, or direct and Krylov-subspace iterative techniques.
All of these properties motivated the development of real-space mesh software packages for elec-
tronic structure calculations such as Octopus [8, 5], MIKA [3], PARSEC [37, 6], or NESSIE [4].

Finite Differences An appealing discretization alternative is to avoid traditional explicit bases
altogether and work instead in real space, by discretizing the space variable. This can be achieved
with Finite Difference Methods (FDM), see, e.g., [37, 22, 53, 41, 72, 30, 27, 9]. FDM is the
simplest real space method which utilizes finite difference discretization on a cubic grid. One
of the most popular schemes is to use regular grids with high-order discretizations [25] for the
Laplacian which represents the kinetic energy operator. Such high order schemes significantly
improve convergence of the eigenvalue problem when compared with standard, low order, finite
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Figure 2: Matrix resulting from a 12-th order (M = 6) FD discretization of the Kohn-Sham
equation. The matrix is obtained from a Parsec simulation of a small Silicon cluster passivated by
Hydrogen atoms (Si10H16). A spherical domain is used which explains the curved diagonals

difference methods. With a uniform grid where the points are described in a finite domain by
(xi, yj, zk), ∂

2ψ
∂x2

at (xi, yj, zk) is approximated by

∂2ψ

∂x2
=

M∑
n=−M

Cnψ(xi + nh, yj, zk) +O(h2M), (11)

where h is the grid spacing. Thus using a total of 2M + 1 points in each direction yields an error
of order O(h2M ). Algorithms are available to compute the coefficients Cn for arbitrary order in
h [25].

With the kinetic energy operator expanded as in (11), one can set up a one-electron Schrödinger
equation over a grid. One may assume a uniform grid, but this is not a necessary requirement. Once
the Kohn Sham equation is discretized using high order finite differences, we obtain a standard
matrix eigenvalue problem of the form:

Aψ = λψ (12)

in which A is a real symmetric and sparse matrix. Note that the discretization (11) for the kinetic
energy term, will lead to 2M nonzero entries for each of the 3 directions, plus the diagonal entry,
so we end up with a total of 6M + 1 nonzero entries, to which we need to add the nonzero entries
that come from the other terms of the Hamiltonian. The Hartree and Exchange correlation terms
usually lead to a diagonal matrix, while the external potential is non-local and leads to a sort of
low-rank matrix centered around each atom. An example of such a matrix is shown in Figure 2.

A grid based on points uniformly spaced in a three dimensional cube is typically used. Many
points in the cube are far from any atoms in the system and the wave function on these points may
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Figure 3: The figures represent a 2D cross-section of 3D finite element mesh using a coarser
interstitial mesh (left) connecting all of the atoms of a Benzene molecule, and a much finer mesh
(right) for the atom-centered regions suitable to capture the highly localized core states around the
nuclei.

be replaced by zero. Special data structures may be used to discard these points and keep only
those having a nonzero value for the wave function. The size of the Hamiltonian matrix is usually
reduced by a factor of two to three with this strategy, which is quite important considering the large
number of eigenvectors which must be saved. Further, since the Laplacian can be represented by a
simple stencil, and since all local potentials sum up to a simple diagonal matrix, the Hamiltonian
need not be stored explicitly as a sparse matrix. Handling the ionic pseudopotential is complex as
it consists of a local and a non-local term In the discrete form, the non-local term becomes a sum
over all atoms, a, and quantum numbers, (l,m) of rank-one updates:

Vion =
∑
a

Vloc,a +
∑
a,l,m

ca,l,mUa,l,mU
T
a,l,m (13)

where Ua,l,m are sparse vectors which are only non-zero in a localized region around each atom,
ca,l,m are normalization coefficients.

Finite Elements One of the main advantage of finite element method (FEM) is its flexibility to
be used with non-uniform meshes and include local refinement by adding more nodes in various
regions of interests. In electronic structure calculations, local refinement is important to capture
the strong variations of potential and electron density in the vicinity of the atom center regions.
Consequently, FEM has been employed in some electronic structure codes [42, 43] as a way to
bypass the pseudopotential approach and consider the full core potential. These calculations are
called all-electron calculations since both core and valence electrons are included.

As illustrated in Figure 3 with the example of a Benzene molecule, the 3D finite-element mesh
can be built in two steps: (i) a 3D atom-centered mesh which is highly refined around the nucleus
to capture the core states, and (ii) a much coarser 3D interstitial mesh that connects all the atom-
centered regions. For the atom-centered mesh, successive layers of polyhedra as proposed in [42],
along with cubic finite element, do provide high- level of accuracy for solving single atom systems.
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Not only, the distance between layers can be systematically refined while approaching the nucleus,
the outer-layer is consistently providing the same (relatively small) number of connectivity nodes
that will be used by the coarser interstitial mesh at the surface with the atoms. This approach,
used in the NESSIE code [4], is ideally suited for domain-decomposition techniques and parallel
computing [34].

3.4 Comparison of discretization approaches
Real-space approaches have a number of advantages and have become popular in recent years, see
[74, 19, 20, 18, 12, 27, 80, 54, 35, 41, 11, 24, 23]. It is worth mentioning that the Gordon Prize in
2011 was awarded to a team that relied on finite difference discretization [28] a testimony of the
capability of this approach. One of the attractions of space approaches relative to planewaves is that
they bypass many of the difficulties involved with non-periodic systems. Although the resulting
matrices are usually (much) larger than with plane waves, they are sparse and the methods are easy
to implement on parallel computers. However, even on sequential machines, real space methods
can be faster than methods based on traditional approaches.

Comparing finite difference with finite element discretization methods one can say that finite
elements are good at reducing the total number of variables involved but they may be more difficult
to implement.

3.5 Computing the electron density
Within the SCF-DFT procedure, solving the linear and symmetric eigenvalue problem at each
given iteration step, becomes a very challenging part of the calculations.

The most challenging aspect of electronic structure calculations is the high computational cost
of calculating the electron density (7) at each step of the DFT/Kohn-Sham self-consistent itera-
tions (see Figure 1). The electron density is traditionally calculated using all the wave functions
(eigenvectors) solution of the Kohn-Sham eigenvalue problem over all occupied energy states. In
order to characterize complex systems and nanostructures of current technological interests, many
thousands of eigenpairs may indeed be needed. Indeed, all valence electrons (and core electrons if
applicable) need to be included in the calculation.

An alternative approach to the wave function formalism consists of performing a contour inte-
gration of the Green’s function matrixG(z) = (zB−A)−1 over the complex energy space [76, 71].
We note thatA is the Hamiltonian matrixA, andB represents the basis function overlap matrix (i.e.
or mass matrix) which is obtained after discretization (S = I using FDM). At zero temperature,
the resulting expression for the electron density in real-space is:

ρ(r) = − 1

πı

∫
C

diag(G(z))dz = 2

occup∑
j=1

|φj|2, (14)

where the clockwise complex contour C includes all the occupied eigenvalues. The contour inte-
gration technique represents a priori an attractive alternative approach to the traditional eigenvalue
problem since the number of Green’s function to be calculated (typically of order ∼ O(10) using
Gaussian quadrature) is independent of the size of the system. In addition, only the diagonal ele-
ments of the Green’s function needs to be computed (independently) along the integration points.
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This problem has motivated the development of new algorithms that are able to directly obtained
the diagonal elements of the inverse of any sparse matrices. For 1D physical structures such as long
nanowires which give rise to banded matrices after discretization, it is possible to perform efficient
O(N) calculations for obtaining the diagonal elements of the Green’s function [10, 77, 47]. For
arbitrary 3D systems (i.e. beyond nanowire structures), however, the numerical complexity of a
direct solver such as PEXSI is O(N2) [7].

The Green’s function-based alternative to the wave function formalism for computing electron
density, gives rise to difficulties in algorithmic complexity, parallel scalability and accuracy. In that
regard, it is difficult to bypass the wave function formalism, and progress in large-scale electronic
structure calculations can be tied together with advances in numerical algorithms for addressing
the eigenvalue problem that will be discussed in the next Section.

4 Solution of the eigenvalue problem
One significant characteristic of the eigenvalue problem that arises from the Kohn-Sham equation
is that the number of required eigenvectors is proportional to the atoms in the system, and can grow
up to thousands, possibly many more depending on the compound being studied. This means that
we will have to store an eigenbasis consisting of a large number of vectors. In addition, the vectors
of this basis need to be orthogonal. In fact, the biggest part of the cost of existing eigenvalue codes
is related to orthogonalization.

In this Section, we will briefly review various diagonalization methods ranging from Lanczos
and Davidson to polynomial and rational filtering, and introduce the notion of ’slicing’. One of the
main motivations of filtering is to allow ’slices’ of the spectrum to be computed independently of
one another and orthogonalization between eigenvectors in different slices is no longer necessary.

4.1 Traditional methods: Subspace iteration, Lanczos and Davidson
Large computations based on DFT approaches started in the 1970s after the breakthrough results of
Kohn, Hohenberg, and Sham. The use of planewave bases dominated the arena of electronic struc-
ture from that period onward - starting with the trend-setting Car and Parrinello [15] article which
was the catalyst in the development of computational codes using planewaves and pseudopentials.
Most computations in the mid-80s to the 1990s, and still today, rely on planewave bases. Since
the matrices involved were dense and memory was expensive, this was a major limiting factor at
the beginning. However, it was soon realized that it was not necessary to store the dense matrix
if a code that accesses the matrix only to perform matrix-vector products (‘matvecs’ thereafter) is
employed [50], see also [51]. This is achieved by working in Fourier space and using FFT to go
back and forth from real to Fourier space to perform the operations needed for the matvec. An
early code based on subspace iteration for eigenvalue problems and called Ritzit, initially written
by Rutishauser in Algol [60], became a de facto standard.

The Lanczos algorithm [38] discovered in 1950 re-emerged in the early 1980s in the linear
algebra community as a contender to subspace iteration due mainly to its superior effectiveness
when computing a small number of eigenvalues at one end of the spectrum. In exact arithmetic,
the Lanczos algorithm generates an orthonormal basis v1,v2, . . . ,vm, of the Krylov subspace

12



Span{v,Av,A2v, · · · ,Am−1v} via an inexpensive 3-term recurrence of the form :

βj+1vj+1 = Avj − αjvj − βjvj−1 .

In the above sequence, αj = vHj Avj and βj+1 = ‖Avj − αjvj − βjvj−1‖2. So the jth step of the
algorithm starts by computing αj and then proceeds to form the vector v̂j+1 = Avj−αjvj−βjvj−1
and then vj+1 = v̂j+1/βj+1. Note that for j = 1, the formula for v̂2 changes to v̂2 = Av2 − α2v2.

Suppose that m steps of the recurrence are carried out and consider the tridiagonal matrix,

Tm =


α1 β2
β2 α2 β3

. . . . . . . . .
βm αm


Further, denote by Vm the n ×m matrix Vm = [v1, . . . ,vm] and by em the mth column of if the
m×m identity matrix. After m steps of the algorithm, the following relation holds:

AVm = VmTm + βm+1vm+1e
T
m .

It is observed, and can be theoretically shown, that some of the eigenvalues of the tridiagonal matrix
Hm will start approximating corresponding eigenvalues of A when m becomes large enough. An
eigenvalue λ̃ ofHm is called a Ritz value, and if y is an associated eigenvector, then the vector Vmy
is, by definition, the Ritz vector, i.e., the approximate eigenvector of A associated with λ̃. If m is
large enough, the process may yield good approximations to the desired eigenvalues λ1, . . . , λs of
H, corresponding to the occupied states, i.e., all occupied eigenstates.

In practice, orthogonality of the Lanczos vectors, which is guaranteed in theory, is lost and this
phenomenon takes place as soon as one of the eigenvectors starts to converge [55, 56]. Orthogo-
nality can be reinstated in a number of ways, see [66, 40, 67, 39, 75].

The Davidson [52] method, is a sort of preconditioned version of the Lanczos algorithm, in
which the preconditioner is the diagonal of A. We refer to the generalized Davidson algorithm as
a Davidson approach in which the preconditioner is not restricted to being a diagonal matrix (A
detailed description can be found in [62].)

The Davidson algorithm differs from the Lanczos method in the way in which it defines new
vectors to add to the projection subspace. Instead of adding just Avj , it preconditions a given
residual vector ri = (A − µiI)ui and adds it to the subspace (after orthogonalizing it against
current basis vectors). The algorithm consists of an “eigenvalue loop” which computes the desired
eigenvalues one by one (or a few at a time), and a “basis” loop which gradually computes the
subspace on which to perform the projection. Consider the eigenvalue loop which computes the
ith eigenvalue and eigenvector of A. IfM is the current preconditioner, and V = [v1, · · · ,vk] is
the current basis the main steps of the main loop are as follows:

1. Compute the ith eigenpair (µk,yk) of Ck = VTk AVk.

2. Compute the residual vector rk = (A− µkI)Vkyk

3. Precondition rk, i.e., compute tk =M−1rk
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4. Orthonormalize tk against v1, · · · ,vk and call vk+1 the resulting vector, so Vk+1 = [Vk,vk+1].

5. Compute last column-row of Ck+1 = VTk+1AVk+1

The original Davidson approach used the diagonal of the matrix as a preconditioner but this
works only for limited cases. For planewave bases, it is possible to construct fairly effective pre-
conditioners by exploiting the lower order bases. By this we mean that if Hk is the matrix rep-
resentation obtained by using k planewaves, we can construct a good approximation to Hk from
Hm with m � k, by completing it with a diagonal matrix representing the larger (undesirable)
modes. Note that these matrices are not explicitly computed as they are dense. This possibility of
building lower dimensional approximations to the Hamiltonian which can be used to precondition
the original matrix constitutes an advantage of planewave-based methods.

4.2 Nonlinear Chebyshev filtered subspace iteration
A big disadvantage of the Lanczos and Davidson iterations is that they do not allow to exploit
previous bases that have been calculated from earlier SCF iterations. A look at Figure 1 indicates
that what matters for convergence is how well the procedure is approximating the basis of the
subspace corresponding to the n occupied states. At the next SCF iteration, the Lanczos algorithm
starts with one vector only. This means that we cannot fully take advantage of the basis that has
been computed previously. In contrast, the subspace iteration algorithm is ideal in this context. All
we need to do at the next SCF iteration is update the Hamiltonian – and use whatever subspace
we had from the previous SCF iteration. This constitutes a major attraction of subspace iteration.
Another attraction is clearly its added parallelism.

0 0.5 1 1.5 2
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Deg. 7 Cheb. polynom., damped interv=[0.2, 2]

Figure 4: Degree 8 Chebyshev filter

The main ingredient of a subspace iteration procedure is the Chebyshev filtering. Given a basis
[v1, . . . , vm], each vector is ’filtered’ as v̂i = Pk(A)vi, where pk is a low degree polynomial whose
goal is to enhance the wanted components of these vectors in the desired eigenvectors of A. The
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most common filters used are shifted and scaled Chebyshev polynomials. If [a, b] is the interval
containing unwanted eivenvalues, those that must be dampened, then we use the polynomial

pk(t) =
Ck(l(t))

Ck(l(g))
; with l(t) =

2t− b− a
b− a

where Ck is the Chebyshev polynomial of degree k of the first kind and g is some approximation of
the eigenvalue that is farthest from the center (a+ b)/2 of the interval – which is used for scaling.
One such polynomial of degree 7 is shown in Figure 4. The 3-term recurrence of Chebyshev
polynomial is exploited to compute pk(A)v. If B = l(A), then Ck+1(t) = 2tCk(t) − Ck−1(t) →
wk+1 = 2Bwk − wk−1. Algorithm 4.1 provides an illustration of Chebyshev filtering.

Algorithm 4.1: [Y ] = Chebyshev filter(X, m, a, b, g)

1 e = (b− a)/2; c = (a+ b)/2; σ = e/(c− g); τ = 2/σ;
2 Y = (A ∗X − c ∗X) ∗ (σ/e);
3 for i = 2 to m do
4 σnew = 1/(τ − σ);
5 Yt = (A ∗ Y − c ∗ Y ) ∗ (2 ∗ σnew/e)− (σ ∗ σnew) ∗X;
6 X = Y ; Y = Yt; σ = σnew;

What was discussed above is what might be termed a standard SCF approach in which a filtered
subspace iteration is used to compute the eigenvalues at each SCF iteration. The subspace iteration
can also be used in a nonlinear way. In the nonlinear Subspace iteration, the filtering step is
not used to compute eigenvectors accurately. Instead the based is filtered and the Hamiltonian is
updated immediately using these vectors. In essence the process amounts to removing one loop
from the algorithm in that the SCF and the diagonalization loops merged. The new SCF iteration is
illustrated in Figure 5. Experiments reported in [78] reported that this procedure can yield a factor
of 10 speed-up over the more traditional one in which the inner eigenvalue loop is kept.

4.3 EVSL: Filtering and spectrum slicing
We mentioned earlier that a big part of the cost of computing a large number of eigenvectors is to
maintain orthogonality between these vectors. The number of vectors to orthogonalize is typically
of the order of the number of states which is itself proportional to the number of of particles,
and so the cost increases quadratically with the number of particles. This was observed early on
and a number of articles sought inexpensive alternatives. One of the main ideas proposed was
one based on filtering, i.e., transforming the Hamiltonian so as to enhance or magnify the desired
part of the spectrum by a polynomial of rational transformation to enable a projection method like
subspace iteration, to extract the desired eigenvalues easily. An early contribution along these lines
is the article by Zunger [73] which discusses a scheme whereby the HamiltonianH is replaced by
B = (H − σI)2. Extracting the smallest eigenpairs of B will yield the eigenvectors associated
with the eigenvalues closest to the shift σ. A similarly simple technique is one that is based on
shift-and-invert [56] which uses a rational filter.
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Figure 5: The Self-Consistent Field Iteration with a nonlinear subspace iteration approach

Figure 6: Two filters to compute two slices of the spectrum that are far apart. Note that eigenvectors
associated with two distinct slices need not be orthogonalized against each other.

The essence of a filtering technique is to replace the original matrix A by B = φ(A), where
the filter φ is either a polynomial of rational function. The main advantage of filtering is that
it allows to compute different parts of the spectrum independently. A spectrum slicing method
refers to a technique that computes the desired spectrum by sub-intervals or ‘slices’. The recently
developed package named EVSL (for Eigenvalues Slicing Library) relies entirely on this strategy
[1, 44, 45]. Figure 6 illustrates the main motivation for this strategy, namely that eigenvectors
associated eigenvectors belonging to slices that are far apart need not be orthogonalized against
each other.
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Figure 7: Cost of calculating all eigenvalues of a Laplacian matrix in the interval [0, 1] by a poly-
nomial filtered non-restart Lanczos method. There are 1,971 eigenvalues in the interval and they
are computed by slicing the spectrum into 1, 2, · · · , 6 sub-intervals.

The gain in computational cost that comes from avoiding limiting or orthogonalization can be
significant both in terms of computational time and in terms of memory. For example, Figure 7
illustrates a calculation with EVSL in which all eigenvalues in the interval [0, 1] of a Laplacian
discretized on a 49×49×49 centered finite difference grid. A spectrum slicing strategy is exploited
and the total cost is shown as the number of intervals varies from 1 to 6. Note that in EVSL the
degree of the polynomial filter is computed automatically. One can observe that orthogonalization
costs are drastically reduced along with costs related to the projection process. At the same time
the cost of matvecs increases but it remains insignificant relative to the rest. This calculation is
performed without fully taking advantage of parallelism. If a fully parallel computation were to be
implemented, each of the total times would have been divided by the number of intervals used.
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Figure 8: A filter polynomial of degree 23 (left) and a zoom of the same polynomial near the
interval of interest (right).
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Figure 9: Eigenvalues of the filtered matrix with the filter of Figure 8

To illustrate how polynomial filtering is combined with a non-restarted version of the Lanczos
algorithm we show in Figure 8 a polynomial filter of the type used in EVSL. In the figure, an
eigenvalue λi located inside the interval of desired eigenvalues is transformed to φ(λi). The filter is
designed so that any eigenvalue λi located inside the interval of desired eigenvalues is transformed
into an eigenvalue φ(λi) that is larger than or equal to a certain value (called the ‘bar’) which is
β = 0.8 in the figure. This makes it easy to distinguish between wanted eigenvalues (φ(λi ≥ β)
and unwanted ones (φ(λi < β). Figure 9 shows the filtered eigenvalues for the same problem. As
is highlighted in the figure, all wanted eigenvalues of the original problem are now eigenvalues
that are not smaller than β = 0.8 for the filtered matrix. It is therefore possible to devise a strategy
whereby these eigenvalues are all computed from a Lanczos algoeirhn with full reorthogonalization
and no restarts. If the degree of the polynomial is well selected and the sub-interval contains a
reasonable number of eigenvalues this strategy works quite well in practice.

EVSL solves large sparse real symmetric standard and generalized eigenvalue problems. In
order to enable a spectrum slicing strategy, the methods in EVSL rely on a quick calculation of
the spectral density of a given matrix, or a matrix pair. Once this is done the driver will then cut
the interval into slices so that each slice will have approximately the same number of eigenvalues.
What distinguishes EVSL from other currently available packages is that EVSL relies entirely on
filtering techniques. While much effort has been devoted to develop effective polynomial filtering
the package also implements rational filters. The projection methods developed in the package are
the Lanczos methods without restart, or with thick restart, as well as the subspace iteration method.
Various interfaces are available for various scenarios, including matrix-free modes, whereby the
user can supply his/her own functions to perform matrix-vector operations or to solve sparse linear
systems. A fully parallel version is currently being developed.

4.4 FEAST: Rational filtering and spectrum slicing
Equation (14) indicates that the contour integration technique does not provide a natural route
for obtaining the individual occupied wave functions but rather the summation of their ampli-
tudes square. The FEAST algorithm was originally proposed to reconcile both wave function and
Green’s function formalism and provide an efficient and scalable new approach for solving the
eigenvalue problem [58]. FEAST can be applied for solving both standard and generalized form
of the Hermitian or non-Hermitian problem, and it belongs to the family of contour integration
eigensolvers along with the Sakurai and Sugiura (SS) method [63, 64]. In contrast to the Krylov-
based SS method, FEAST is a subspace iteration method that uses the Rayleigh-Ritz projection
and an approximate spectral projector as a filter [57]. Given a Hermitian generalized eigenvalue
problem AX = BXΛ of size n, the algorithm in Figure 10 outlines the main steps of a generic
Rayleigh-Ritz subspace iteration procedure for computingm eigenpairs. At convergence, the algo-
rithm yields the B-orthonormal eigensubspace Ym ≡ Xm = {x1, x2, . . . , xm}n×m and associated
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0. Start: Select random subspace Ym0 ≡ {y1, y2, . . . , ym0}n×m0 (n >> m0 ≥ m)
1. Repeat until convergence
2. Compute Qm0 = ρ(B−1A)Ym0

3. Orthogonalize Qm0

4. Compute AQ = QH
m0
AQm0 and BQ = QH

m0
BQm0

5. Solve AQW = BQWΛQ with WHBQW = Im0×m0

6. Compute Ym0 = Qm0W
7. Check convergence of Ym0 and ΛQm0

for the m wanted eigenvalues
8. End

Figure 10: Subspace iteration method with Rayleigh-Ritz projection

eigenvalues ΛQm ≡ Λm. Taking ρ(B−1A) = B−1A, yields the bare-bone subspace iteration (gen-
eralization of the power method) which converges towards the m dominant eigenvectors with the
linear rate |λm0+1/λi|i=1,...,m [56, 61]. This standard approach is never used in practice. Instead, it
is combined with filtering using the function ρ which aims at improving the convergence rate (i.e.
|ρ(λm0+1)/ρ(λi)|i=1,...,m) by increasing the gap between wanted and unwanted eigenvalues. An
ideal filter for the interior eigenvalue problem which maps all m wanted eigenvalues to one and all
unwanted ones to zero, can be derived from the Cauchy (or Dunford) integral formula:

ρ(λ) =
1

2πı

∮
C
dz(z − λ)−1, (15)

where the wanted eigenvalues are located inside a complex contour C. The filter then becomes a
spectral projector, with ρ(B−1A) = XmX

H
mB, for the eigenvector subspaceXm (i.e. ρ(B−1A)Xm =

Xm) and can be written as:

ρ(B−1A) =
1

2πı

∮
C
dz(zB − A)−1B. (16)

FEAST uses a numerical quadrature to approximately compute the action of this filter onto a set
of m0 vectors along the subspace iterations. The resulting rational function ρa that approximates
the filter (15) is given by:

ρa(z) =
ne∑
j=1

ωj
zj − z

, (17)

where {zj, ωj}1≤j≤ne are the nodes and related weights of the quadrature. We obtain for the sub-
space Qm0 in step 2 of the algorithm in Figure 10:

Qm0 = ρa(B
−1A)Ym0 =

ne∑
j=1

ωj(zjB − A)−1BYm0 ≡ Xρa(Λ)XHBYm0 . (18)

In practice, Qm0 can be computed by solving a small number of (independent) shifted linear sys-
tems over a complex contour.

Qm0 =
ne∑
j=1

ωjQ
(j)
m0
, with Q(j)

m0 solution of (zjB − A)Q(j)
m0

= BYm0 (19)
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Figure 11: Variations of the rational functions ρ8(λ) (ne = 8 contour points) associated with
Gauss, Trapezoidal and Zolotarev quadrature rules. While Trapezoidal presents a more regular
decay than Gauss, the latter produces smaller values for the rational function just outside the edges
of the search interval |z| > 1. From the caption, we note that Zolotarev presents a dramatic drop
in the rational function at z = 1 (i.e., fastest possible decay), but this value quickly saturates.

As shown in Figure 11, a relatively small number of quadrature nodes (using Gauss, Trape-
zoidal or Zolotarev [26] rules) on a circular contour suffices to produce a rapid decay of the func-
tion ρa from ≈ 1 within the search contour to ≈ 0 outside. In comparison with more standard
polynomial filtering [69, 61], the rational filter (17) can lead to a very fast convergence of the
subspace iteration procedure. In addition, all the m desired eigenvalues are expected to converge
at the same rate (since ρa(λi) ' 1 if λi is located within the search interval). The convergence
rate of FEAST does not only depend upon the decay properties of the rational function ρa, but
also on the size of the search subspace m0 which must not be chosen smaller than the number of
eigenvalues inside the search contour (i.e. m0 ≥ m). Users of the FEAST eigensolver[2] are then
responsible for specifying an interval to search for the eigenvalues and a subspace size m0 that
overestimate the number of the wanted eigenvalues. Once these conditions are satisfied, FEAST
offers the following set of appealing features:

(i) high robustness with well-defined convergence rate |ρa(λm0+1)/ρa(λi)|i=1,...,m;
(ii) all multiplicities naturally captured;

(iii) no explicit orthogonalization procedure on long vectors required in practice (i.e., step-3 in
Figure 10 is unnecessary as long as BQ is positive definite). We note in (18) that Qm0 is
naturally spanned by the eigenvector subspace;

(iv) reusable subspace capable to generate suitable initial guess when solving a series of eigen-
value problems such the ones that appear in DFT-SCF iterations;

(v) can exploit natural parallelism at three different levels: search intervals can be treated sep-
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arately (no overlap) while maintaining orthogonality - linear systems can be solved inde-
pendently across the quadrature nodes of the complex contour - each complex linear system
with m0 multiple right-hand-sides can be solved in parallel. Consequently, within a parallel
environment, the algorithm complexity depends on solving a single linear system using a
direct or an iterative method.

Using FEAST, the total number of processes npp can be distributed over three levels of paral-
lelism: (i) eigenvalue level parallelism using i filters (i.e. i slices); (ii) block level parallelism where
all the k linear systems are solved independently; (iii) domain level parallelism which handles the
system matrices and the multiple right-hand-sides using the remaining p processes available since
npp = i× k × p. Achieving a good balancing with a suitable distribution of the parallel resources
among all slices, would require that the number of eigenvalues in each slice be about the same.
Obviously, it can be quite challenging for a user to perform a customized slicing by first guessing
the distribution of the eigenvalue spectrum. Recent work on stochastic estimates can be helpful
in this regard [46, 21]. One possible estimate on the eigenvalue count in an interval consists of
approximating the trace of the spectral projector by exploiting the rational function expansion (19)
i.e.

tr(P̃ ) ≈ n

nv

k∑
j=1

ωj

nv∑
i=1

vTi (σjB − A)−1Bvi. (20)

The cost of this estimation can remain relatively small since the linear systems can be solved with
low accuracy and with a very small number of right-hand-sides nv. Furthermore, if the factor-
izations can already be computed at each complex shift σj , they can be reused in the subsequent
subspace iteration.

5 Conclusion
Atom-by-atom large-scale first-principle calculations have become critical for supplementing the
experimental investigations and obtaining detailed electronic structure properties and reliable char-
acterization of emerging nanostructures. First-principle calculations most often rely on a succes-
sion of modeling trade-offs between accuracy and performances, which can be broadly divided
into four major steps: (i) physical, (ii) mathematical, (iii) discretization, and (iv) computing. These
modeling steps contain different layers of numerical approximations which are most often tightly
tied together. In order to improve on current software implementation by fully capitalizing on
modern HPC computing platforms, it is essential to revisit not one, but all the various stages of the
electronic structure modeling process which have been summarized in this chapter.

Solutions of the DFT/Kohn-Sham problem are routinely used in the calculations of many
ground state properties of small molecular systems or crystal unit-cells containing a handful of
atoms. In order to characterize large-scale complex systems and nanostructures of current tech-
nological interest, the SCF-DFT procedure would require repeated computations of many tens of
thousands of eigenvectors, for eigenvalue systems that can have sizes in the tens of millions. In
this case, a divide-and-conquer approach that can compute wanted eigenpairs by parts, becomes
mandatory, since windows or slices of the spectrum can be computed independently of one another
and orthogonalization between eigenvectors in different slices is no longer necessary. All these is-
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sues have originally motivated the development of the EVSL and FEAST approaches that were
discussed here.
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