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Abstract. We propose a class of polynomial preconditioners for solving non-Hermitian linear3
systems obtained from a least-squares approximation in polynomial space instead of a standard4
Krylov subspace. The process for building the polynomial relies on an Arnoldi-like procedure in a5
small dimensional polynomial space and is equivalent to performing GMRES in polynomial space.6
It is inexpensive and produces results with superior numerical stability. A few improvements to7
the basic scheme are discussed including the development of a short-term recurrence and the use of8
compounded preconditioners. Numerical experiments, including a test with challenging 3D Helmholtz9
equations and a few publicly available sparse matrices, are provided to demonstrate the performance10
of the proposed preconditioners.11
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1. Introduction. We consider solving a large non-Hermitian linear system of15

equations16

(1.1) Ax = b,17

where A ∈ CN×N is non-Hermitian and x, b ∈ CN . A Krylov subspace method accel-18

erated by a certain type of preconditioner is often preferred for this type of problems,19

e.g., GMRES with a form of the incomplete LU (ILU) factorization. However, when20

the coefficient matrix A is highly indefinite (eigenvalues of A appear on both sides of21

the imaginary axis) or extremely ill-conditioned, this method may suffer from slow22

convergence or even stagnation due to stability issues [25]. Furthermore, since both23

the construction and application phases of ILU preconditioners are sequential in na-24

ture and lack of parallelism, ILU preconditioners cannot easily take full advantages25

of modern high-performance computing architectures such as distributed memory26

machines or GPUs. Recently, a class of preconditioners based on low-rank approxi-27

mations has been developed to overcome these difficulties [17, 19, 34]. These precon-28

ditioners explore the recursive or hierarchical low-rank approximation of the Schur29

complement or its inverse and only apply ILU to the diagonal blocks in the reordered30

matrix. In particular, the generalized multilevel Schur complement low-rank (GM-31

SLR) preconditioner [9] has been shown to be quite effective for both non-symmetric32

and indefinite problems.33

This paper discusses a new class of polynomial preconditioning techniques for34

solving (1.1). These preconditioners can be either used in a standalone way or they35

can be combined with those low-rank approximation type preconditioners to further36

improve efficiency.37

Most classical acceleration schemes are in fact in the form of a polynomial iter-38

ation. Indeed, given an initial guess x0 and residual r0 = b − Ax0, the approximate39
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2 PROXY-GMRES

solution x̃ in a given iteration is of the form:40

x̃ = x0 + p(A)r0,41

where p is a polynomial, and its related residual is equal to42

(1.2) r̃ = b−Ax̃ = (I −Ap(A))r0 ≡ ρ(A)r0.43

Note that the approximate solution is a member of the affine Krylov subspace x0 +44

Km(A, r0). The acceleration procedures based on Krylov subspace methods that45

have been developed in the literature are all based on polynomial iterations where46

the iterates are of the form given above, and the polynomials are obtained using47

various criteria. For example, the criterion employed in GMRES [26] is to select the48

polynomial p to make the residual norm ‖r̃‖2 as small as possible. The Chebyshev49

“semi-iterative” method [12, 13] constructs p so that the residual polynomial ρ(t) is an50

appropriately shifted and scaled Chebyshev polynomial of the first kind. The residual51

polynomial is built so that it is small in an ellipse that encloses the spectrum of the52

matrix A. In these methods, the polynomial p can be either used directly to solve53

linear systems approximately in an iterative scheme as in [12, 13] and other works, or54

it can be exploited as a preconditioner in combination with an acceleration such as55

GMRES for example.56

Polynomial preconditioners are quite appealing because they are simple to use57

and because they can be highly effective for some problems. The construction of the58

polynomial preconditioner does not involve matrix factorizations and it is also inde-59

pendent of reordering schemes. Moreover, applying the preconditioner relies heavily60

on one single operation namely the matrix-vector multiplication associated with the61

original coefficient matrix A. This operation has been studied and optimized for over62

decades by researchers, see, e.g., [2, 32, 3, 18] and is often extremely efficient for63

sparse matrices. In addition, the computations are completely free of inner product64

which is communication-intensive and limits the performance in a distributed mem-65

ory environment. The paper brings three main contributions which are summarized66

below:67

• Improved numerical stability. In the past, several polynomial precondi-68

tioners have been proposed in the literature [24, 22, 21, 11]. However, all of69

these methods suffer from numerical stability issues that hampers their use70

for higher degrees. In contrast, the proposed methods build a polynomial ba-71

sis via an Arnoldi-like procedure. This procedure represents the polynomial72

implicitly and has well-controlled numerical stability. As a result, the pro-73

posed polynomial preconditioners can be computed accurately for arbitrary74

degree.75

• Guaranteed effect in spectrum. The proposed polynomial precondition-76

ers are constructed by solving a discrete least-squares problem based on the77

spectrum of the coefficient matrix so that the spectrum of the preconditioned78

system will be better clustered. In contrast, those based on GMRES poly-79

nomials cannot guarantee to yield a good preconditioner as pointed out in80

[31, 11].81

• Efficient construction and application. The proposed polynomial pre-82

conditioners are built in a carefully designed polynomial space which has83

much smaller dimension compared to the matrix size. As a result, the cost84

of building the polynomial is essentially negligible. In the application phase,85

a technique based on short-term recurrence is proposed in Section 3.3 which86
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X. YE, Y. XI, AND Y. SAAD 3

can significantly accelerate the application of the preconditioner on a vector87

and reduce the storage requirement.88

The rest of this paper is organized as follows. Section 2 introduces a few ways89

to derive polynomial preconditioners based on solving minimax problems. Section 390

presents an Arnoldi-like procedure to generate a stable polynomial basis based on91

the boundary of the spectrum of the coefficient matrix. Several improvements are92

discussed in Section 4 and numerical examples are provided in Section 5. Finally,93

concluding remarks are draw in Section 6.94

2. Polynomial construction via an explicit basis. In this section, we will95

discuss a few ways to derive a polynomial preconditioner when an explicit basis {φi(z)}96

for the polynomial space is given.97

2.1. Classical minimax problem. In many applications, the boundary of the98

spectrum of A is not hard to estimate. For example, this can be done either by99

analyzing the physical problem [20] where (1.1) is derived from or approximated by100

methods such as the Arnoldi iteration [1, 10]. Assume that all eigenvalues of A are101

contained in a simply connected domain Ω ⊂ C and denote by Γ = ∂Ω the boundary102

of Ω. Here, we further assume that Ω does not contain the origin and that Γ is103

piecewise smooth; see Figure 2.1 for an illustration.104
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Fig. 2.1. Eigenvalues of the matrix enclosed by a closed curve.

From (1.2) we have that105

‖r̃‖ ≤ ‖I −Ap(A)‖‖r0‖.106

In order to make ‖r̃‖ small, we could choose p so that ‖I − Ap(A)‖ is small. A107

straightforward criterion to ensure this is simply to require that |1− zp(z)| be small108

for all z = λ where λ is an eigenvalue of A. Unfortunately, this approach involves109

all the eigenvalues of A, which is not practically feasible so an alternative is to seek110

p so that the maximum of |1 − zp(z)| in the region Ω is small. Since we assume the111

eigenvalues of A are enclosed by Γ, and since 1− zp(z) is holomorphic, the maximum112

modulus principle [27] tells us that the maximum value of |1− zp(z)| on Ω is achieved113

on the boundary Γ. Thus for a fixed m > 0, the sought-after polynomial p can be114
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4 PROXY-GMRES

characterized by the following minimax problem:115

(2.1) min
p∈Pm−1

max
z∈Γ
|1− zp(z)|,116

where Pm−1 denotes the set of all complex polynomials of degree less than m.117

It is important to note that an approach based on this framework can be viewed as118

a heuristic only because in the highly non-normal case the norm of ‖I−Ap(A)‖ is not119

always tightly related to the maximum of |1− zp(z)| on the contour Γ that contains120

the spectrum, see, for example, the articles on the Crouzeix conjecture [6, 7, 8]. For121

many practical problems minimizing some norm of |1 − zp(z)| on the contour Γ will122

yield good results.123

Defining the Chebyshev norm on any set D ⊂ C of a function f by ‖f‖D =124

maxz∈D |f(z)|, the minimax problem (2.1) can be rewritten as125

(2.2) min
p∈Pm−1

‖1− zp(z)‖Γ.126

This is a Chebyshev approximation problem in functional form with a domain that is127

a continuous subset of the complex plane. The problem can be solved by a Remez-like128

algorithm [4, 30, 23] or the Lanczos τ -method [15, 5]. However, when the geometry of129

Γ becomes irregular or the degree of the polynomial increases, these methods might130

fail. As a result, we will not attempt to solve the minimax problem (2.1) directly.131

We can instead solve a discrete version of the problem, i.e., we can simplify (2.1)132

by replacing the continuous contour Γ by a discrete one. Let Γn = {z1, z2, . . . , zn}133

be an n-point discretization of the boundary Γ. This discretization should capture134

the geometric characteristics of Γ, a uniform discretization of Γ usually suffices in135

practice. In certain cases when Γ contains a high curvature or discontinuous part,136

we can either add additional points to refine the discretization in this area or simply137

replace this part by a smoother curve before the discretization. We then consider138

the Chebyshev norm on the discrete set Γn and define the following discrete minimax139

problem:140

(2.3) min
p∈Pm−1

‖1− zp(z)‖Γn
.141

Write p(z) =
∑m
i=1 αiφi(z) and denoted by α = [α1, α2, . . . , αk]T ∈ Cm the142

column vector of all the coefficients, (2.3) becomes143

min
α∈Cm

max
1≤i≤n

∣∣1− zi m∑
j=1

αjφj(zi)
∣∣.144

Define an n×m matrix F with entries given by145

fij = ziφj(zi), 1 ≤ i ≤ n, 1 ≤ j ≤ m,146

and e ∈ Cn the column vector of all ones, (2.3) can be reformulated in the matrix147

form as148

min
α∈Cm

‖e− Fα‖∞.149

We refer the readers to [29, 28, 33, 16] for some discussions on algorithms for150

solving the above complex linear programming problem. This problem uses the in-151

finity norm in Cn. We will not consider this approach in the remainder of the paper.152
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Instead we will replace the infinity norm by the 2-norm in Cn. The least-squares153

polynomial will be computed by a GMRES-like procedure in polynomial space which154

is described next.155

3. Polynomial construction via an Arnoldi process. Define an inner prod-156

uct for the polynomial space as157

(3.1) 〈p1, p2〉 =

n∑
i=1

p1(zi)p2(zi).158

This sesqui-linear form is a valid inner product of the space of polynomials Pm as long159

as m does not exceed the number of points n . We will denote by ‖ · ‖ω the related160

norm. Then we would like to solve the following discrete least-squares problem instead161

of (2.2) :162

(3.2) min
p∈Pm−1

‖1− zp(z)‖2ω.163

Instead of specifying a basis {φi(z)}mi=1 in advance as in Section 2, we will actually164

build the polynomial basis dynamically in an Arnoldi-like a process.165

3.1. GMRES in polynomial space. The construction procedure for the opti-166

mal polynomial is similar to GMRES in vector space and is described in Algorithm 3.1.167

For the sake of conformity with the notation used in the standard Arnoldi process,168

the polynomial basis of degree l is represented by ql+1, instead of ql.169

It is easy to see that the Arnoldi-like process Algorithm 3.1 will indeed generate170

a set of orthonormal polynomial basis {qi}mi=1 with respect to the inner product (3.1),171

there will be no stability issue even for high degrees due to the full orthogonalization.172

The question now is how to represent the polynomials and how to carry out the actual173

computations that are involved in Algorithm 3.1. In fact we have a number of choices174

of which we will only retain one. The simplest choice, a poor one for obvious reasons175

of stability, is to use the power series representation. In this case, a polynomial p(z) =176

α0 +α1z+ · · ·αm−1z
m−1 will be represented by the vector [α0, α1, · · · , αm−1]T ∈ Cm.177

For example, the polynomial multiplication q := zqj in Step 3 amounts to shifting178

all components of the representing vector down by one position and putting a zero179

in the first position; addition, subtraction and scalar multiplication all translate to180

the corresponding operation on the vector; inner products are also easy to compute181

efficiently once the Gram matrix of the power series basis is computed.182

However, we will not use any explicit representations because, as we will show183

later, we are more interested in the coefficients hij than the polynomials themselves.184

Therefore we will represent the polynomials implicitly by the evaluations on the points185

{zi}ni=1, i.e., a polynomial p is represented by a vector [p(z1), p(z2), . . . , p(zn)]T ∈ Cn.186

Under this representation, the polynomial multiplication q := zqj in Step 3 will be187

translated simply into the entry-wise multiplication of two vectors of length n, and188

the inner products in Steps 5 and 8 become standard inner products in vector space189

Cn.190

We now address the solution of the discrete least-squares problem (3.2). Define191

the (m + 1) × m matrix Hm where (Hm)ij = hij , for i ≤ j + 1 and (Hm)ij = 0,192

for i > j + 1, so that Hm is an upper-Hessenberg matrix. If we abuse the notation193

and replace all polynomials by their vector representations in Algorithm 3.1, then the194

constant 1 in (3.2) becomes βq1 where β = ‖1‖ω =
√
n. Define Ql = [q1, q2, . . . , ql]195

to be the column concatenation of the first l basis vectors, then each Ql, for all196
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6 PROXY-GMRES

Algorithm 3.1 The Arnoldi-like process in polynomial space

Input: Discretization points {zi}ni=1 on Γ and degree m
Output: Orthogonal polynomial basis {qi}m+1

i=1

1: Set q1 = 1/‖1‖ω . q1 is of degree 0 and norm 1
2: for j = 1, 2, . . . ,m do
3: Compute q := zqj . Increase degree
4: for i = 1, 2, . . . , j do
5: Compute hij = 〈q, qi〉
6: Compute q = q − hijqi
7: end for . Full orthogonalization
8: Compute hj+1,j = ‖q‖ω
9: Compute qj+1 = q/hj+1,j . Normalize the new basis

10: end for

1 ≤ l ≤ m+ 1, is unitary. If p is expressed linearly in the basis {q1, q2, . . . , qm} as197

p =

m∑
i=1

αiqi = Qmα198

where α = [α1, α2, . . . , αm]T , then the polynomial zp in (3.2) becomes199

zp =

m∑
j=1

αj (zqj) =

m∑
j=1

αj

j+1∑
i=1

hijqi =

m∑
j=1

αj

m+1∑
i=1

hijqi (hij = 0 when i− j > 1)

=

m+1∑
i=1

m∑
j=1

qihijαj = Qm+1Hmα.

200

In the end we observe that solving (3.2) amounts to minimizing with respect to α ∈ Cn201

the objective function202

J(α) = ‖βq1 −Qm+1Hmα‖22.203

Since Qm+1 is unitary and q1 = Qm+1e1 where e1 = [1, 0, . . . , 0]T is a vector of length204

m+ 1, this can be further reduced to205

(3.3) J(α) = ‖βe1 −Hmα‖22.206

Note that this is a standard least-squares problem, which is identical to the one207

encountered in the GMRES process.208

Once α is found from (3.3), we obtain a polynomial p of degree m − 1 and the209

matrix M defined by M−1 = p(A) can be used as a preconditioner for solving the210

linear system Ax = b.211

To apply M−1 to a vector v, note that212

(3.4) M−1v = p(A)v =

m∑
i=1

αiqi(A)v :=

m∑
i=1

αivi213

where we define vi ≡ qi(A)v for 1 ≤ i ≤ m. Since q1 = 1/
√
n so214

(3.5) v1 = q1(A)v = Iv/
√
n = v/

√
n.215
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From the Arnoldi-like process Algorithm 3.1 we have that zqi =
∑i+1
j=1 hjiqj , thus216

Avi = Aqi(A)v =

i+1∑
j=1

hjiqj(A)

 v = hi+1,ivi+1 +

i∑
j=1

hjivj , 1 ≤ i ≤ m− 1,217

and hence218

(3.6) vi+1 =
1

hi+1,i

Avi − i∑
j=1

hjivj

 , 1 ≤ i ≤ m− 1.219

The vi’s can be computed recursively from (3.5) and (3.6) and the final result is just a220

linear combination of vi’s with the coefficient α. Note that the only information needed221

is the pre-calculated entries available in Hm, the basis Qm+1 is not involved directly222

in the least-squares problem (3.3) for finding α or in applying the preconditioner223

(3.4)–(3.6).224

We note that the idea of using an Arnoldi-like procedure to generate orthogonal225

polynomials is not completely new. In fact, the framework is similar to what was226

discussed in [24] where the Chebyshev polynomial basis is used to construct a poly-227

nomial p that minimizes the residual polynomial 1− zp under some specially defined228

norm. But, as mentioned in [24], this algorithm suffers from numerical stability issues229

and the polynomial degree has to be kept low. The main reason is that the two norms230

used in [24] are completely different, namely, the norm used to form the Chebyshev231

polynomial basis and the one used to characterize the solution are not compatible. As232

a result, the orthogonal polynomial basis is no longer orthogonal in the inner product233

space associated with the optimization problem that generates the solution. The same234

argument holds true for other methods that try to construct a polynomial from the235

span of a given basis. Since the algorithm proposed in this manuscript uses only the236

inner product (3.1) and implicitly constructs the polynomial p, p will be accurately237

computed for high degrees (as long as m < n). Another class of method construct the238

polynomial by finding all of its roots and represents the polynomial by the product239

of a series of degree one polynomials, e.g., in [21, 11]. These methods also suffer from240

stability issues when the degree is high mainly due to numerical cancellation.241

3.2. Connection to GMRES. In comparing the proposed approach to the242

standard GMRES approach, one can observe that (3.3) is exactly the same least-243

squares problem that we solve in standard GMRES except that the coefficients of Hm244

are generated in a vector space of dimension n, the number of points on the contour.245

Looking more carefully at the algorithm, it is also possible to show that in fact it246

is equivalent to the standard GMRES algorithm applied to the diagonal matrix whose247

entries are the discretization points z1, z2, · · · , zn. They are equivalent in the sense248

that they would generate the same Hessenberg matrix Hm and in the end also the249

same polynomial. For this reason we may refer to this approach as a proxy-GMRES250

algorithm since that the original matrix is replaced by a small (“proxy”) diagonal251

matrix whose spectrum captures the original spectrum well.252

3.3. Short-term recurrence. Because the matrix Hm in Algorithm 3.1 is an253

upper Hessenberg matrix, computing p(A)v for a degree m − 1 polynomial p costs254

O(m2N) operations and requires O(mN) storage. This implies that despite the good255

numerical stability of the algorithm, its computation cost and storage quickly become256

unacceptably high as m increases. Motivated by the three-term recurrence for Cheby-257
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shev polynomials, we will show in this section that a short-term recurrence can be258

exploited to significantly reduce these costs.259

The basic idea is to replace the full orthogonalization in Steps 4 to 7 in Algo-260

rithm 3.1 by a partial orthogonalization. That is, the newly generated polynomial q261

in Step 3 is only orthogonalized against the most recent k basis, which leads to the262

following short-term recurrence relation263

tj+1,j q̂j+1 = zq̂j −
j∑

i=j−k+1

tij q̂i, 1 ≤ j ≤ m,264

where tij (1 ≤ i ≤ j), tj+1,j and q̂j+1 are generated in the same way as in Steps 5, 8265

and 9 in Algorithm 3.1, respectively. The computed basis {q̂i}m+1
i=1 form the columns266

of Q̂m+1 and tij ’s form an (m+ 1)×m matrix Tm. Notice that Q̂m+1 is not unitary267

anymore and Tm is a banded matrix with one subdiagonal and k − 1 superdiagonals.268

For example, when k = 2, we have the three-term recurrence for the computed basis269

q̂i and Tm is a tridiagonal matrix. This is similar to the Chebyshev polynomial case.270

In the extreme case when k = m, the partial reorthogonalization becomes equivalent271

to the full orthogonalization and all results in Section 3.1 are recovered.272

Similar to Section 3.1, with the new basis {q̂j}m+1
j=1 from the short-term recurrence273

we can rewrite (3.2) into minimizing with respect to α̂ ∈ Cn a new objective function274

(3.7) Ĵ(α̂) = ‖βq̂1 − Q̂m+1Tmα̂‖22.275

Solving for α̂ in this problem typically needs to compute an orthogonal factorization276

of the matrix Q̂m+1Tm, which requires some additional computation cost and storage277

(since both Q̂m+1 and Tm need to be stored) compared to computing α in (3.3).278

However, recall that all these computations are still within a vector space of dimension279

n which is typically much smaller then N .280

On the other hand, applying the preconditioner M−1 = p̂(A) where p̂ is repre-281

sented in the new basis Q̂m is slightly different. More specifically, (3.6) is replaced by282

the corresponding short-term version283

(3.8) vi+1 =
1

ti+1,i

Avi − i∑
j=i−k+1

tjivj

 .284

Due to the above short-term recurrence, the application of the preconditioner M−1 =285

p̂(A) on a vector only requires O(mkN) operations and O(kN) storage.286

Now we discuss the stability issue associated with this approach. In exact arith-287

metics, it is easy to see that (3.3) and (3.7) are equivalent and the polynomials288

p = Qmα and p̂ = Q̂mα̂ obtained from both orthogonalization schemes are exactly289

the same. This is because enforcing a short-term recurrence is equivalent to a change290

of basis and an update to the corresponding coefficients. However, in floating point291

arithmetics, Q̂m becomes increasingly ill-conditioned when m increases and thus the292

coefficient α̂ becomes increasingly hard to compute accurately.293

Next we study the relation between the conditioning of the basis matrix Q̂m and294

the number of recurrence terms k. Figure 3.1 shows how the 2-norm condition number295

κ2(Q̂m) grows for multiple values of k where Γ and Γn are draw from the numerical296

example in Section 5.2. In Figure 3.1a, the condition number plots for k = 2 and 3297

almost coincide, the relative error between them is shown in Figure 3.1b; similarly for298
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k = 4, 5 and k = 6, 7. When the recurrence is too short, i.e., k = 2 or 3, the condition299

number rapidly grows beyond 1012 when m passes 60. In that case, the polynomial300

p̂ solved with this basis becomes inaccurate and the resulting preconditioner may301

become useless. By increasing k to 4 or 5, κ2(Q̂m) quickly drops from 1012 to about302

103 at m = 60 and the basis becomes too ill-conditioned again only when m reaches303

180. Figure 3.1a also shows that the numerical stability keeps getting improved when304

k increases to 6.305
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Fig. 3.1. Conditioning of Q̂m generated with k-term recurrence.

The numerical stability of Q̂m can be monitored inexpensively by its associated306

Gram matrix. Denote by Ĝm the m×m Gram matrix of the basis Q̂m whose entries307

are defined by308

ĝij = 〈q̂i, q̂j〉, 1 ≤ i, j ≤ m309

where the inner product is as defined in (3.1). The matrix Ĝm is Hermitian positive310

definite. Let Ĝm = L̂mL̂
H
m be the Cholesky factorization where L̂m is lower-triangular311

and note that κ2(Q̂m) =

√
κ2(Ĝm) = κ2(L̂m). As the Arnoldi-like process proceeds,312

both the Gram matrix Ĝm+1 and the Cholesky factor L̂m+1 can be quickly updated313

with Ĝm and L̂m from the previous step. When a high degree polynomial needs314

to be used, the ill-conditioning of Q̂m can be quickly detected by keeping track of315

the condition number of the Cholesky factor L̂m. Whenever κ2(L̂m) goes beyond316

a certain tolerance, we can stop the process and accept the resulting polynomial317

obtained at that point or restart the same process with a longer recurrence relation.318

As is indicated in Figure 3.1, we can start from k = 2 and increase k by 2 every time319

the process restarts. This process is repeated until the desired degree can be reached320

while κ2(L̂m) still remains below the given tolerance. In practice, we find that setting321

the tolerance at τ = 1012 usually yields good quality results.322

4. Some improvements based on compounding preconditioners. In the323

previous sections, we always assume Γ will exclude the origin. This is because other-324

wise, the maximum modulus of the residual polynomial 1− zp(z) will be no less than325

1 on Γ and the resulting polynomial preconditioner will not be effective at all. For326

ill-conditioned problems, a few eigenvalues of A will stay in a small neighborhood of327

the origin and Γ has to be very close to the origin. In that case, a very high degree328
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polynomial becomes mandatory in order to keep the maximum value of |1 − zp(z)|329

on Γ strictly less than 1. On the other hand, the increased degree will require a330

longer recurrence and thus harm the efficiency of the proposed preconditioner. In this331

section, we will discuss two compounding techniques to overcome this difficulty.332

4.1. Compounding two polynomials. The first approach is based on com-333

pounding two low degree polynomials to mimic the effect of a high degree polynomial.334

By doing this, even though the total number of matrix-vector multiplications associ-335

ated with A might be slightly increased, the costs associated with vector operations336

and storage can be significantly reduced. Also as pointed out in [11], this strategy337

can also reduce the number of inner products performed.338

This can be understood from a simple example. Suppose one high degree polyno-339

mial has degree m− 1 and the other two low-degree polynomials have degree m1 − 1340

and m2 − 1, respectively, with m = m1 ×m2. For these three polynomials, a ki-term341

recurrence is deployed for a polynomial of degree mi − 1 (for i = 1, 2) while a k-term342

recurrence is needed for degree m − 1. Since m1 and m2 are both much smaller343

than m, we have k1, k2 � k when ensuring the numerical stability of the computed344

polynomial basis. Thus, applying the preconditioner resulting from compounding the345

polynomials will entail fewer vector operations and storage.346

We now provide more details on how to construct these two low-degree polynomi-347

als. First find a contour Γ that encloses all the eigenvalues of A and discretize it as Γn1
.348

Based on Γn1
, construct the first polynomial p1 of degree m1−1 and select the recur-349

rence length k1 with the procedure discussed in Section 3.3. It can be expected that350

most of the eigenvalues of the preconditioned matrix A1 := M−1
1 A = p1(A)A would351

be clustered around z = 1. Therefore, a second contour is then selected as a circle C352

centered at z = 1 with radius θ ∈ (0, 1). Let Cn2
be an n2-point discretization of C and353

apply Cn2
to compute the second polynomial p2 with degree m2 − 1 and recurrence354

length k2. In the end, the compound polynomial has the form p(z) := p1(z)p2(zp1(z))355

and the resulting preconditioner is M−1 := p(A) = p1(A)p2(Ap1(A)).356

It is clear that the preconditioner M−1 is a polynomial in A of degree m1m2− 1.357

Applying M−1 on a vector involves two main operations:358

1. Apply p1(A) to a vector, which follows the formula (3.4), (3.5), and (3.8).359

This computation costs m1 − 1 matvecs associated with A and O(m1k1N)360

from vector operations and O(k1N) storage;361

2. Apply p2(Ap1(A)) to a vector. This operation consists of m2 − 1 matvecs362

of Ap1(A), O(m2k2N) extra costs from vector operations and O(k2N) extra363

storage.364

Table 4.1 compares the costs of applying one high degree polynomial preconditioner365

verse one compound polynomial preconditioner. It is easy to see that when m =366

m1 × m2, even though both preconditioners perform the same number of matvecs367

associated with A, the operations and peak storage associated with the compound368

polynomial preconditioner can be much less due to the fact that k1, k2 � k.369

4.2. Compounding with other preconditioners. A second approach is to370

compound the polynomial preconditioner with other types of preconditioners. For371

ill-conditioned problems, it is suggested to perform an approximate factorization on372

A+ σI for some complex shift σ [35] instead of the original coefficient matrix A. To373

simplify the discussion, we assume the incomplete LU factorization (ILU) is explored374

here:375
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Table 4.1
The cost and storage of applying the single and compound polynomial preconditioners, the single

polynomial is of degree m− 1, the compound polynomial is built with two low degree polynomials of
degree m1 − 1 and m2 − 1.

single polynomial compound polynomial
matvec of A m− 1 m1m2 − 1

vector operations O(mkN) O(m1m2k1N)
peak storage O(kN) O((k1 + k2)N)

A+ σI ≈M1 = LU.376

We will now discuss two different ways to introduce a second level preconditioner.377

The first option is to compound M−1
1 with a polynomial preconditioner of the378

form p(A). Define the distance matrix E as E = I −M−1
1 Ap(A). An ideal polyno-379

mial p should minimize ‖E‖2. Although its optimal solution is hard to calculate, an380

approximate solution can be computed inexpensively by randomized sampling (see381

[14] for details) as follows: first construct a set of polynomial basis {q1, q2, . . . , qm}382

and express the polynomial as a linear combination of the basis p =
∑m
j=1 αjqj ,383

then pick l random vectors ω1, ω2, . . . , ωl of length N and solve the coefficients α =384

[α1, α2, . . . , αm]T ∈ Cm from the following problem385

min
α∈Cm

max
1≤j≤l

‖Eωj‖2.386

The main drawback of this approach is still numerical stability since it requires a pre-387

specified polynomial basis. No suitable norm like (3.1) can be defined in this case,388

thus there is no reliable way to generate a good basis set like in Section 3.1.389

The second option resolves this issue by considering a new linear system390

M−1
1 Ax = M−1

1 b391

and applying the procedures discussed in Section 3.1 to the new coefficient matrix392

A1 := M−1
1 A. Note here that the contour Γ for A1 can be estimated by running a393

few steps of the Arnoldi process. After the polynomial p is constructed, the com-394

pound preconditioner takes the form of M−1 = p(M−1
1 A). Suppose the polynomial395

p is of degree m − 1, then one application of M−1 on a vector consists of m − 1396

matvecs associated with A and m − 1 applications of the preconditioner M−1
1 . As397

mentioned in Section 1, ILU type preconditioners may become the performance bot-398

tleneck in a parallel environment due to the sequential nature of the triangular solves.399

This framework naturally allows replacing the ILU factorization with more scalable400

preconditioners such as SLR, MSLR or GMSLR preconditioners [19, 34, 9].401

5. Numerical experiments. All numerical tests were ran in Matlab on a Desk-402

top PC with 3.80 GHz CPU and 8 GB memory. We used flexible GMRES (FGMRES)403

with a restart dimension of 50 as the accelerator, the initial guess was set to be the404

zero vector and the process was terminated when either the residual was reduced by405

a prescribed factor τ or the total number of inner iterations reached 1000.406

The following notation is used in this section:407

• p-t: the computation time in seconds for constructing the preconditioner,408

which includes the time for estimating/discretizing the contour Γ, building409
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the polynomial or/and other preconditioners depending on the specific tests.410

F indicates the preconditioner cannot be constructed;411

• i-t: iteration time in seconds for FGMRES(50) to converge;412

• its: total number of iterations required for FGMRES(50) to converge, F in-413

dicates FGMRES(50) does not converge within 1000 inner iterations;414

• mv: number of matvecs associated with A performed.415

5.1. A diagonal matrix. In the first example, we generated a 2000 × 2000416

diagonal matrix where all the diagonal entries (eigenvalues) were randomly chosen417

from the semiannular region Ω = {z ∈ C | 0.8 ≤ |z| ≤ 2, 0 ≤ Arg(z) ≤ π}. The418

boundary of this region is shown in Figure 5.1 where the squares are the approximate419

eigenvalues (Ritz values) computed by running 60 steps of the Arnoldi algorithm. An420

approximate boundary was obtained by running Matlab’s built-in function boundary421

on the approximate eigenvalues. Figure 5.1 shows that the Ritz values from the422

Arnoldi algorithm can characterize the boundary of the spectrum.423

-2 -1 0 1 2

0

0.5

1

1.5

2

2.5

3
exact boundary

approx boundary

approx eigenvalues

Fig. 5.1. The exact and approximate boundaries of the spectrum and the approximate eigen-
values obtained from 60 steps of the Arnoldi algorithm for the 2, 000 × 2, 000 diagonal matrix in
Section 5.1.

We first constructed polynomials of degree 29 (m = 30) with a recurrence length424

k = 2. Figure 5.2 shows the contour maps for the function |1 − zp(z)| in log scale425

based on both exact (left) and approximate (right) boundaries. Since the estimated426

boundary approximates the exact one very well, the two maps look almost identical.427

Table 5.1 tabulates the numerical results for solving the linear system with these428

constructed polynomial preconditioners, the tolerance was set at τ = 10−12. It took429

237 iterations for FGMRES(50) to converge without any preconditioner. On the other430

hand, FGMRES(50) with the polynomial preconditioners converged in 8 iterations in431

both cases. Although the preconditioned methods performed 3 more matvecs, they432

actually took much less time to converge. Similar observations can also be made in433

other examples in this section. This is due to the fact that a reduced iteration number434

leads to a much smaller subspace for FGMRES and far fewer inner products during435

the computation. This performance gap can be expected to become more pronounced436
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when running the experiments on high performance computing architectures.437
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(b) using the approximate boundary

Fig. 5.2. Contour maps of |1−zp(z)| in log scale with different choice of Γ for the 2, 000×2, 000
diagonal matrix in Section 5.1. The asterisk marks the origin.

We also want to emphasize that the preconditioner construction time was only a438

tiny fraction of the iteration time. This is because we used 400 discretization points439

for both the exact and approximate boundaries and the corresponding polynomial440

space has much smaller dimension compared to the matrix size N = 2000.441

Table 5.1
Convergence results of FMGRES(50) for the 2, 000× 2, 000 diagonal matrix test in Section 5.1

with tolerance τ = 10−12.

p-t i-t its mv
no precond. \ 0.81 237 237

with precond.
exact boundary 0.0062 0.61 8 240

approx. boundary 0.0056 0.61 8 240

5.2. Helmholtz problem. The second example is the 3D Helmholtz equation442

−∆u− ω2

c2(x)
u = s443

where ω is the angular frequency and c(x) is the wavespeed. The computational do-444

main was the unit cube and the equation was discretized with 7-point stencil finite445

difference method. PML boundary conditions were imposed to reduce the artificial re-446

flections near the boundaries of the computational domain. We kept 8 grid points per447

wavelength. The resulting linear system is sparse complex symmetric with dimension448

N = Nx×Ny×Nz. Moreover, the spectrum of the matrix is contained in a rectangle449

area {z ∈ C | real(z) ∈ [−1, ρ1 − 1], imag(z) ∈ [−ρ2, 0]} where the two parameters ρ1450

and ρ2 are given by [20, Lemma 3.1]. Figure 5.3a shows all the eigenvalues and the451

rectangular boundary from [20, Lemma 3.1] for a discretized Helmholtz operator of452

size N = 203. We fixed the tolerance at τ = 10−3 for the Helmholtz equation tests in453

this section. Note that this test matrix is non-normal.454

5.2.1. Compounding polynomial preconditioners. Compared with the first455

test example, this problem is much harder to solve. First, there are many eigenvalues456
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(a) Eigenvalues and the rectangle boundary
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Fig. 5.3. The theoretical rectangular spectrum boundary from [20, Lemma 3.1] and the zoom-in
view of the modified Γ near the origin for a discretized Helmholtz operator of size N = 203.

close to the origin. Second, the theoretical spectrum boundary (the rectangular area)457

overlaps with the origin. In order to construct an effective polynomial preconditioner,458

we have to459

1. Modify the theoretical rectangular contour [20, Lemma 3.1] to exclude the460

origin.461

2. Use a high degree polynomial.462

For this test, the problem size was N = 1003 = 1, 000, 000 and the boundary463

Γ was a modified rectangle with the origin excluded. A zoom-in view of Γ near the464

origin is shown in Figure 5.3b. The boundary Γ was then discretized uniformly on465

each of its continuous parts with a step size h = 0.002 which results to a total of466

3551 discretization points. We compared the performance of two polynomial precon-467

ditioners on this test matrix. The first one was a single polynomial of degree 599468

(m = 600). In order to ensure its numerical stability, we used a recurrence length469

k = 10. The second one was a compound polynomial with m1 = 60 and m2 = 10470

so that m1 ×m2 = m. Since m1 and m2 are relatively small, the recurrence lengths471

were set to be k1 = k2 = 2. The convergence results with these two preconditioners472

are shown in Table 5.2. In addition, we also ran ILUT-preconditioned FGMRES(50)473

and CG on the corresponding normal equation with a block Jacobi preconditioner for474

comparisons.475

Table 5.2
Convergence results of various preconditioned FGMRES(50) on the Helmholtz equation test

with size N = 1003, the tolerance is fixed at τ = 10−3.

Preconditioner type p-t i-t its

no preconditioner \ \ F
ILUT F \ \

CG with diagonal preconditioner 0.49 \ F

single polynomial of degree 600− 1 5.85 2554.44 16
compound polynomial of degree 60× 10− 1 0.08 853.11 18

Due to the ill-conditioning and indefiniteness of the test matrix, the first three476

methods in Table 5.2 failed to converge. In particular, ILUT even failed to finish477
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the factorization. On the other hand, both polynomial preconditioned methods con-478

verged within 18 iterations. Compared to the single polynomial preconditioner, the479

compound polynomial preconditioner took much less time to construct and reduced480

the iteration time by more than a half even though 1200 more matvecs of A were481

performed.482

The residual histories are plotted in Figure 5.4. It is easy to see that both polyno-483

mial preconditioned FGMRES methods converged quickly without encountering any484

stagnation while the non-preconditioned FGMRES converged slowly.485

0 5 10 15 20

10
-2

10
0

no precond.

single poly

compound poly

Fig. 5.4. Relative residual histories of three preconditioned FGMRES(50) on the Helmholtz
equation test of size N = 1003.

5.2.2. Compounding with SLR. We also compounded the polynomial pre-486

conditioner with the nonsymmetric SLR preconditioner [19] and tested its precondi-487

tioning effect on the Helmholtz problem. The problem size was still kept at N = 1003488

and the tolerance was set at τ = 10−3. We applied the SLR preconditioner to the489

shifted system M1 ≈ A+ σI with a complex shift σ = −0.4i (pulling the eigenvalues490

away from the origin), and then chose a polynomial preconditioner of degree 29 for491

the matrix A1 = M−1
1 A. The approximate spectrum boundary of A1 was obtained by492

running 80 steps of Arnoldi process, then it was uniformly discretized with 730 points.493

The convergence results as well as the comparison with SLR preconditioner are shown494

Table 5.3. We see that SLR preconditioned FGMRES(50) failed to converge in 1000495

iterations while the SLR compound polynomial preconditioner converged in only 29496

iterations and required the least iteration time among all seven methods tested in497

Table 5.2 and Table 5.3. Also notice that the construction time of this compound498

preconditioner is higher than other methods because it include both the SLR precon-499

ditioner construction time and the time to perform 80 steps of Arnoldi process.500

In order to visualize the spectrum of the preconditioned matrix across different501

stages with this compound preconditioner, we also ran the experiment on a smaller502

Helmholtz problem of size N = 203 so that we were able to compute all eigenvalues503

of the matrices. Let M1 denote the SLR preconditioner for the discretized Helmholtz504

operator A. The spectrum of A1 = M−1
1 A as well as the approximate eigenvalues505

from running 80 steps of the Arnoldi algorithm are shown in Figure 5.5a. A polyno-506
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Table 5.3
Convergence results of the SLR and SLR compound polynomial preconditioned FGMRES(50)

on the Helmholtz equation test with size N = 1003, the tolerance was fixed at τ = 10−3.

Preconditioner type p-t i-t its

SLR preconditioner 86.94 \ F
SLR with polynomial of degree 30− 1 145.85 308.03 29

mial preconditioner p(A1) of degree 29 was constructed and the contour map of the507

corresponding residual polynomial |1−zp(z)| is drawn in Figure 5.5b. Compared with508

Figure 5.3b, it is easy to see that the SLR preconditioner pushed the eigenvalues of A1509

further away from the origin. Thus, a low-degree polynomial of p has already led to510

an efficient preconditioner, which is supported by both the contour map Figure 5.5b511

as well as the spectrum of the preconditioned matrix A1p(A1) in Figure 5.5c.512
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Fig. 5.5. Illustration of the preconditioning effect of both stages of the SLR compound precondi-
tioner p(M−1

1 A) on a small discretized Helmholtz equation test of size N = 203, where M1 denotes
the SLR preconditioner and p has degree 29.
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5.3. General sparse matrices. We also tested the SLR compound polyno-513

mial preconditioner on several general sparse matrices obtained from the SuiteSparse514

Matrix Collection. All of the test problems are nonsymmetric real/non-Hermitian515

complex. After the SLR preconditioner M1 was constructed, we ran 60 steps of516

the Arnoldi algorithm to obtain the approximate eigenvalues, then the approximate517

spectrum boundary which was a polygon was discretized uniformly on each of its con-518

tinuous parts with step size h = 0.005. All polynomials were of degree 39 (m = 40)519

with recurrence length 2 and the tolerance for FGMRES(50) was set at τ = 10−10.520

The information of these matrices are listed in Table 5.4, the convergence results521

are shown in Table 5.5 together with those from ILUT as comparison. Note that522

the preconditioning set-up time for the SLR compound polynomial preconditioner523

includes time for SLR preconditioner construction, 60 steps of Arnoldi algorithm on524

A1 = M−1
1 A and time for building the polynomial. Despite slightly more expensive525

construction costs, SLR compound polynomial preconditioner outperformed ILUT on526

all of these 5 tests in the iteration phase.527

Table 5.4
Information of the test sparse matrices.

Group/matrix name Order nnz Origin

Rajat/rajat09 24, 482 105, 573 circuit simulation problem
Dehghani/light in tissue 29, 282 406, 084 electromagnetics problem
Goodwin/Goodwin 127 178, 437 5, 778, 545 CFD problem

Kim/kim2 456, 976 11, 330, 020 3D problem
Bourchtein/atmosmodd 1, 270, 432 8, 814, 880 CFD problem

Table 5.5
Convergence results of general sparse matrices with FGMRES(50) and tolerance τ = 10−10,

all polynomials were of degree 39, column n shows the number of discretization points used on the
spectrum boundary of A1.

matrix
ILUT SLR compound polynomial

p-t i-t its n p-t i-t its

rajat09 F \ \ 763 0.46 3.27 44

light in tissue 0.071 2.39 213 572 0.54 0.71 6

Goodwin 127 F \ \ 460 2.19 409.74 311

kim2 4.85 20.52 38 1493 18.72 7.69 2

atmosmodd 1.17 454.66 397 557 36.10 42.71 6

6. Conclusions. The primary distinction between the polynomial precondition-528

ing techniques introduced in this paper and existing techniques is their aim at control-529

ling the numerical stability of the polynomial construction and the resulting iterative530

process, while allowing the degree of the polynomial to be high. Using a high degree531

polynomial is very important in order to guarantee a good quality preconditioner that532

will produce convergence in a smaller number of outer iterations. The performance of533

the method is significantly improved by a process which relies on a short-term recur-534

rence. It is clear that a big appeal of the method is its potential for great performance535

in a highly parallel, possibly GPU based, environment. The numerical experiments536

show that even in a scalar environment, the method can be effective in solving difficult537

problems when other techniques fail.538
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