
MULTI-COLOR LOW-RANK PRECONDITIONER FOR GENERAL
SPARSE LINEAR SYSTEMS ∗

QINGQING ZHENG † , YUANZHE XI ‡ , AND YOUSEF SAAD §

Abstract. This paper presents a multilevel parallel preconditioning technique for solving general
large sparse linear systems of equations. Subdomain coloring is invoked to reorder the coefficient
matrix by multicoloring the quotient graph of the adjacency graph of the subdomains, resulting in
a two-level block diagonal structure. A full binary tree structure T is then built to facilitate the
construction of the preconditioner. We show that the difference between the inverse of a general
block 2-by-2 SPD matrix and that of its block diagonal part can be well approximated by a low-rank
matrix. This property and the block diagonal structure of the reordered matrix are exploited to
develop a Multi-Color Low-Rank (MCLR) preconditioner. The construction procedure of the MCLR
preconditioner follows a bottom-up traversal of the tree T . All irregular matrix computations, such
as ILU factorizations and related triangular solves, are restricted to leaf nodes where these operations
can be performed independently. Computations in non-leaf nodes only involve easy-to-optimize dense
matrix operations. In order to further reduce the number of iteration of the Preconditioned Krylov
subspace procedure, we combine MCLR with a few classical block-relaxation techniques. Numerical
experiments on various test problems are proposed to illustrate the robustness and efficiency of the
proposed approach for solving large sparse symmetric and nonsymmetric linear systems.

Key words. Low-rank approximation; parallel preconditioners; domain decomposition; recur-
sive multilevel methods; Krylov subspace methods.

AMS subject classifications. 65F08, 65F10, 65F50, 65N55, 65Y05

1. Introduction. In this paper, we consider solving a general large sparse linear
system of the form

Ax = b, (1.1)

where A ∈ Rn×n and b ∈ Rn, by iterative methods. Preconditioned Krylov subspace
methods can solve equation (1.1) efficiently when a good preconditioner is available.
In this approach a preconditioner M is obtained and a Krylov subspace method is
then applied to solve an equivalent linear system such as M−1Ax = M−1b. A basic
requirement on M is that it should be inexpensive to solve systems with the matrix M ,
since such operations are performed at every step of the iterative procedure. A class of
general purpose preconditioners is one based on Incomplete LU (ILU) factorizations,
see, e.g., [26]. These preconditioners are relatively easy to obtain and are effective for a
large class of sparse linear systems. However, their performance deteriorates when the
coefficient matrix is ill-conditioned or indefinite. In addition, due to their sequential
nature, their performance is unacceptably poor on highly parallel computers, e.g.,
those equipped with GPUs [20] or Intel Xeon Phi processors.

Sparse approximate inverse preconditioners [11, 6] were originally developed to
overcome these difficulties. However, their cost can be quite high in both arithmetic
and memory usage. Recently, a new class of approximate inverse preconditioners were
developed that exploit low-rank properties rather than the standard nonzero sparsity.
These techniques show superior performance on modern architectures. The Schur

∗This work was supported by NSF under grant NSF/DMS-1521573 and by the Minnesota Super-
computing Institute
†School of Mathematical Science, Xiamen University. {zqq.stu.xmu@hotmail.com}
‡Department of Mathematics, Emory University. {yxi26@emory.edu}
§Computer Science & Engineering, University of Minnesota, Twin Cities. {saad@umn.edu}

1

2 Q. ZHENG, Y. XI, AND Y. SAAD

complement low-rank (SLR) preconditioner [21] is based on the domain decomposi-
tion framework. The Multilevel Schur complement Low-Rank (MSLR) preconditioner
[29] utilizes the multilevel Hierarchical Interface Decomposition (HID) ordering [14]
to further improve the scalibility of the SLR preconditioner. Generalized Multilevel
Schur complement Low-Rank (GMSLR) preconditioner [8] extends the applicability of
the MSLR preconditioner to nonsymmetric problems. These preconditioners all seek
to exploit the low-rank property associated with the inverse of the Schur complement.
On the other hand, the Multilevel Low-Rank (MLR) preconditioner [19] takes advan-
tage of the low-rank property associated with the difference between its inverse and
the inverse of a block diagonal matrix. This approach can be quite efficient especially
when solving symmetric indefinite linear systems. Another class of preconditioners
that exploit the low-rank properties are rank structured methods. They include H-
matrix [4, 2], HOLDR-matrix [1], H2-matrix [13, 12] and hierarchically semiseparable
(HSS) matrices [16, 5, 17, 9, 23, 31]. These techniques partition the coefficient matrix
into blocks and approximate certain off-diagonal blocks with low-rank matrices. They
have recently been embedded into sparse matrix techniques to compress the interme-
diate dense Schur complements leading to rank structured sparse direct solvers and
preconditioners [33, 32, 24, 34].

Following the same direction, this paper presents a preconditioner called Multi-
Color Low-Rank (MCLR) preconditioner that combines domain decomposition with
domain coloring ideas. In contrast with previous techniques such as SLR, MSLR and
MLR preconditioners which can only be applied to symmetric problems, the MCLR
preconditioner can handle both the symmetric and the nonsymmetric cases. In ad-
dition, a much smaller rank is usually required to reach the same approximation
accuracy for the MCLR preconditioner. Since the cost of computing the low-rank
correction terms can be quite high, this property can dramatically reduce the cost
of building the MCLR preconditioner. Moreover, although these low-rank approxi-
mate inverse preconditioners utilize a binary tree structure to perform operations, the
MCLR preconditioner organizes the operations in the tree in a different way from its
counterparts. It restricts all the irregular matrix operations such as ILU factoriza-
tions and the resulting triangular solves to leaf nodes only, which can be performed
independently among different nodes. Since each leaf node is associated with a block
diagonal matrix, the operations within each leaf node can also be easily parallelized.
The non-leaf nodes only involve easy-to-optimize dense low-rank correction computa-
tions. In addition, the tree associated with the MCLR precoditioner often has a much
smaller height for a given matrix. This reduced height further improves the approxi-
mation accuracy and limits the number of recursive calls in both the construction and
application phases. In order to improve the MCLR convergence in practice, we also
propose a modified scheme that combines the MCLR preconditioner with classical
relaxation type methods.

The organization of the paper is as follows. In Section 2, we briefly review the
multicoloring algorithm used to reorder the coefficient matrix. We analyze the low
rank property associated with an inverse matrix and present a multilevel precondi-
tioner based on this property in Section 3. In Section 4, we provide numerical results
from model problems as well as some general matrices from the SuiteSparse matrix
collection [7]. Finally, concluding remarks are presented in Section 5.

2. Multicoloring ordering. Graph coloring is a technique used to label (color)
the nodes of a graph such that no two adjacent nodes have the same label (color).
In the context of relaxation-type iterative methods, graph coloring helps improve

MULTI-COLOR LOW-RANK PRECONDITIONER 3

parallelism [26]. This section gives a brief review of the greedy multicoloring approach
and discusses an alternative that exploits (group) independent sets.

Classical multicoloring is applied to the adjacency graph of the coefficient ma-
trix A in (1.1), see, e.g., [26, Sec. 12.4]. The vertices of the adjacency graph are
colored (labeled) in such a way that no two adjacent vertices have the same color.
If the matrix is reordered in such a way that the nodes are listed by color, then it
will have a block structure in which each diagonal block is a diagonal matrix, cor-
responding to a color. The number of the colors required can be large in situations
where the vertices have a high degree and this can result in slow convergence for
the iterative solution procedure. In order to keep a good balance between parallel
efficiency and speed of convergence, it is possible to combine domain decomposition
techniques with multicoloring by first partitioning the graph and then coloring the
partitions (or ‘subdomains’) by a multicoloring algorithm. This technique is common
for unravelling parallelism in the multiplicative Schwarz procedure, see, e.g., [26, Sec.
14.3]. The standard greedy algorithm applied for multicoloring subdomains obtained
from a graph partitioner is sketched in Algorithm 1. Here, Adj(i) denotes the set of
the vertices that are adjacent to vertex i in the graph.

Algorithm 1
Subdomain coloring with the greedy algorithm

1: Partition vertices of the adjacency graph A of A into nd subdomains {Di}
2: Construct the quotient graph G of A based on {Di}
3: for i = 1, 2, · · · , n0 do
4: Set Color(i)=0
5: end for
6: for i = 1, 2, · · · , n0 do
7: Set Color(i)=min{k > 0|k 6= Color(j), ∀j ∈ Adj(i)}
8: end for

Step 1 in Algorithm 1 can be implemented by any graph partitioner such as
METIS [18]. Step 2 constructs the quotient graph G of the adjacency graph A of A.
Here the quotient graph is with respect to the partition in step 1, i.e., each vertex
i of G represents a set Di in the partition. Vertex i is adjacent to vertex j in the
quotient graph G if some vertex in Di is adjacent to at least one vertex in Dj in the
original graph A. Steps 3-8 apply the greedy multicoloring algorithm on G. Figure 2.1
shows an illustration of the greedy multicoloring algorithm in action. In the figure the
central node is the node being visited and it will be assigned color number 3, which
is the smallest admissible color. Note that a label of zero means ‘not yet colored’.

3

0

0

1

1

3

4

2

Fig. 2.1. Coloring 7 vertices with 5 colors on a graph.

4 Q. ZHENG, Y. XI, AND Y. SAAD

The matrix A in (1.1) can be reordered by renumbering the unknowns so that
they are listed by color: nodes of color 1, followed by those of color 2, etc. This results
in the permuted system

(PTAP)(PTx) = PT b, (2.1)

where P denotes the permutation matrix obtained from Algorithm 1. Because the
original system (1.1) disappears from the picture in the remainder of the paper, we
will still denote by A the permuted matrix PTAP and by b the permuted right-hand
side PT b. As is well-known the result of this permutation is that the new matrix
has a block structure with c diagonal blocks where c is the number of colors. Each
diagonal block corresponds to one set Di and is in a block diagonal form. Figure
2.2 is an illustration with a reordered discretized 3D Laplacian using centered finite
differences with Dirichlet boundary conditions. There are c = 4 colors in this case.
The first three colors each has four sets (subdomains) and the last one has three sets.
The block corresponding to a color is a block diagonal matrix.

0 0.5 1 1.5 2

nz = 1372000 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10
5

Fig. 2.2. Nonzero pattern of a reordered discretized negative 3D Laplacian with the zero Dirich-
let boundary condition using Algorithm 1 with 4 colors and nd = 15.

Another way to find a multicoloring of the quotient graph is to exploit block (or
group)-independent sets, as was done in ARMS for example [26, 28]. An independent
set of vertices is characterized by the property that any two nodes in the set are not
adjacent. We can find an independent set by a greedy algorithm similar in spirit to
the multicoloring algorithm described above. The complement to the independent
set is then considered and it is in turn separated into an independent set and a
complement. This process can be repeated a few times until a sufficient number of
independent sets are found. Figure 2.3 illustrates the process of finding three diagonal
blocks by invoking the block independent set algorithm three times.

3. Multi-Color Low-Rank Preconditioner. This section considers the con-
struction and application of the Multi-Color Low-Rank preconditioner. For moti-
vation, we begin by describing a two-level method and then discuss the multilevel
approach which exploits multicoloring.

MULTI-COLOR LOW-RANK PRECONDITIONER 5

Fig. 2.3. Illustration of a block independent set based multicoloring procedure where 3 diagonal
blocks are labeled with the same color each time.

3.1. A Two-level method. This section discusses a way to compute an approx-
imation to A−1 in order to define a two-level version of the proposed preconditioner.
Assume that we have a general symmetric positive definite (SPD) matrix A parti-
tioned into a block 2× 2 form as shown below, and call A0 its block diagonal:

A =

(
A11 A12

AT12 A22

)
, A0 =

(
A11

A22

)
, (3.1)

where A11 ∈ Rp×p and A22 ∈ Rq×q with p + q = n. The premise of the method
developed in this paper is similar to that of earlier papers [21, 29, 8] namely, we
exploit the property, to be established in Section 3.3, that the matrix A−1−A−1

0 can
be well approximated by a low-rank matrix.

However, it is not practical from a computational point of view to seek an ap-
proximation of A−1−A−1

0 . Indeed an Arnoldi-type procedure with this matrix would
require solving linear systems with A at each step. Instead, we first compute a low-
rank approximation to

I −AA−1
0 = A(A−1 −A−1

0). (3.2)

The matrix I − AA−1
0 inherits the low-rank property satisfied by A−1 − A−1

0 but it
is much easier to approximate. For example, we can compute such an approximation
by performing a few steps of the Arnoldi procedure with I−AA−1

0 , and this will yield
an approximate factorization of the form:

I −AA−1
0 ≈ V HV T , (3.3)

where V ∈ Rn×k is a matrix with orthonormal columns and H ∈ Rk×k is an upper
Hessenberg matrix. This scheme only requires linear system solutions associated with
A11 and A22, which can be obtained by either a direct or an iterative method. If the
matrix is large, we may be able to develop a multilevel method by applying the same
process recursively to the blocks A11 and A22 and this will be discussed in detail in the
next section. We have A ≈ (I−V HV T)A0 and we can exploit the Sherman-Morrison
formula:

A−1 ≈ A−1
0 (I − V HV T)−1 (3.4)

= A−1
0 (I + V H(I −H)−1V T)

= A−1
0 (I + V [(I −H)−1 − I]V T)

= A−1
0 (I + V GV T), (3.5)

where G = (I − H)−1 − I is a k-by-k matrix. The above formula shows how to
define what we call a two-level preconditioner: the matrix A−1

0 (I + V GV T) defines

6 Q. ZHENG, Y. XI, AND Y. SAAD

the inverse of the preconditioner and requires only that we solve systems with the
matrix A0 and then apply a low-rank correction. When the size of the matrix A
under consideration is large, approximating A−1 with (3.5) may become expensive
and so it becomes mandatory to extend the scheme discussed above into a multilevel
technique.

3.2. A multilevel scheme. We will now combine multicoloring with the scheme
(3.5) to obtain a hierarchical approximation to A−1. This approximation can be used
as a preconditioner for solving linear systems associated with A.

The procedure starts with reordering the coefficient matrix using Algorithm 1.
Assuming that c different colors are found, then a full binary tree T with c leaf
nodes is constructed to facilitate subsequent matrix computations. Figure 3.1 shows
an illustration of a reordered matrix with 7 colors obtained by Algorithm 1 and its
associated full binary tree T . Each node i of T is associated with an index set Ii.
For a leaf node i, Ii denotes the set of row/column indices of the ith diagonal block
in the reordered matrix. It is associated with a color. Recall that a color consists of
subdomains that are not coupled, leading to a block that is block diagonal. Figure 2.2
illustrates a case with 4 colors in a partition with 15 subdomains. For any non-leaf
node i that has c1 and c2 as its two children, Ii is defined to be

Ii = Ic1 ∪ Ic2 . (3.6)

In the following sections, we will use the notation

A|Ii,Ij

to denote a submatrix of A with row index set Ii and column index set Ij and

A|Ii

to denote a submatrix of A with row index set Ii.

1

2

3

4

5

6

7 1 2 3 4 5 6

78 9

13

10

11 12
13

9

8

11

Fig. 3.1. The block diagonal structure of a reordered matrix using Algorithm 1 with 7 colors
(left) and its associated full binary tree T (right). Each leaf node of T corresponds to one diagonal
block in the reordered matrix.

The procedure to build the preconditioner follows a bottom-up traversal of T .
The basic idea is to recursively utilize (3.5) to reduce the computational cost in
approximating each (A|Ii,Ii)−1. For convenience, the computed approximation to
(A|Ii,Ii)−1 will be denoted by M−1

i :

M−1
i ≈ (A|Ii,Ii)−1.

MULTI-COLOR LOW-RANK PRECONDITIONER 7

If i is a leaf node, M−1
i is defined to be the inverse obtained from the ILU

factorization of A|Ii,Ii :

M−1
i = U−1

i L−1
i ,

where Li and Ui are the incomplete LU factors of A|Ii,Ii . Since A|Ii,Ii has a block
diagonal form, its ILU factorization can be performed independently for each diagonal
block.

If i is a non-leaf node with children c1, c2, then, based on (3.5), we define :

M−1
i =

(
M−1
c1

M−1
c2

)
(I + ViGiV

T
i), (3.7)

where ViGiV
T
i is a rank-k matrix. When computing ViGiV

T
i based on (3.3) and (3.5),

the Arnoldi procedure requires a subroutine to solve linear systems associated with
the matrix (

A|Ic1 ,Ic1
A|Ic2 ,Ic2

)
at each iteration. This operation will be replaced by matrix-vector multiplications

associated with

(
M−1
c1

M−1
c2

)
. The action of M−1

i on a vector is described in

Algorithm 2.

Algorithm 2
Computing x = M−1

i r

1: procedure x = RecSolv(r,i)
2: if i is leaf node then
3: Solve LiUix = r
4: else
5: Compute z = r + Vi(Gi(V

T
i r)).

6: Partition z into

(
zc1
zc2

)
– according to sets Ic1 , Ic2

7: Solve y1 = RecSolv(zc1 , c1).
8: Solve y2 = RecSolv(zc2 , c2).

9: Stack x =

(
y1

y2

)
.

10: end if
11: end procedure

In summary, the computed M−1
i satisfies the following relation

M−1
i =

(
M−1
c1

M−1
c2

)
(I + ViGiV

T
i), if i is non-leaf node,

U−1
i L−1

i , if i is leaf node.

(3.8)

Note that when the root node root of T is reached, we obtain

A−1 ≈M−1
root. (3.9)

8 Q. ZHENG, Y. XI, AND Y. SAAD

Algorithm 3
Construction of M−1

root

1: Apply Algorithm 1 to reorder the coefficient matrix
2: Construct a binary tree T with L levels
3: for level l from L− 1 to 0 do
4: for node i on level l do
5: if i is leaf node then
6: Compute incomplete LU factorization A|Ii,Ii ≈ LiUi and set Mi = LiUi
7: else
8: Compute k eigenpairs by the Arnoldi procedure

[Vi, Hi] = Arnoldi

(
I −A|Ii,Ii

(
M−1
c1

M−1
c2

)
, k

)
9: Compute Gi = (I −Hi)

−1 − I

10: Set M−1
i =

(
M−1
c1

M−1
c2

)
(I + ViGiV

T
i)

11: end if
12: end for
13: end for

This M−1
root can be used as a preconditioner for solving (2.1) and its construction

procedure is summarized in Algorithm 3.
Since Algorithm 3 loops in T by level, the construction procedure can be easily

parallelized based on both the binary tree structure and the block diagonal structure
associated with each leaf node.

3.3. Decay property. We now study the low-rank property associated with the
approximation exploited in Section 3.1. Consider Equation (3.10). Since A is SPD,
A11 and A22 are also SPD and admit a square root factorization. Hence, we have

A = A
1/2
0

(
I A

− 1
2

11 A12A
− 1

2
22

A
− 1

2
22 A

T
12A

− 1
2

11 I

)
A

1/2
0 = A

1/2
0

(
I Φ

ΦT I

)
A

1/2
0 , (3.10)

where Φ = A
− 1

2
11 A12A

− 1
2

22 ∈ Rp×q. From this we can write:

A−1 −A−1
0 = A

−1/2
0

[(
I Φ

ΦT I

)−1

−
(
I

I

)]
A

−1/2
0 . (3.11)

We would like to show that the matrix

J =

(
I Φ

ΦT I

)−1

−
(
I

I

)
(3.12)

can be well approximated by low-rank matrices. It is well known [10, sec. 8.6.1] that

if Φ has rank r, then the matrix

(
0 Φ

ΦT 0

)
has 2r nonzero eigenvalues given by ±σi

where σi, i = 1, · · · , r, are the r singular values of Φ and the eigenvalue zero repeated

n− 2r times. Hence, the matrix

(
I Φ

ΦT I

)
has 2r eigenvalues of the form 1± σi for

MULTI-COLOR LOW-RANK PRECONDITIONER 9

i = 1, 2, . . . , r, and an eigenvalue equal to one which is of multiplicity n− 2r. This is
stated as a lemma.

Lemma 3.1. Let Φ ∈ Rp×q and r = rank(Φ), then the eigenvalues of

(
I Φ

ΦT I

)
are either 1 or 1±σi, where σi (i = 1, 2, . . . , r) are the non-zero singular values of Φ.

Therefore, the matrix J has eigenvalues λi = 0 with multiplicity n − 2r and
λi = 1

1±σi
− 1, where σi (i = 1, 2, . . . , r) are the non-zero singular values of Φ. The

derivative of λ = 1
1−σ − 1 with respect to σ is

dλ

dσ
=

1

(1− σ)2
,

and it can become very large when σ increases or decreases toward one. This implies
that the largest eigenvalues of J will be well separated from the others, i.e., the matrix
J can be well approximated by a low-rank matrix.

Thus, based on (3.11) we can approximate A−1 as follows:

A−1 ≈ A−1
0 +

(
A

− 1
2

11 0

0 A
− 1

2
22

)
V HV T

(
A

− 1
2

11 0

0 A
− 1

2
22

)
, (3.13)

where V HV T is a rank-k approximation to the matrix J in (3.12). However, this does
not lead to a practical scheme and we saw in Section 3.1 a different approach that is
more amenable to efficient computations.

The low-rank property is further analyzed in the next theorem.
Theorem 3.2. Assume A is SPD matrix factored in the form (3.10) and let Φ =

A
− 1

2
11 A12A

− 1
2

22 , then we have 0 ≤ σi < 1 for each singular value σi of Φ (i = 1, 2, . . . , t),
where t = min{p, q}.

Proof. Consider the eigenvalues of matrix ΦTΦ = A
− 1

2
22 A

T
12A

−1
11 A12A

− 1
2

22 . We have

λ(ΦTΦ) = λ(A−1
22 A

T
12A

−1
11 A12) = λ(A−1

22 (A22 − S)) = λ(I −A−1
22 S),

where S = A22−AT12A−1
11 A12 is the Schur complement of A. Because A−1

22 S is similar

to A
− 1

2
22 SA

− 1
2

22 , we obtain

λ(ΦTΦ) = 1− λ(A
− 1

2
22 SA

− 1
2

22). (3.14)

Since A is SPD, it is easy to see that A22 and S are also SPD. Thus, A
− 1

2
22 SA

− 1
2

22 is
an SPD matrix with positive eigenvalues. Then, equation (3.14) implies λ(ΦTΦ) < 1.
Therefore, 0 ≤ λ(ΦTΦ) < 1 and hence:

σi =
√
λi(ΦTΦ) ∈ [0, 1), (i = 1, 2, . . . , t).

This completes the proof.
Theorem 3.2 shows that 1 is an upper bound for the singular values of Φ in

(3.10). Therefore, one can expect that a few of the largest singular values of Φ will
be around 1 causing a fast decay property of A−1 − A−1

0 . Theorem 3.2 can also
be numerically verified by a discretized negative 2D Laplacian A with zero Dirichlet
boundary condition. Assume this matrix A is of size 2, 000× 2, 000 and is partitioned

10 Q. ZHENG, Y. XI, AND Y. SAAD

0 200 400 600 800 1000

k

0

0.2

0.4

0.6

0.8

1

(
)

0 5 10 15 20 25 30

k

0

10

20

30

40

50

60

70

80

(A
-1

-A
0-1

)

Fig. 3.2. Singular values of Φ (left) and the leading 30 singular values of A−1 − A−1
0 (right)

for a 2, 000-by-2, 000 discretized negative 2D Laplacian with the zero Dirichlet boundary condition
where A is partitioned into 2 even-sized blocks.

into 2 even-sized blocks. All the singular values of Φ and the leading 30 singular
values of A−1 −A−1

0 for this test matrix are plotted in Figure 3.2.
As can be seen from Figure 3.2, while the singular values of Φ are clustered

around 1 with a very slow decay rate, the largest singular values of A−1 − A−1
0 are

well separated. For example, the ratio of the fifth largest singular value of A−1−A−1
0

to the largest one is approximately equal to 6.3e−2 and the ratio of the tenth largest
singular value of A−1−A−1

0 to the largest one decreases to only 2.7e−2. This implies
that A−1 can be approximated by the sum of A−1

0 and a low-rank correction term
when A is partitioned into a block 2-by-2 form.

3.4. Improving the preconditioner. In order to further reduce the iteration
number of the preconditioned Krylov subspace method, we can combine M−1

i with
some classical (block) relaxation type methods. This combination is somewhat similar
to post-smoothing procedures of multigrid-type methods and it will generally provide a
boost to the MCLR convergence in practice. Consider the linear system A|Ii,Iiui = vi,
where both ui and vi are partitioned conformally into s parts, according to their colors,
as (Matlab semi-colon notation used):

ui = [ui1 ; ui2 ; · · · ; uis] and vi = [vi1 ; vi2 ; · · · ; vis]

where j = i1, i2, . . . , is are all the descendent leaf nodes of node i in T .
In a block Jacobi, also called Schwarz, procedure the block coordinate uj is cor-

rected by a vector δj in such a way that: A|Ij ,Ii(ui + δi) = vj (j = i1, i2, . . . , is). This
leads to the following equation which is solved for color j:

A|Ij ,Ijδj = vj −A|Ij ,Iiui. (3.15)

In the block Gauss-Seidel (or multiplicative Schwarz) procedure, the above equation
is solved for each color in turn and the solution is immediately updated by changing
the j-th block coordinate as uj := uj + δj . In the experiments we only consider the
additive Schwarz – or block-Jacobi iteration – which consists of solving the systems
(3.15) at once for all colors and updating block coordinates simultaneously. This is
illustrated in Algorithm 4.

The combination of M−1
i and Algorithm 4 for solving A|Ii,Iiui = vi is summarized

in Algorithm 5. This algorithm takes an initial solution ui obtained from applying

MULTI-COLOR LOW-RANK PRECONDITIONER 11

Algorithm 4
Block-Jacobi type correction scheme for solving A|Ii,Iiui = vi

1: procedure ui = BJ(A|Ii,Ii , ui, vi)
2: For j = i1, i2, . . . , is (leaf nodes in T which are descendants of node i)
3: Compute residual fj = vj −A|Ij ,Iiui
4: Solve LjUjδj = fj (By Incomplete LU factorization of Mj)
5: EndFor
6: Update solution uj := uj + δj for j = i1, i2, . . . , is
7: end procedure

M−1
i from (3.8) to a right-hand side vi (Steps 2-10) and outputs an improved solution

also called ui (Steps 11-13). The procedure can be repeated a few times and we will
call m the number of Block-Jacobi steps used for the correction.

Algorithm 5
Combination of M−1

i and Algorithm 4 for solving A|Ii,Iiui = vi

1: procedure ui = RecSolv1(A|Ii,Ii , vi, i)
2: if i is leaf node then
3: Solve LiUiui = vi
4: else
5: Compute z = vi + Vi(Gi(V

T
i vi)).

6: Partition z into

(
zc1
zc2

)
– according to sets Ic1 , Ic2

7: Compute uc1 = RecSolv1(A|Ic1 ,Ic1 , zc1 , c1).
8: Compute uc2 = RecSolv1(A|Ic2 ,Ic2 , zc2 , c2).

9: Stack ui =

(
uc1
uc2

)
.

10: end if
11: For i = 1 : m
12: ui=BJ(A|Ii,Ii , ui, vi)
13: Endfor
14: end procedure

Let us consider how to integrate this combination into the construction phase,
i.e., Algorithm 3. First, we would like to replace the following operation in Line 8 of
Algorithm 3: (

I −A|Ii,Ii
(
M−1
c1

M−1
c2

))(
vc1
vc2

)
by the operation: (

vc1
vc2

)
−A|Ii,Ii

(
RecSolv1(A|Ic1 ,Ic1 , vc1 , c1)
RecSolv1(A|Ic2 ,Ic2 , vc2 , c2)

)
, (3.16)

in order to account for the fact that the low-rank term should correct the combined
iteration, i.e., the corrected block-diagonal solves from lower levels. This would have
the effect of improving the solution accuracy of A|Ici ,Icix = uci (i = 1, 2) and it would

lead to more accurate low-rank correction term ViGiV
T
i .

12 Q. ZHENG, Y. XI, AND Y. SAAD

However, Algorithm 5 is only applicable for two children nodes c1 and c2 in Line
8 of Algorithm 3 because the low-rank correction is not available at node i at the
time of construction. The children c1, c2 can themselves invoke RecSolv1 because in
a bottom-up approach the low-rank corrections are already available in these nodes.
Therefore, we need to modify Algorithm 5 into an algorithm that skips the low-rank
correction at the current level, but calls RecSolv1 for the children. The modification
will be referred to as Nested Block Jacobi iteration and is sketeched in Algorithm 6.
Note that this algorithm is used only in the construction phase and that the only
difference with Algorithm 5 is that it omits the low rank correction at level i, i.e., the
current level.

Algorithm 6
Nested block-Jacobi correction scheme

1: procedure ui = NSBJ(A|Ii,Ii , vi, i)
2: if i is leaf node then
3: Solve LiUiui = vi (By Incomplete LU factorization of Mj)
4: else

5: Partition vi into

(
vc1
vc2

)
– according to sets Ic1 , Ic2

6: Compute uc1 = RecSolv1(A|Ic1 ,Ic1 , vc1 , c1)
7: Compute uc2 = RecSolv1(A|Ic2 ,Ic2 , vc2 , c2)
8:

9: Stack ui =

(
uc1
uc2

)
10: end if
11: For i = 1 : m
12: ui=BJ(A|Ii,Ii , ui, vi)
13: Endfor
14: end procedure

Thus, Algorithm 3 replaces (3.16) by the following operation:

vi −A|Ii,Ii NSBJ(A|Ii,Ii , vi, i), (3.17)

where NSBJ is defined in Algorithm 6. We will refer to this combination of MCLR and
Nested block Jacobi type correction scheme as the Multi-Color Low-Rank (MCLR)
Preconditioner with corrections.

The advantage of using (3.17) over (3.16) can be easily seen from a two-level
version of the proposed preconditioner. Now, we will first explore the operation
NSBJ(A|Ii,Ii , vi, i) under mild assumptions.

Proposition 3.3. Let Ãi denote the block diagonal matrix

Ãi :=

A|Ii1 ,Ii1

A|Ii2 ,Ii2
. . .

A|Iis ,Iis

 , (3.18)

where i1, i2, . . . , is are the leaf nodes in T which are also the descendants of node i.
Assume that ucj (j = 1, 2) returned by Lines 6-7 in Algorithm 6 satisfies A|Icj ,Icj ucj =

vcj exactly, then we have

NSBJ(A|Ii,Ii , vi, i) = Xivi,

MULTI-COLOR LOW-RANK PRECONDITIONER 13

where Xi = (A|Ii,Ii)−1 + (I − Ã−1
i A|Ii,Ii)m

((
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1

−A|−1
Ii,Ii

)
.

Proof. Since we assume ucj (j = 1, 2) are the exact solutions of A|Icj ,Icj u = vcj ,

we have ui =

(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1

vi in Step 9. Next, applying m Block-Jacobi

correction steps in Lines 11-13 is equivalent to computing the following sequence :{
u(i) = (I − Ã−1

i A|Ii,Ii)u(i−1) + Ã−1
i vi,

i = 1, 2, . . . ,m,
(3.19)

with u(0) = ui. If u∗ is the exact solution of A|Ii,Iiu = vi, then we have

u(i) − u∗ = (I − Ã−1
i A|Ii,Ii)(u(i−1) − u∗).

This leads to

u(m) = u∗ + (I − Ã−1
i A|Ii,Ii)m(u(0) − u∗)

= (A|Ii,Ii)−1vi + (I − Ã−1
i A|Ii,Ii)m

((
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1

vi −A|−1
Ii,Ii

vi

)

=

{
(A|Ii,Ii)−1 + (I − Ã−1

i A|Ii,Ii)m
((

A|Ic1 ,Ic1
A|Ic2 ,Ic2

)−1

−A|−1
Ii,Ii

)}
vi.

The proof is complete.
Therefore, the residual matrix I −A|Ii,IiXi at node i is:

I −A|Ii,IiXi = A|Ii,Ii(I − Ã−1
i A|Ii,Ii)m

(
A|−1

Ii,Ii
−
(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1
)

= A|Ii,Ii(I − Ã−1
i A|Ii,Ii)mA|−1

Ii,Ii

(
I −A|Ii,Ii

(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1
)

= (I −A|Ii,IiÃ−1
i)m

(
I −A|Ii,Ii

(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1
)
. (3.20)

Equation (3.20) suggests that matrix I − A|Ii,IiXi will have a more favorable

low-rank representation than matrix I − A|Ii,Ii
(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1

which is the

matrix in (3.3). In the extreme case when Ãi =

(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)
,

I −A|Ii,IiXi =

(
I −A|Ii,Ii

(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1
)m+1

.

In this case the eigenvalue decay rate of I −A|Ii,IiXi is m+ 1 times faster than that

of I −A|Ii,Ii
(
A|Ic1 ,Ic1

A|Ic2 ,Ic2

)−1

.

14 Q. ZHENG, Y. XI, AND Y. SAAD

In fact, the eigenvalue distribution of the preconditioned matrix highly depends
on how well I − A|Ii,IiXi is approximated by the low-rank correction term. To con-
clude this section, we demonstrate this property with two examples shown in Figure
3.3. Here, the matrix A is the non-symmetric facsimile convergence matrix ob-
tained from the SuiteSparse collection [7]. This matrix has dimension n = 541 and
is indefinite. Figure 3.3 shows the spectra of the preconditioned matrix when the
low-rank correction term uses different ranks with a two level binary tree. Observe
that, as expected, the spectrum of the preconditioned matrix with rank 20 is more
clustered around 1 than that with rank 5. For this particular problem, precondi-
tioned GMRES with a rank 20 low rank correction converges in 34 iterations to reach
6 digits of accuracy while preconditioned GMRES with a rank 5 low rank correction
converges in 76 iterations.

0 0.2 0.4 0.6 0.8 1 1.2
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

rank=5

0 0.2 0.4 0.6 0.8 1 1.2
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

rank=20

Fig. 3.3. Spectra of the preconditioned matrix: rank 5 correction (left) and rank 20 correction
(right), where T has two levels. Here, the number of Block-Jacobi correction steps is taken as m = 3.

4. Numerical experiments. This section discusses a few numerical experi-
ments to demonstrate the robustness and efficiency of the proposed approach. The
testing platform consists of two Intel Haswell processors (12 cores each at 2.5 GHz)
and 64 GB of memory. The MCLR preconditioner was implemented in C++ and the
code was compiled with Intel C++ compiler using -O3 optimization.

In the numerical experiments, the original sparse matrices were partitioned by
using PartGraphKway from the METIS [18] package. The factorization of the diag-
onal blocks of the reordered matrix and the computation of the low-rank correction
terms account for the preconditioner construction time. The times for reordering
the matrices are considered as preprocessing, hence they are not reported (often the
problems come in partitioned form based on the mesh and the time for coloring the
quotient graph is negligible). In actual computations, we chose the right-hand-side
vector b such that Ax = b, where x is a random vector. In addition, the initial guess
was chosen as a zero vector.

For the SPD matrices, the MCLR preconditioner with corrections was compared
with the incomplete Cholesky factorization with threshold dropping (ICT) and the
MSLR preconditioner [29]. The accelerator we used for the MCLR with corrections,
MSLR and ICT preconditioners is the conjugate gradient (CG) method [15]. For
other test matrices, the MCLR preconditioner with corrections was compared with
the incomplete LU factorization with threshold dropping (ILUT) and the GMSLR

MULTI-COLOR LOW-RANK PRECONDITIONER 15

preconditioner [8] and the accelerator used is GMRES [25, 27].
The following notation will be used in the remainder of this section where all

times are in seconds:
• fill: Fill factor defined as nnz(prec)

nnz(A) ;

• p-t: wall clock time to build the preconditioner;
• its: number of iterations of GMRES or CG to reduce the initial residual norm

by a factor of 106. Moreover, an “F” indicates that GMRES or CG failed to
converge in 300 iterations;

• i-t: wall clock time for the iteration phase. We do not report this time when
GMRES or CG fails to converge in 300 iterations.

• t-t: total wall clock time, i.e., sum of the time to build the preconditioner
and the iteration time.

• nd: number of subdomains used to partition the adjacency graph of A;
• rk: rank used in the low-rank corrections;
• m: number of steps of Block-Jacobi type correction scheme (Algorithm 4).

In all the tests, applications of the MCLR with corrections, MSLR and GMSLR
preconditioners were parallelized using OpenMP [3] where the number of threads used
is the number of cores, which is 24.

4.1. Test 1. We first consider the following convection-diffusion equation:

−4u− α · ∇u− βu = f in Ω, (4.1)

u = 0 on ∂Ω,

where Ω = (0, 1)3 and α ∈ R3. The discretization of this equation is via centered
finite differences with the standard 7-point stencil in three dimensions.

4.1.1. Effect of nd. In this subsection, we study the effect of the number of
subdomains nd on the performance of the MCLR preconditioner with corrections.
First, we discretized (4.1) on a 503 grid with α = [.05, .05, .05] and β > 0 in order
to make the problem indefinite. In the case where β > 0, we shift the discretized
convection-diffusion operator by sI, where s = h2β for mesh size h. The rank used in
the low-rank correction was set to rk = 5 and m was fixed at 5.

As we can see from Table 4.1, as the value of nd increases from 10 to 90, the
fill-factor for the ILU decompositions decreases monotonously while the fill factor
from the low-rank correction term increases. This is because a large number of nd
usually leads to a tree T with more levels and thus causes more low-rank correction
terms. Meanwhile, a large nd results in a reduced block size for each diagonal block
and this reduces both the computational costs and storage for the ILU factorizations.
These trade-offs between the two fill factors can be visualized in Figure 4.1. Based
on various tests, we find that nd = 50 is often optimal for this problem. Therefore,
we set nd to nd = 50 in the remaining experiments.

4.1.2. Effect of rk in the low-rank corrections. Next we study the per-
formance of the MCLR preconditioner with corrections when the rank used in the
low-rank correction varies. To illustrate this, we solve the same test problem as in the
previous section with different values for the rank rk. As is seen in Table 4.2 the ILU
fill factor remains constant since we kept nd fixed. On the other hand, the iteration
number only decreases slightly when the rank increases from 5 to 45 while the low-
rank fill factor increases dramatically during this process. This implies that for this
problem there is no need to use a large rk in order to achieve a good performance. In
our next tests we will often set rk to some small values (i.e., rk ≤ 5).

16 Q. ZHENG, Y. XI, AND Y. SAAD

Table 4.1
The fill factors and iteration counts for solving (4.1) discretized on a 503 grid with α =

[.05, .05, .05] and s = 0.1 by the GMRES-MCLR with corrections method. Here, the rank for the
low-rank correction matrices was fixed at 5, m was fixed at 5 and the threshold used in the incomplete
LU factorization was taken as 10−2.

nd fill (ILU) fill (Low-rank) fill (total) its p-t i-t

10 2.83 2.04 4.87 73 0.80 3.52
30 2.72 2.15 4.87 86 0.82 3.60
50 2.66 2.16 4.86 83 0.81 3.40
70 2.61 2.18 4.79 85 0.84 3.58
90 2.58 2.20 4.78 82 0.86 3.56

10 20 30 40 50 60 70 80 90
2

2.5

3

3.5

4

4.5

5

n
d

fi
ll
 f
a
c
to

r

ILU

LRC

total

Fig. 4.1. The fill factors from ILU and low-rank correction with respect to different nd for the
test problem in Table 4.1.

4.1.3. Effect of the threshold. It is also helpful to understand the effect of
the threshold used in ILU factorizations on the quality of the preconditioner. A
smaller threshold leads to more accurate approximations to the diagonal blocks, and
so we expect that the iteration number should decrease and the ILU fill factors should
increase as the threshold decreases. This is verified with the results in Table 4.3 when
the threshold is reduced from 0.1 to 0.0005. Note that similarly to what was seen
with the rank, the higher cost of using a lower tolerance is not counter-balanced by
the small decrease in the number of iterations to converge.

4.2. Test 2. The second test is the symmetric problem:

−4u− βu = f in Ω, (4.2)

u = 0 on ∂Ω,

where Ω = (0, 1)3. These PDEs were discretized by the 7-point stencil.
We solve (4.2) with β = 0 (SPD case) and β > 0 (indefinite case). For the

indefinite case, we shifted the discretized Laplacian by sI, where s = h2β for mesh
size h. The numerical results are reported in Table 4.4. We chose rk = 2 for the
SPD case and rk = 5 for the indefinite case. In order to have a fair comparison,
the parameters of MSLR and GMSLR preconditioners were chosen such that they
yield roughly the same fill-factors as those of MCLR. Table 4.4 shows that the CPU
time to construct a MCLR preconditioner with corrections is the least of these three
preconditioners. In addition, the MCLR preconditioner with corrections requires the

MULTI-COLOR LOW-RANK PRECONDITIONER 17

Table 4.2
The fill factors and iteration counts for solving (4.1) with α = [.05, .05, .05] and s = 0.1 on a

50× 50× 50 grid with the GMRES-MCLR with corrections method. Here, nd was taken as 50 , m
was fixed at 5 and the threshold used in the incomplete LU factorization was fixed to 10−2.

rk fill (ILU) fill (Low-rank) fill (total) its p-t i-t

5 2.66 2.16 4.86 83 0.81 3.50
15 2.66 6.54 9.30 80 1.04 3.92
25 2.66 10.90 13.56 75 1.90 5.01
35 2.66 15.26 17.92 71 2.79 6.60
45 2.66 20.01 22.67 68 8.54 7.98

Table 4.3
The fill factors and iteration counts for solving (4.1) with α = [.05, .05, .05] and s = 0.1 dis-

cretized on a 503 grid with the GMRES-MCLR with corrections method. Here, nd was taken as 50,
m was fixed at 5 and the rank for the low-rank correction was set to 5.

threshold fill (ILU) fill (Low-rank) fill (total) its t-t

.1 2.66 2.18 4.84 88 4.53

.05 2.70 2.18 4.88 86 4.51

.01 2.76 2.18 4.94 83 4.49

.005 2.81 2.18 4.99 80 4.50

.001 2.95 2.18 5.13 78 4.55

.0005 2.96 2.18 5.14 77 4.58

smallest number of iterations and the least CPU time to converge for the positive
definite problems as well as for the indefinite problems. Moreover, the same table also
shows that the GMSLR and ILUT preconditioned GMRES methods have difficulties
converging when dealing with (4.2) on the 1283 grid with β > 0. This test matrix
has 217 negative eigenvalues and in this sense it is more indefinite than the other test
matrices.

Table 4.4
Comparison among MCLR with corrections, ICT/ILUT and MSLR/GMSLR preconditioners

for solving symmetric positive definite/indefinite linear systems from the 3-D PDEs (4.2) with the
CG/GMRES methods, where m was fixed at 5.

Mesh s
MCLR ICT/ILUT MSLR/GMSLR

rk fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

323 2 3.29 6 .11 .19 3.05 16 .15 .48 7 32 3.12 31 .14 .42

643 0.00 2 3.53 10 1.02 1.50 3.03 25 1.08 3.21 10 32 3.66 60 1.03 2.55

1283 2 3.53 15 3.30 4.69 3.01 40 8.21 10.79 13 32 4.00 116 4.95 7.10

323 5 3.31 9 .09 .25 3.02 29 .28 .44 7 16 3.33 28 .10 .30

643 0.04 5 4.78 47 1.23 4.70 4.47 78 1.59 8.09 10 25 5.26 202 1.24 7.10

1283 5 3.32 216 5.00 11.99 3.42 F 12.01 – 13 64 3.40 F 8.02 –

The next experiments illustrate the effect of the number of correction steps m
on the performance of the MCLR preconditioner with corrections. Here, the test
matrix is obtained by discretizing (4.2) with β = 0 on a 503 grid. We fixed rk at 2
in the experiments. The left subfigure of Figure 4.2, shows a steady improvement in

18 Q. ZHENG, Y. XI, AND Y. SAAD

0 2 4 6 8 10
5

10

15

20

25

30

35

m

it
s

0 2 4 6 8 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m

s
e
c
o
n
d

p−t

i−t

t−t

Fig. 4.2. Left: the iteration numbers with respect to different m. Right: the iteration time and
the precondtioner construction time with respect to different m. Here, the grid is fixed to 503.

the iteration number when m increases from 0 to 10, indicating that the Block-Jacobi
correction is quite effective at improving convergence. Of course, the time to build the
preconditioner increases with higher values of m and the time to apply will decrease.
The right subfigure of Figure 4.2 shows this but it also shows that the total iteration
time first decreases as m increases from 0 to 5, and then increases when m increases
from 5 to 10. Hence, although Algorithm 4 can reduce the iteration count, too many
correction steps (large m) may result in a higher CPU time. For this test matrix,
m = 5 is the optimal number of correction steps, resulting in the smallest total time
(i.e., 2.25 seconds to build preconditioner and 2.30 seconds to converge) for this test.

4.3. General sparse linear systems. We now test MCLR with corrections on
various general matrices obtained from the SuiteSparse Matrix Collection [7]. These
matrices arise from a wide range of application areas, including both symmetric and
nonsymmetric problems. Table 4.5 presents a short description.

Table 4.5
Names, orders (N), numbers of nonzeros (nnz) and short descriptions of the test matrices.

Matrix Order nnz symmetric Description

cfd1 70,656 1,825,580 yes CFD problem

cfd2 123,440 3,085,406 yes CFD problem

ecology1 1,000,000 4,996,000 yes Landscape ecology problem

thermal2 1,228,045 8,580,313 yes Thermal problem

xenon1 48,600 1,181,120 no Materials Problem

xenon2 157,464 3,866,688 no Materials Problem

ML Laplace 377,002 27,582,698 no meshless local Petrov-Galerkin method

Atmosmodd 1,270,432 8,814,880 no Atmospheric model

Atmosmodl 1,489,752 10,319,760 no Atmospheric model

Transport 1,602,111 23,500,731 no CFD problem

MULTI-COLOR LOW-RANK PRECONDITIONER 19

Numerical results are presented in Table 4.6. As can be seen, for these 15 prob-
lems, MCLR with corrections outperforms the ICT/ILUT and MSLR/GMSLR pre-
conditioners: it needs fewest iterations and least time to converge. Observe from the
table that Krylov methods preconditioned with MCLR with corrections converge for
all the test problems given in Table 4.5. In contrast, ICT fails to converge for cfd1

and cfd2, ILUT fails to converge to solve xenon1 and xenon2 and MSLR can not
converge for cfd1. In these experiments, m was set to m = 5.

Table 4.6
Comparison among MCLR with corrections, ICT/ILUT and MSLR/GMSLR preconditioners

for solving general sparse linear systems along with CG or GMRES, where m was fixed at 5.

Matrix
MCLR ICT/ILUT MSLR/GMSLR

rk fill its p-t i-t fill its p-t i-t lev rk fill its p-t i-t

cfd1 2 1.40 82 1.20 2.19 1.56 F .63 – 7 64 1.74 F .94 –

cfd2 2 1.79 95 .98 4.06 1.89 F .99 – 8 80 1.86 108 1.56 5.34

ecology1 2 2.60 13 .99 2.30 2.59 25 1.01 4.08 8 64 2.71 60 .90 3.42

thermal2 2 4.40 39 4.60 6.76 4.44 115 6.03 14.59 8 64 4.94 65 5.34 9.36

xenon1 5 1.31 42 .59 3.90 1.37 F 3.62 – 3 32 1.17 156 0.63 6.54

xenon2 5 2.80 57 1.40 4.51 3.11 F 5.80 – 10 64 2.78 269 1.66 7.62

ML Laplace 5 1.01 72 2.10 1.23 1.05 167 1.80 3.22 6 64 1.06 150 2.20 2.03

Atmosmodd 5 3.23 18 2.03 5.02 3.50 44 3.43 11.01 10 4 3.21 30 3.34 7.34

Atmosmodl 5 3.45 8 2.87 4.21 3.51 26 3.76 10.00 11 4 3.60 15 3.29 7.59

Transport 5 2.12 43 4.50 4.02 2.15 92 7.28 9.33 6 4 2.10 79 6.89 6.09

5. Conclusion. We described a parallel preconditioner for solving general sparse
linear systems, named MCLR, that is based on a combination of algebraic domain-
decomposition, domain multicoloring, and recursive multilevel low-rank corrections.
METIS is used to partition the original matrix and then the quotient graph of the
partitions is multicolored leading to a hierarchical block structure for the reordered
matrix. The MCLR preconditioner can be applied to solve both symmetric and non-
symmetric problems and is highly parallelizable due to the block diagonal structure
obtained from the coloring.

One of the biggest advantages of using the MCLR preconditioner is its robust-
ness when solving highly indefinite problems. As the numerical experiments show,
the MCLR preconditioner with a form of Block-Jacobi post-smoothing, outperforms
MSLR/ GMSLR and is far more robust than the standard ICT or ILUT techniques.

Because of these appealing features we plan to extend MCLR to complex (non-
Hermitian) systems and eigenvalue problems [30, 22]. We will also explore other
low-rank correction techniques to try to further reduce the construction time of the
preconditioner.

REFERENCES

20 Q. ZHENG, Y. XI, AND Y. SAAD

[1] A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with appli-
cations to finite-element matrices, J. Comput. Phys., 304 (2016), pp. 170–188.

[2] M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, Lecture Notes in Computational Science and Engineering, Springer Berlin Hei-
delberg, 2008.

[3] OpenMP Architecture Review Board, OpenMP Application Program Interface, Version
3.1, (2011).

[4] S. L. Borne and L. Grasedyck, H-matrix preconditioners in convection-dominated problems,
SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1172–1183.

[5] D. Cai, E. Chow, L. Erlandson, Y. Saad, and Y. Xi, SMASH: Structured Matrix Approxi-
mation by Separation and Hierarchy, Numer. Linear Algebra Appl., 25 (2018).

[6] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

[7] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans. Math.
Software, 38 (2011).

[8] G. Dillon, V. Kalantzis, Y. Xi, and Y. Saad, A hierarchical low-rank schur complement
preconditioner for indefinite linear systems, SIAM J. Sci. Comput., 40 (2018), pp. A2234–
A2252.

[9] A. Gillman, P. M. Young, and P. G. Martinsson, A direct solver with o(N) complexity for
integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins Univer-
sity Press, Baltimore, MD, 4th ed., 2013.

[11] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[12] W. Hackbusch and S. Börm, H2-matrix approximation of integral operators by interpolation,
Appl. Numer. Math., 43 (2002), pp. 129–143.

[13] W. Hackbusch, B. N. Khoromskij, and S. A. Sauter, On H2-matrices, in Lectures on
applied mathematics, Springer, Berlin, 2000, pp. 9–29.

[14] P. Hénon and Y. Saad, A parallel multistage ILU factorization based on a hierarchical graph
decomposition, SIAM J. Sci. Comput., 28 (2006), pp. 2266–2293.

[15] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards, 49 (1952), pp. 409–436.

[16] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. A2507–A2532.

[17] K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: Integral
equations, Commun. Pur. Appl. Math., 69 (2016), pp. 1314–1353.

[18] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[19] R. Li and Y. Saad, Divide and conquer low-rank preconditioners for symmetric matrices,
SIAM J. Sci. Comput., 35 (2013), pp. A2069–A2095.

[20] , GPU-accelerated preconditioned iterative linear solvers, J. Supercomput., 63 (2013),
pp. 443–466.

[21] R. Li, Y. Xi, and Y.Saad, Schur complement-based domain decomposition preconditioners
with low-rank corrections, Numer. Linear Algebra Appl., 23 (2016), pp. 706–729.

[22] X. Liu, Y. Xi, Y. Saad, and M. V. de Hoop, Solving the 3D high-frequency Helmholtz equation
using contour integration and polynomial preconditioning, arXiv:1811.12378, (2018).

[23] X. LIU, J. XIA, and M. V. De HOOP, Parallel randomized and matrix-free direct solvers for
large structured dense linear systems, SIAM J. Sci. Comput., 38 (2016), pp. S508–S538.

[24] F. H. Rouet, X. S. Li, P. Ghysels, and A. Napov, A distributed-memory package for
dense hierarchically semi-separable matrix computations using randomization, ACM Trans.
Math. Softw., 42 (2016).

[25] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14
(1993), pp. 461–469.

[26] , Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA,
2003.

[27] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[28] Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse
linear systems, Numer. Lin. Alg. Appl., 9 (2002).

[29] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections
for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.

[30] Y. Xi and Y. Saad, A rational function preconditioner for indefinite sparse linear systems,

MULTI-COLOR LOW-RANK PRECONDITIONER 21

SIAM J. Sci. Comput., 39 (2017), pp. A1145–A1167.
[31] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix alogrithms,

SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1279–1303.
[32] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM

J. Sci. Comput., 35 (2013), pp. A832–A860.
[33] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large

structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1382–
1411.

[34] J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan, Fast sparse selected inversion, SIAM J.
Matrix Anal. Appl., 36 (2015), pp. 1283–1314.

