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SUMMARY

A new approach is presented to compute the seismic normal modes of a fully

heterogeneous, rotating planet. Special care is taken to separate out the essential

spectrum in the presence of a liquid outer core. The relevant elastic-gravitational

system of equations, including the Coriolis force, is subjected to a mixed finite-

element method, while self gravitation is accounted for with the fast multipole

method (FMM). To solve the resulting quadratic eigenvalue problem (QEP), the

approach utilizes extended Lanczos vectors forming a subspace computed in a non-

rotating planet – with the shape of boundaries of a rotating planet and accounting

for the centrifugal potential – to reduce the dimension of the original problem

significantly. The subspace is guaranteed being contained in the space of functions

to which the seismic normal modes belong. The reduced system can further be
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solved with a standard eigensolver. The computational accuracy is illustrated

using all the modes with relative small meshes, and also tested against standard

perturbation calculations relative to a standard Earth model. The algorithm and

code is used to compute the point spectra of eigenfrequencies in several Mars

models studying the e↵ects of heterogeneity on a large range of scales.

1 INTRODUCTION

Planetary normal modes are instrumental for studying the dynamic response to sources

including earthquakes along faults and meteorite impacts as well as tidal forces (Dahlen &

Tromp 1998; Lognonné 2005). For a review of Earth’s free oscillations, we refer to Wood-

house & Deuss (2007). The low-lying eigenfrequencies contain critical information about

the planet’s large-scale structure and provide constraints on heterogeneity in composition,

temperature, and anisotropy. Rotation constrains the shapes and possible density distribu-

tions of planets. The e↵ect of rotation on the point spectrum is well understood and has

been observed for decades (Park et al. 2005, Fig.1).

Early studies of normal modes of a rotating, elliptical Earth utilized Rayleigh’s princi-

ple to approximate the associated eigenfrequencies (Backus & Gilbert 1961; Dahlen 1968).

Later, perturbation theory (Dahlen & Sailor 1979) was developed and utilized the eigenfunc-

tions of a spherically symmetric Earth model to estimate first- and second-order Coriolis

splitting, splitting due to rotation and ellipticity (Dahlen & Tromp 1998, Chapter 14.2 and

Appendix D.4). Spectral perturbation theory initially was based on self-coupling or group-

coupling approaches, while later full-mode coupling scheme have been considered (Dahlen

1968, 1969; Woodhouse & Dahlen 1978; Woodhouse 1980; Park 1986; Park & Gilbert 1986;

Park 1990; Romanowicz 1987; Lognonné & Romanowicz 1990; Hara et al. 1991, 1993; Um

et al. 1991; Lognonné 1991; Deuss & Woodhouse 2001, 2004; Al-Attar et al. 2012; Yang &

Tromp 2015). The issue with these coupling approaches is that the basis used does not lie

in the space of normal modes of a rotating planet which is important, in particular, in the

presence of a liquid outer core.

In our previous work (Shi et al. 2019), we separated the essential spectrum and in-

troduce the mixed finite-element method for fully heterogeneous non-rotating planets. In

a separate paper (Shi et al. 2018), we introduced a highly parallel algorithm for solving
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the resulting generalized eigenvalue problem using a polynomial filtering Lanczos method

(Li et al. 2016). Here, we extend our previous work and include rotation in the elastic-

gravitational system through the Coriolis force as well as the centrifugal potential with the

appropriate constraints on the shapes of the (fluid-solid) boundaries. We utilize extended

Lanczos vectors computed in a non-rotating planet – with the shapes of boundaries of a

rotating planet and accounting for the centrifugal potential – as a truncated basis to reduce

one of the equivalent linear forms of the quadratic eigenvalue problem (QEP). The normal

modes computed are guaranteed lying in the appropriate space of functions. The reduced

system can be solved with a standard eigensolver. The proposed method is accurate as we

demonstrate in our computational experiments using a full mode expansion in relatively

small models. We also test our computations against standard perturbation calculations

relative to a standard Earth model.

We apply our algorithm and code to studying Mars models through point spectra

of eigenfrequencies. This is motivated by the InSight (Interior exploration using Seismic

Investigations, Geodesy and Heat Transport) (Banerdt et al. 2013; Lognonné et al. 2019)

mission to Mars. It is expected that a set of eigenfrequencies is observable (Panning et al.

2017; Bissig et al. 2018). Here, we select one Mars model (Khan et al. 2016) from the

set of blind tests (Clinton et al. 2017; van Driel et al. 2019) and combine it with the

topography (Zuber et al. 1992; Smith et al. 1999) and a three-dimensional crust (Belleguic

et al. 2005; Goossens et al. 2017) to create a realistic Mars model. We compute the low-lying

eigenfrequencies and study the general e↵ects of rotation and heterogeneity combined.

The outline of this paper is as follows. In Section 2, we revisit the form and physics

of the elastic-gravitational system of a rotating planet and establish the weak formulation

of the system with a separation of the essential spectrum. In Section 3, we discuss the

hydrostatic equilibrium of a rotating liquid outer core in the presence of the gravitational

and the centrifugal forces. In Section 4, we develop the matrix form of the resulting QEP

and review various approaches to solve it. We then introduce our subspace method to reduce

the dimension of the equivalent linear form of the QEP using extended Lanczos vectors.

In Section 5, we illustrate the computational accuracy of our proposed method. We also

show several computational experiments for di↵erent planetary models, including standard

Earth and Mars models. In Section 6, we discuss the significance of our results.
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2 THE ELASTIC-GRAVITATIONAL SYSTEM WITH ROTATION

In this section, we briefly discuss the weak formulation associated with the elastic-gravitational

system of a rotating planet. In Subsection 2.1, we revisit the basic equations in the strong

form. In Subsection 2.2, we illustrate the rotation and the centrifugal acceleration of a Mars

model. In Subsection 2.3, we present the weak formulation to compute the normal modes

associated with the seismic point spectrum.

2.1 The basic equations

Given the reference density ⇢
0 and the gravitational constant G, we let �0 denote the

gravitational potential which satisfies,,

��0 = 4⇡G⇢0, (1)

and S(u) denote the Eulerian perturbation of the Newtonian potential associated with the

displacement, u,

�S(u) = �4⇡Gr · (⇢0u). (2)

To include the centrifugal force, we let  to be the centrifugal potential

 (x) = �1

2

h
⌦2

x
2 � (⌦ · x)2

i
, (3)

where ⌦ 2 R3 is the angular velocity of rotation. We form the geopotential and its gradient,

g
0 = �r(�0 +  ). (4)

Under the hydrostatic assumption,

!
2
⇢
0
u� 2 i!⇢0R⌦u = �r · (c : ru)�r(⇢0u · g0) +r · (⇢0u)g0 + ⇢

0rS(u), (5)

where ! denotes the angular frequency and c denotes the elastic sti↵ness tensor; R⌦u =

⌦ ⇥ u. The boundary conditions for the system (5) governing a hydrostatic planet are

shown in (Dahlen & Tromp 1998, Table 3.4).
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(a) Topography (b) Crust-mantle interface

Figure 1. Illustration of (a) the topography and (b) the crust-mantle interface of the Mars using
MOLA and gravity data (Zuber et al. 1992; Smith et al. 1999; Goossens et al. 2017).

2.2 Illustration of the geometry and physics using a Mars model

We utilize a flexible, fully unstructured tetrahedral mesh to model multiple complicated

discontinuities associated with di↵erent geological and geodynamical features. The major

discontinuities are discretized using triangulated surfaces that are generated via distmesh

(Persson & Strang 2004). We then build up the planetary model using an unstructured

tetrahedral mesh via TetGen (Si 2015). Here, we use a Mars model as an example to

illustrate our construction of a terrestrial planet. The topography of Mars was measured by

the Mars Orbiter Laser Altimeter (MOLA) (Zuber et al. 1992; Smith et al. 1999) with high

accuracy. The thickness and density of the Martian crust from the topography and gravity

data were constrained by works of Belleguic et al. (2005); Goossens et al. (2017). In Fig. 1

(a), we illustrate the topography of Mars using data from MOLA (Smith et al. 1999); in

Fig. 1 (b), we show the crust-mantle interface of Mars using data provided by Goossens

et al. (2017). In Figs. 2 (a)–(c), we illustrate VP , VS and ⇢
0 of Mars integrating a radial

model (Khan et al. 2016) with a three-dimensional crust as shown in Fig. 1. In Figs. 3 (a)

(a) VP (b) VS (c) ⇢0

Figure 2. Illustration of (a) VP , (b) VS , and (c) ⇢0 of our Mars model with a three-dimensional
crust shown in Fig. 1.
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(a) The axial spin mode, ⌦⇥ x (m/s) (b) Centrifugal acceleration, �r (m/s
2)

Figure 3. Illustration of (a) the axial spin mode, ⌦⇥x, and (b) the centrifugal acceleration, �r ,
of the Mars model shown in Fig. 2.

and (b), we illustrate the axial spin mode, ⌦ ⇥ x, and the centrifugal acceleration, �r ,

of the Mars model, respectively.

2.3 The weak formulation

Since we study a general planet with non-smooth coe�cients, it is natural to utilize the

weak form of the relevant system of equations. Following the notation in de Hoop et al.

(2015), a bounded set X̃ ⇢ R3 is used to represent the interior of the planet, with Lipschitz

continuous exterior boundary @X̃. The exterior boundary @X̃ contains fluid (ocean) surfaces

@X̃
F and solid surfaces @X̃S. We subdivide the set X̃ into solid regions ⌦S and fluid regions

⌦F. We use ⌃ to represent the interfaces between these subregions. In summary,

X̃ = ⌦S [ ⌦F [ ⌃ [ @X̃, @X̃ = @X̃
S [ @X̃F

.

The interior interfaces can further be subdivided into three categories: interfaces between

two fluid regions ⌃FF, interfaces between two solid regions ⌃SS, and interfaces between fluid

and solid regions ⌃FS. This regions, interfaces and boundaries are illustrated in (Shi et al.

2019, Subsection 2.1).

In (de Hoop et al. 2019; Shi et al. 2019), we discuss the decomposition of the function

space, H = L
2(X̃, ⇢

0 dx) into components H1 and H2, that is,

H = H1 �H2. (6)

We let us and u
f be the displacements in the solid and fluid regions, respectively, and enforce
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that u
f lies in H1 by augmenting the system of equations and introducing an additional

variable, p, according to

� p
�1 = r · uf + ⇢

0

�1

g
0 · uf in ⌦F

. (7)

Here,  signifies the compressibility of the fluid. Imposing the fluid-solid boundary condition
⇥
⌫
f!s · uf � ⌫

f!s · us
⇤��

⌃FS = 0, we obtain the weak form for (7),

0 = �
Z

⌦F
v
p
p

�1 dx+

Z

⌦F

h
(rv

p) · uf � v
p(g0 · uf )⇢0�1

i
dx�

Z

⌃FS
v
p(⌫f!s · us) d⌃

=: cg([u, p], v
p) (8)

for all the test functions v
p with v

p|
@X̃F = 0, where ⌫f!s denotes the normal vector at

the fluid-solid boundary pointing from the fluid to the solid side. The same short-hand

notation, cg([u, p], vp) in (8) was introduced in (Shi et al. 2019, (16)).

For the weak formulation, we let vs and v
f be the test functions for the displacement

fields in the solid and fluid regions, ⌦S and ⌦F, respectively. To restrict the system to

the computational domain, we obtain the complete formula for the rotating hydrostatic

planetary model

a2([u, p, S(u)], v) =

Z

⌦S
(rv

s) : (c : ru
s) dx+

Z

⌃FS
S{(vs · g0)(⌫s!f · us)[⇢0]f} d⌃

+

Z

⌃FS
(vs · ⌫s!f )p d⌃+

Z

⌦S
S{(rv

s)(g0 · us)⇢0 � u
s · (rg

0) · vsj⇢0 � u
s · (rv

s) · g0⇢0} dx

�
Z

⌦S
[r · (⇢0vs)]S(u) dx�

Z

⌃SS[@X̃S
(⌫ · vs)S(u)[⇢0]+� d⌃�

Z

⌃FS
(⌫f!s · vs)S(u)[⇢0]s d⌃

+

Z

⌦F
⇢
0
N

2 (g
0 · vf )(g0 · uf )

kg0k2 dx+

Z

⌦F
v
f · [rp� g

0
p⇢

0

�1] dx

�
Z

⌦F
[r · (⇢0vf )]S(u) dx�

Z

⌃FF[@X̃F
(⌫ · vf )S(u)[⇢0]+� d⌃�

Z

⌃FS
(⌫s!f · vf )S(u)[⇢0]f d⌃,

(9)

and

bH(u, v) =

Z

⌦S
(vs · us)⇢0 dx+

Z

⌦F
(vf · uf )⇢0 dx, (10)

and

cr(u, v) =

Z

⌦S
v
s · (⌦⇥ u

s)⇢0 dx+

Z

⌦F
v
f · (⌦⇥ u

f )⇢0 dx, (11)
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where N
2 = (r⇢0/⇢0 � g

0
⇢
0
/) · g0 signifies the square of the Brunt-Väisälä frequency;

⌫
s!f denotes the normal vector at the fluid-solid boundary pointing from the solid to

the fluid side; the symmetrization operation S as in de Hoop et al. (2015) is defined as

S{L(u, v)} := 1
2(L(u, v) + L(v, u)), for any bilinear form L(u, v). We note that a2 and bH

in (9) and (10) are analogue of (Shi et al. 2019, (26) and (7)), respectively. We obtain the

quadratic eigenvalue problem from (10), (11), (9) and (8):

8
><

>:

a2([u, p, S(u)], v) = !
2
bH(u, v)� 2 i!cr(u, v),

cg([u, p], vp) = 0.
(12)

A matrix representation can be derived from (12). In practice, we replace p in a2 by

p(uf , us⌃FS) via solving the constraint cg([u, p], vp) = 0 in (8) and obtain

a2([u, p(u
f
, u

s

⌃FS), S(u)], v) = !
2
bH(u, v)� 2 i!cr(u, v). (13)

The corresponding orthonormality condition is that, for an eigenpair (!(i), u
(i)), where (i)

denotes the index, any other eigenpair (!(j), u
(j)) satisfies

bH(u(i), u(j))� 2 i(!�1
(i) + !

�1
(j))cr(u

(i)
, u

(j)) = �ij , (14)

which is consistent with (Dahlen & Tromp 1998, (4.82)).

Following standard theoretical analysis (de Hoop et al. 2019), we define

F (!) = �!2Id + 2 i!R⌦.

and consider the quadratic operator pencil

L(!) = F (!) +A2,

where A2 is defined as a2(u, v) = hA2u, vi. The decomposition in (6) implies a decomposition

of L(!),
0

@ L11(!) L12(!)

L21(!) L22(!)

1

A .

In the above, the matrix system corresponds with L11(!), while the essential spectrum
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coincides with the essential spectrum of L22(!). Asymptotically, the seismic point spectrum

corresponds with the spectrum of L11(!).

3 HYDROSTATIC EQUILIBRIUM OF THE LIQUID CORE WITH

ROTATION

In this section, we discuss the hydrostatic equilibrium with rotation and how it constrains

the shape of boundaries and density distribution in planets. Rotating fluids have been

extensively studied (Greenspan 1968; Chandrasekhar 2013; Zhang & Liao 2017). The outer

core’s properties have been studied through seismic normal modes since the 1970s (Gilbert

& Dziewonski 1975; Dziewonski et al. 1975; Dziewonski & Anderson 1981), but also with

body waves (Morelli & Dziewonski 1993; Kennett et al. 1995). Much more recently, an

alternative radial outer core model has been proposed using the parametrization of the

equation of state for liquid iron alloys at high pressures and temperatures, inferred from

eigenfrequency observations (Irving et al. 2018). We furthermore mention models for the

outer core of the Moon (Weber et al. 2011) and the core of Mars (Rivoldini et al. 2011;

Khan et al. 2016) albeit ignoring rotation.

To reach the hydrostatic equilibrium, the prepressure p
0 satisfies

rp
0 = ⇢

0
g
0
, (15)

where g
0 is defined in (4). Well-posedness requires that

r⇢0 k g
0 k rp

0 in ⌦F and g
0 k ⌫ along ⌃FS [ @X̃F; (16)

see (de Hoop et al. 2015, Lemma 2.1) for details about the functional properties of ⇢0, p0

and g
0. We provide various approaches forcing (16), in general, in Appendix A yielding the

shapes of boundaries of rotating planets.

The computation greatly simplifies upon making an Ansatz for the density distribution,

namely, that its level sets are spheroidal. The early study by Clairaut (1743) was based on

this Ansatz. We briefly summarize Clairaut’s equation for determining the mentioned level

sets assuming the ellipticity is small. We let a and ✏(a) be the mean radius and ellipticity of

the density contours of ⇢0 = b⇢0(a), where b⇢0(a) is the value of the density of a spherically
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parameters ⌦ (s�1) re (km) g(re) (m/s2) ✏̇(re) ✏
hyd
(re)

✏
obs
(re)

Earth 7.2921e�5 6371.0 9.80 3.05e�5 > 0 3.34e�3 3.35e�3
Mars 7.0882e�5 3389.5 3.71 -8.98e�5 < 0 N/A 5.89e�3

Table 1. Bulk parameters of Earth and Mars; ✏̇(re) denotes the derivative of ✏ at a = re, and ✏
hyd
(re)

and ✏obs(re)
denote the computed hydrostatic ellipticity and observed ellipticity, respectively.

symmetric analogue. The ellipticity, ✏, solves Clairaut’s equation,

d2✏

da2
+ 8⇡Gb⇢0g�1

(a)

✓
d✏

da
+ a

�1
✏

◆
� 6a�2

✏ = 0, (17)

supplemented with the boundary values

d✏

da

����
a=0

= 0,
d✏

da

����
a=re

= r
�1
e

✓
5⌦2

re

2g(re)
� 2✏(re)

◆
, (18)

where g(a) is the value of the reference gravitational field in the radial direction, and re

is the mean surface radius. The derivation of Clairaut’s equation, and the Radau approx-

imation, are put in the context of a general scheme imposing (16) in Appendix A1. The

bulk parameters of Earth and Mars are listed in Table 1. While the hydrostatic assumption

seems to apply to Earth with reasonable accuracy, ✏̇(re) of the Mars appears to be negative,

whence this assumption fails to hold (Dollfus 1972; Bills & Ferrari 1978).

In Appendix A2, we propose an optimization scheme to constrain the density distri-

bution in the presence of rotation in accordance with (16). With the assumption that the

level sets of the density distribution are spheroids, we will recover the solution of Clairaut’s

equation since (16) will be satisfied. A refined model is the two-layer Maclaurin spheroid

(Kong et al. 2010).

4 THE RESULTING QUADRATIC EIGENVALUE PROBLEMS

In this section, we present the matrix representation and solution of the QEP for a rotating

planet. In Subsection 4.1, we derive the two matrix forms for a rotating planet with and

without fluid regions. The fluid regions often indicate the fluid outer core or the entire

core. In Subsection 4.2, we study various numerical approaches to solve the resulting QEP.

In Subsection 4.3, we present two di↵erent subspace methods to provide solutions for the

equivalent linear form of the resulting QEP.
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operations physical relations corresponding formulaeZ

⌦S

rv
s
h : (c : ru

s
h) dx

+

Z

⌃FS

S
n
(vsh · g0)(⌫s!f · us

h)[⇢
0]f
o
d⌃

(ṽs)HAsgũ
s solid sti↵ness matrix with gravity +

Z

⌦S

S
n
(r · vsh)(g0 · us

h)⇢
0

�u
s
h · (rg

0) · vsh⇢0 � u
s
h · (rv

s
h) · g0⇢0

o
dx

(ṽf )HAf ũ
s Brunt-Väisälä frequency

Z

⌦F

⇢
0
N

2 (g
0 · vfh)(g0 · u

f
h)

kg0k2 dx

(ṽp)HApp̃ fluid potential

Z

⌦F

�v
p
hph

�1 dx

(ṽf )HAdgp̃ fluid sti↵ness matrix with gravity

Z

⌦F

h
v
f
h(rph)� (vfh · g0)ph⇢0�1

i
dx

(ṽp)HAT

dgũ
f constraint with gravity

Z

⌦F

h
(rv

p
h)u

f
h � v

p
h(g

0 · uf
h)⇢

0

�1
i
dx

(ṽs)HEFSp̃ fluid-solid boundary condition

Z

⌃FS

(vsh · ⌫s!f )ph d⌃

(ṽp)HET

FSũ
f fluid-solid boundary condition

Z

⌃FS

�v
p
h(⌫

f!s · us
h) d⌃

(ṽs)HMsũ
s solid mass matrix

Z

⌦S

(vsh · us
h)⇢

0 dx

(ṽf )HMf ũ
f fluid mass matrix

Z

⌦F

(vfh · uf
h)⇢

0 dx

Table 2. Implicit definition of the matrices for Cowling approximation (cf. (Shi et al. 2019, Table
3)).

4.1 The matrix forms

Following our previous work (Shi et al. 2019), we utilize the mixed finite-element method

and FMM (Greengard & Rokhlin 1997; Gimbutas & Greengard 2011; Yokota 2013) to

discretize the elastic-gravitational system. It is natural to utilize a mixed finite-element

discretization to model the rotation. We use u
s

h
, uf

h
and ph to be the finite-element repre-

sentation of the dispacement for the solid regions, fluid regions and the pressure, p, respec-

tively. Similarly, vs
h
, vf

h
and v

p

h
are the finite-element representations of corresponding test

functions. Following the work of Shi et al. (2019), we write ũ
s, ũf and p̃ for the vectors

defining u
s

h
, uf

h
and ph, and ṽ

s, ṽf and ṽ
p for the vectors defining v

s

h
, vf

h
and v

p

h
. In Tables 2

and 3, we list the submatrices corresponding to the di↵erent terms in (12).
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operations physical relations corresponding formulaeZ

⌦S

r · (⇢0us
h) dx,Z

⌃FS

(⌫f!s · us
h)
⇥
⇢
0
⇤s

dx,

Csũ
s N bodies in ⌦S

Z

⌃SS[@X̃S
(⌫ · us

h)
⇥
⇢
0
⇤+
� dx

Z

⌦F

r · (⇢0uf
h) dx,Z

⌃FS

(⌫s!f · uf
h)
⇥
⇢
0
⇤f

dx,

Cf ũ
f N bodies in ⌦F

Z

⌃FF[@X̃F
(⌫ · uf

h)
⇥
⇢
0
⇤+
� dx

G

Z

X̃

r0 · (⇢0(x0)uh(x0))

kx� x0k dx0

S(Cũ) solution for Poisson’s equation +G

Z

⌃[@X̃

⌫(x0) · uh(x0)[⇢0(x0)]+�
kx� x0k dx0

Z

⌦S

r · (⇢0vsh)S(uh) dx

+

Z

⌃FS

(vsh · ⌫f!s)S(uh)[⇢
0]s dx

(ṽs)HCT

s (SCũ) incremental gravitational field in ⌦S +

Z

⌃SS[@X̃S

(vsh · ⌫)S(uh)[⇢
0]+� dx

Z

⌦F

r · (⇢0vfh)S(uh) dx

+

Z

⌃FS

(vfh · ⌫s!f )S(uh)[⇢
0]f dx

(ṽs)HCT

f (SCũ) incremental gravitational field in ⌦F +

Z

⌃FF[@X̃F

(vfh · ⌫)S(uh)[⇢
0]+� dx

(ṽs)HRsũ
s rotation in ⌦S

Z

⌦S

v
s
h ·
�
⌦⇥ u

s
h

�
⇢
0 dx

(ṽf )HRf ũ
f rotation in ⌦F

Z

⌦F

v
f
h ·
�
⌦⇥ u

f
h

�
⇢
0 dx

Table 3. Implicit definition of the matrices for self gravitation and rotation (cf. (Shi et al. 2019,
Table 4)).

4.1.1 Planets with fluid regions

Following our previous work (Shi et al. 2019), for the planets with fluid regions, we have

the matrix representation

!
2
Mũ� 2 i!R̃⌦ũ� (AG � EGA

�1
p E

T

G � C
T
SC)ũ = 0, (19)
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with

AG =

0

@ Asg 0

0 Af

1

A , R̃⌦ =

0

@ Rs 0

0 Rf

1

A , EG =

0

@ EFS

Adg

1

A ,

M =

0

@ Ms 0

0 Mf

1

A , C =
⇣

Cs Cf

⌘
, ũ =

0

@ ũ
s

ũ
f

1

A ,

where all the submatrices are shown in Tables 2 and 3. We note that (19) is the matrix

representation of (12).

4.1.2 Planets without fluid regions

For a purely solid planet, (19) simplifies and we obtain the QEP,

!
2
Msũ

s � 2 i!Rsũ
s � (Asg � C

T

s SsCs)ũ
s = 0. (20)

We note that Asg, Cs and C
T
s are shown in Tables 2 and 3 and do not include any terms

related to the fluid-solid boundaries.

4.2 Solution of the quadratic eigenvalue problem

To simply (19) and (20) without any loss of the generality, we let ũ be the solution vector

ũ
s for (20) or ũ for (19) and derive a standard form for the QEP,

!
2
Mũ� 2 i!R̃⌦ũ�Aũ = 0, (21)

where A represents either Asg � C
T
s SsCs in (20) or AG � EGA

�1
p E

T

G
� C

T
SC in (19). We

also note that R̃⌦ = �R̃
T

⌦.

It is challenging to solve the resulting QEP directly; see Tisseur & Meerbergen (2001)

for a review and Bai et al. (2000) for a practical guide. The standard QEP takes the form

of

(!2
M + !C+K)ũ = 0,

where C = �2 i R̃⌦ with C = CH and K = �A with K = K
H while comparing with our

problem (21). The eigenfrequencies are real and come in pairs (!,�!). To solve the QEP

of the original form, the QEP is often projected onto a properly chosen low-dimensional
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subspace to facilitate the reduction to a QEP directly with lower dimension, such as the

Jacobi–Davidson method (Sleijpen et al. 1996a,b). The reduced QEP can then be solved by a

standard dense matrix technique. Both Arnoldi- and Lanczos-type processes (Ho↵nung et al.

2006) were developed to build projections of the QEP. A subspace approximation method

(Holz et al. 2004) was presented using perturbation theory of the QEP. A second-order

Arnoldi procedure for generating an orthonormal basis has been developed for solving a

large-scale QEP directly (Bai & Su 2005). However, the above-mentioned methods typically

utilize a shift-and-invert scheme to solve for the interior eigenpairs. In practice, solving

shifted linear systems often leads to a computational bottleneck, especially, on a highly

parallel supercomputer with distributed memory using a direct solver. We examplify this

issue in Shi et al. (2018).

Alternatively, the QEP can be transformed into an equivalent linear problem. Possible

options are the following (Saad 2011, Chapter 9.3)

0

@ 0 I

�A �2R̃⌦

1

A

0

@ ũ

i!ũ

1

A = i!

0

@ I 0

0 M

1

A

0

@ ũ

i!ũ

1

A , (22)

0

@ 0 A

A 2R̃⌦

1

A

0

@ ũ

i!ũ

1

A = i!

0

@ A 0

0 �M

1

A

0

@ ũ

i!ũ

1

A , (23)

0

@ 0 I

A 2 i R̃⌦

1

A

0

@ ũ

!ũ

1

A = !

0

@ I 0

0 M

1

A

0

@ ũ

!ũ

1

A , (24)

0

@ A 0

0 M

1

A

0

@ ũ

!ũ

1

A = !

0

@ �2 i R̃⌦ M

M 0

1

A

0

@ ũ

!ũ

1

A , (25)

0

@ 0 A

A 2 i R̃⌦

1

A

0

@ ũ

!ũ

1

A = !

0

@ A 0

0 M

1

A

0

@ ũ

!ũ

1

A . (26)

The orthonormality condition (cf. (14)) implies

ũ
H

(i)Mũ(j) � 2 i (!(i) + !(j))
�1

ũ
H

(i)R̃⌦ũ(j) = �ij , (27)

where (i), (j) are indices of the two eigenvectors. In Table 4, we list the features of the

di↵erent forms while solving the QEP. We will work with (26).
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systems Hermitian or not concerns

(22) a real non-Hermitian system non-Hermitian & orthonormality
(23) a real non-Hermitian system the non-positive “new” mass matrix
(24) a complex non-Hermitian system non-Hermitian & orthonormality
(25) a complex Hermitian system the non-positive “new” mass matrix
(26) a complex Hermitian system the non-positive “new” mass matrix

Table 4. List of features of di↵erent linear forms.

4.3 Subspace approximation

Following (Shi et al. 2018, 2019) using x as an alternative notation for the displacement

vector of a non-rotating planet, we first solve for the eigenpairs in

Ax = !
2
[2]Mx, (28)

where ![2] denotes the eigenfrequency for the linear real Hermitian problem. Polynomial

filtering techniques (Saad 2006; Fang & Saad 2012; Li et al. 2016) are appealing as they do

not involve solving linear systems with highly indefinite shifted matrices. Instead, the bulk

of the computations are carried out in the form of matrix-vector multiplications, which are

generally much easier to be parallelized than solving the indefinite linear systems. For a

generalized eigenvalue problem, Ax = �Mx with both real Hermitian A and M , the base

form of filtering is

⇢(M�1
A)x = ⇢(�)x,

where ⇢(·) denotes the filter function (Li et al. 2016; Shi et al. 2018). Multiplying both sides

by M yields the following problem

K2x = ⇢(�)Mx, with K2 = M⇢(M�1
A).

We apply the Lanczos algorithm to matrix pencil (K2,M). In the polynomial filtered non-

restart Lanczos algorithm, each step of the iterative process consists of a Lanczos step with

K2,

�i+1zi+1 = K2vi � ↵izi � �izi�1,

followed by a full reorthogonalization against all the previous vectors {v} using modified

Gram-Schmidt iterations with z is defined as z = Mv. A test for convergence is implemented

for every Ncycle steps after the first Ntest iterations. We check if the sum of the Ritz values
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that are greater than the threshold ⌧ no longer vary in several consecutive checks. Finally, a

computed Ritz pair (�i, xi) is accepted if �i is in the desired interval and its residual norm

is smaller than a given tolerance. We note that vectors v and z are real and their inner

product is (v, z) = v
T
z. Since K2 and M are real Hermitian, ↵ and �, in the tridiagonal

matrix TK2 say, are real. The details of the algorithm are provided in Algorithm 1 from line

1 to 12.

In the above, {v} contains the extended Lanczos vectors. These generate a large sub-

space, spanned by eigenvectors, associated with a target interval. In Subsections 4.3.1 and

4.3.2, we utilize the computed extended Lanczos vectors to reduce the dimension of the

equivalent form (26) of the QEP.

4.3.1 Extended Lanczos vectors spanning the subspace

Instead of using the computed Ritz vectors directly, we utilize extended Lanczos vectors and

obtain more Ritz vectors through the polynomial filtering method. We then approximate

the solution ũ using the basis computed from

AXe = MXe⇤e, (29)

where Xe denotes the Ritz vectors of the linear system and ⇤e denotes a diagonal matrix

whose diagonal is a collection of !2
[2]. We take me eigenvectors spanning a subspace and let

ũe = Xeye to approximate ũ in (21), where ye is complex. Applying

0

@ X
T
e 0

0 X
T
e

1

A

to both sides of (26) and making use of XT
e AXe = ⇤e, we can then rewrite (26) as

0

@ 0 ⇤e

⇤e 2 iXT
e R̃⌦Xe

1

A

0

@ ye

!eye

1

A = !e

0

@ ⇤e 0

0 I

1

A

0

@ ye

!eye

1

A . (30)

We note that 2 iXT
e R̃⌦Xe is dense with size of me ⇥me and complex Hermitian. We can

further simplify (30) to a standard eigenvalue problem,

0

@ 0 ⇤1/2
e

⇤1/2
e 2 iXT

e R̃⌦Xe

1

A

0

@ ⇤1/2
e ye

!eye

1

A = !e

0

@ ⇤1/2
e ye

!eye

1

A . (31)



Seismic normal modes with rotation 17

It is apparent that if R̃⌦ = 0, we have !e = ![2] = ⇤1/2
e . The system (31) can be solved

via the standard eigensolver that was implemented in LAPACK (Anderson et al. 1999). The

details are provided in lines 13 to 20 in Algorithm 1.

Algorithm 1 A subspace method for the resulting QEP

1: Input: A and M , filter function ⇢, K2 = ⇢(A) and target interval [f1, f2]
2: Initialization: z0 := 0, initial vector v1 with kv1kM = 1, and z1 := Mv1

3: for i = 1, . . . , NMaxIts do
4: z := K2vi � �izi�1, ↵i = (z, vi), z := z � ↵izi

5: z := z �
P

j
(z, vj)zj for j  i (full reortho.)

6: v := M
�1

z, �i+1 = (v, z)1/2, vi+1 := v/�i+1, zi+1 := z/�i+1

7: if i  Ntest and mod (i�Ntest, Ncycle) = 0 then
8: told = tnew and tnew =

P
✓j for ✓j � ⌧ , where ✓j is the Ritz value

9: if (|tnew � told| < tol0) break; end if
10: end if
11: end for
12: Obtain all the Lanczos vectors V = [v1, . . . , vml ]
13: [⇥A, QA] = eig(TA), where TA = V AV

T

14: for i = 1, . . . ,ml do
15: xi = V QA(:, i), xi := xi/kxikM and �i := (Axi, xi)
16: if (�i � ⇠cut and kAxi � �iMxik/|�i| < tol2) Accept (�i, xi); end if
17: end for
18: Obtain Xe = [x1, . . . , xme ] and ⇤e = [�1, . . . ,�me ]

19: [!e, Ye] = eig(Ae), where Ae =

 
0 ⇤1/2

e

⇤1/2
e 2 iXT

e R̃⌦Xe

!

20: Collect all the eigenfrequencies in [f1, f2] as well as the corresponding eigenvectors

4.3.2 Extended Lanczos vectors in the Cowling approximation spanning the subspace

The computation of the incremental gravitational potential using the FMM is quite costly.

To avoid this computation one may invoke the Cowling approximation. Then we solve the

generalized eigenvalue problem

ACx = !
2
CMx,

where

AC = A+ C
T
SC,

for a planet containing fluid regions (cf. (19)) and

AC = A+ C
T

s SsCs,
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for an entirely solid planet (cf. (20)), while !C denotes the eigenfrequencies in the Cowling

approximation. We collect all the computed Lanczos vectors and obtain VC = [v1, . . . , vmlc
],

where mlc is the number of computed Lanczos vectors. We calculate the extended Ritz

vectors Xc = [x1, . . . , xmc ], where mc is the number of Ritz vectors, for the original system

without rotation via

AXc = MXc⇤c,

where ⇤c denotes a diagonal matrix. The solution ũ of (21) can now be approximated by

ũc = Xcyc, where yc is complex. The counterpart of (31) is obtained upon projecting (21)

onto the proposed subspace Xc,

0

@ 0 ⇤1/2
c

⇤1/2
c 2 iXT

c R̃⌦Xc

1

A

0

@ ⇤1/2
c yc

!cyc

1

A = !c

0

@ ⇤1/2
c yc

!cyc

1

A . (32)

In Algorithm 2, we provide the details of our proposed algorithm.

Algorithm 2 A subspace method using Lanczos vectors of Cowling approximation

1: Input: AC , A and M , filter function ⇢, KC = ⇢(AC) and target interval [f1, f2]
2: Initialization: z0 := 0, initial vector v1 with kv1kM = 1, and z1 := Mv1

3: Perform filtered Lanczos algorithm �i+1zi+1 = KCvi � ↵izi � �izi�1 (cf. Algorithm 1)
4: Obtain all the Lanczos vectors VC = [v1, . . . , vmlc

]

5: [⇥C , QC ] = eig(TC), where TC = V
T

C
ACVC

6: for i = 1, . . . ,mlc do
7: xi = V QC(:, i), xi := xi/kxikM and �i := (Axi, xi)
8: if (�i � ⇠cut and kAxi � �iMxik/|�i| < tol3) Accept (�i, xi); end if
9: end for

10: Obtain Xc = [x1, . . . , xmc ] and ⇤c = [�1, . . . ,�mc ]

11: [!c, Yc] = eig(Ac), where Ac =

 
0 ⇤1/2

c

⇤1/2
c 2 iXT

c R̃⌦Xc

!

12: Collect all the eigenfrequencies in [f1, f2] as well as the corresponding eigenvectors

4.3.3 Summary and comparison with other approaches

In our proposed method, the key is to find a good subspace to project the full QEP onto

preserving accuracy. The subspaces Xe, Xc are contained in H1 up to discretization errors.

Several competing approaches were studied during the past several decades. The pertur-

bation theory (Dahlen & Sailor 1979) utilizes the eigenfunctions of a spherically symmetric

Earth model to estimate first- and second-order Coriolis splitting, splitting due to rotation
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model # of elm. size of Ap size of A size of S [f1, f2] (mHz)

Constant (C3kp1) 3,129 0 1,821 3,521 [0.35,0.85]
Earth (E3kp1) 3,330 392 2,760 4,242 [0.3,0.86]
Mars (M2kp1) 1,887 145 1,677 2,539 [0.4,1.14]
Mars (M8kp1) 8,020 152 7,557 12,436 [0.4, 1.14]
Earth (E40kp1) 42,828 3,171 30,384 51,000 [0.1,1.5]

Table 5. Numerical parameter values pertaining to the testing of computational accuracy and
estimating the cost in di↵erent models.

and ellipticity (Dahlen & Tromp 1998, Chapter 14.2 and Appendix D.4). There are two

limitations in the perturbation theory: First, the basis from a spherically symmetric model

does not lie in H1, in general, if the shapes of the fluid-solid boundaries are not spherical;

secondly, the calculation relies on the fact that the rotation frequency must be much smaller

than the eigenfrequencies. The self-coupling and group-coupling approaches, and the later

implemented full-mode coupling method (Deuss & Woodhouse 2001, 2004; Al-Attar et al.

2012; Yang & Tromp 2015; Akbarashrafi et al. 2017) have the drawback that their underly-

ing basis fundamentally does not lie in H1 which is particularly important in the presence

of fluid-solid boundaries. As an aside, our approach allows high rotation rates. Nonetheless,

our approach based on extended Lanczos vectors is not entirely dissimilar from a full-mode

coupling concept.

5 COMPUTATIONAL EXPERIMENTS

In this section, we first show the computational accuracy of tour proposed approach on dif-

ferent small planetary models when the computation of the full mode expansion is feasible.

We then illustrate computational experiments yielding planetary normal modes with the

use of two supercomputers, Stampede2 (an Intel cluster) at the Texas Advanced Computing

Center and Abel (a Cray XC30 cluster) at Petroleum Geo-Services. We study the spectra

of two models: Earth 1066A (Gilbert & Dziewonski 1975) and a Mars model (Khan et al.

2016). We use 23.9345 hours (Allen 1973) and 24.6229 hours (Lodders & Fegley 1998) as

Earth’s and Mars’ rotation periods, respectively.

5.1 Computational accuracy

For small models, we are able to compute the full mode expansion associated with the point

spectrum using (31). In Table 5, we list the numerical parameter values pertaining to the

testing of computational accuracy and estimating the cost in di↵erent models: The number
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Figure 4. Tests with three di↵erent small models for the low-lying seismic eigenfrequencies. The
numerical parameters of the tests are given in Table 5.

of elements (labeled as # of elm.), size of Ap, size of A, size of S and the target frequency

interval in milliHertz (labeled as [f1, f2] (mHz)).

In Figs. 4 (a)–(c), we illustrate the computational accuracy of tests in three di↵erent

models C3kp1, E3kp1 and M2kp1, respectively, on the lowest seismic eigenfrequencies using

P1 elements. We compare the di↵erences in the eigenfrequencies between the full mode

expansion and a 200 mode expansion using Algorithm 1. The di↵erences are about 5⇥10�6

mHz, which is two digits below the accuracy of common normal mode measurements.

In Figs. 5 (a) and (b), we show the computational accuracy of M8kp1 on [0.4, 1.14]

mHz as well as the error distribution. In Fig. 5 (a), we show that even with a 100 mode

expansion, the di↵erences are as low as 1 ⇥ 10�5 mHz. In Fig. 5 (b), we show that with a

1000 mode expansion, the di↵erences are further reduced to about 1⇥ 10�6 mHz.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

fr
e

q
u

e
n

cy
 (

m
H

z)

2

4

6

8

10

12

14

16

d
iff

e
re

n
ce

s 
(m

H
z)

10 -6

full expansion
100 mode expansion

0

1

2

3

4

5

re
l. 

e
ig

e
n

va
lu

e
 d

iff
e

re
n

ce
s

10 -5

100 mode expansion
200 mode expansion
400 mode expansion
1k mode expansion

(a) M8kp1 on [0.4, 1.14]mHz (b) Errors of (a)

Figure 5. Tests for computational accuracy of a Mars model using di↵erent numbers of mode
expansion.
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Methods pol. deg. # of iter. t-Mv (s) t-FMM (s) total times (s) rel. errs

Algorithm 1 167 831 1.8e�4 5.4e�1 79274.0 5.e�7
Algorithm 2 108 771 1.7e�4 5.5e�1 1761.0 2.e�6

Table 6. Comparison between two methods on experiment E40kp1 in Table 5 on 4 computing
nodes.

5.2 Computational cost

Here, we compare the computational costs of Algorithms 1 and 2. In Table 6, we list the

parameters used in running the two algoritms on experiment E40kp1: Polynomial degree

(labeled as pol. deg.), number of iterations (labeled as # of iter.), average time of one

M multiplication with a vector (labeled as t-Mv), average time of one FMM operation

(labeled as t-FMM), total time and relative error that are calculated via k!2
Mũ�2 i!R̃⌦ũ�

Aũk/k!k. Both tests are performed on 4 Intel Knights Landing nodes using P1 elements.

We note that the computational cost of one FMM operation is much longer than this of

the sparse matrix-vector multiplication. In this test, Algorithms 1 and 2 perform 167⇥831

= 138,777 FMM operations and 771 FMM operations, respectively. The cost savings in the

Cowling approximation are significant indeed.

5.3 Benchmark experiments for Earth models

Here, we perform a benchmark experiment of Earth model 1066A (Gilbert & Dziewon-

ski 1975) against a perturbation calculation (Dahlen & Sailor 1979). In the perturbation

calculation, the eigenfrequency perturbations �!m have a following form

�!m = !0(a+ bm+ cm
2), �l  m  l, (33)

where !0 denotes the eigenfrequency of the unperturbed spherically symmetric model, l

denotes the angular order in the spherical harmonic expansion, and a, b and c are the

relevant coe�cients. The values of a, b and c for di↵erent radial modes can be found in

(Dahlen & Tromp 1998, Table 14.1). In Table 7, we list the numerical parameters of the

Earth models in the benchmark test. Models E1Mp1 and E2Mp2 used to compute !0

represent spherically symmetric Earth models without rotation. Experiments EE1Mp1 and

EE2Mp2 represent elliptic Earth models and are used to compute eigenfrequencies of our

proposed method via Algorithm 2. The ellipticity of the Earth models are computed by

solving Clairaut’s equation in Section 3. Since the eigenfrequencies of the Slichter modes
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Exp. # of elm. size of Ap size of A size of S [f1, f2] (mHz)

Earth (E1Mp1) 1,011,973 31,849 537,198 1,074,577 [0.04,1.5]
Earth (E2Mp2) 2,015,072 530,721 8,569,197 2,165,360 [0.2,1.5]
Earth (EE1Mp1) 1,003,065 31,688 533,064 1,065,629 [0.04,1.5]
Earth (EE2Mp2) 2,002,581 528,124 8,520,432 2,153,109 [0.2,1.5]

Table 7. Numerical parameters of the Earth models used in the benchmark experiments.

(Slichter 1961) are close to the upper bound of the essential spectrum and the convergence of

the proposed algorithm is relatively slow, we set f1 = 0.04 mHz and use experiments E1Mp1

and EE1Mp1 to compute the Slichter modes using P1 elements. Experiments E2Mp2 and

EE2Mp2 are used to compute other modes using P2 elements. It is expected that rotation

through Coriolis coupling of low-frequency modes is the dominant mechanism (Zürn et al.

2000). In Fig. 6, we show the comparison between the perturbation and our proposed

method. The values of the computed eigenfrequenies of the proposed method agree with

the perturbation results in as much as that the relative di↵erences are commonly less than

0.3 µHz. The degree of agreement is, of course, model dependent.

5.4 Mars models

Here, we present our computational results for Mars models. The interiors of the Mars

models are based on mineral physics calculations (Khan et al. 2016). In Table 8, we list

three Mars models labeled as M2Mp2, EM2Mp2 and TM2Mp2 which represent a spherically

symmetric Mars model without rotation, a spheroidal Mars model with rotation, and a

spheroidal Mars model with a three-dimensional crust and rotation using P2 elements.

The shape of the spheroidal Mars model’s core-mantle boundary is computed by solving

Clairaut’s equation. Since Mars presumably is not hydrostatic as discussed in Section 3, its

solid region is estimated via a linear interpolation using the ellipticities of the core-mantle

boundary (" = 4.19⇥10�3) and the surface (" = 5.89⇥10�3). Model TM2Mp2 is illustrated

in Fig. 2.

In Fig. 7, we show eigenfrequencies computed in di↵erent Mars models listed in Ta-

ble 8. Symbols •, � and ⇥ represent the eigenfrequencies computed in Mars models M2Mp2,

Exp. # of elm. size of Ap size of A size of S [f1, f2] (mHz)

Mars (M2Mp2) 1,996,773 579,338 8,967,684 2,257,801 [0.2,2.0]
Mars (EM2Mp2) 2,001,619 579,667 8,984,532 2,262,143 [0.2,2.0]
Mars (TM2Mp2) 2,008,654 323,810 8,289,927 2,158,366 [0.2,2.0]

Table 8. Numerical parameters for the Mars models.
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Figure 6. Comparison of the results from perturbation calculation and our proposed method, which
are shown using symbols • and ⇥, respectively. (a), (b) and (c) present comparisons of 0Sl, 0Tl and
1Sl modes, respectively.

EM2Mp2 and TM2Mp2 (cf. Table 8). The horizontal dashed lines represent the eigenfre-

quencies of a spherically symmetric Mars model computed with a one-dimensional solver

(Masters et al. 2011; Ye 2018). Mode splitting is apparent due to ellipticity, rotation and

heterogeneity in three dimensions. The three-dimensional crust does not have a clear influ-

ence on the lowest eigenfrequencies associated with 0S2, 0T2, 1S1, 0S3, 0T3, 1S2 and 0S4 in

Fig. 7 (a). The three-dimensional crust has a noticeable e↵ect on the surface wave modes,

such as 0T6, 0T7, 0T8, 0S6, 0S7 and 0S8, as expected. In Fig. 8, we show the eigenfrequencies
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Figure 7. Eigenfrequencies of di↵erent Mars models. (a), (b), (c) and (d) illustrate eigenfrequen-
cies in di↵erent frequency windows. Symbols •, � and ⇥ represent the eigenfrequencies computed
from Mars models M2Mp2, EM2Mp2 and TM2Mp2 in Table 8, respectively. The horizontal dashed
lines represent the eigenfrequencies of a spherically symmetric Mars model computed with a one-
dimensional solver.

in a subinterval of the interval used in Fig. 7 (d). Here, we note the splitting of modes 2S4,

0S8 and 0T8 and highlight the e↵ects of the three-dimensional crust. The maximum di↵er-

ence among the eigenfrequencies in Fig. 8 is 5.2 µHz, which, in principle, can be detected.

There is no mode-coupling observed in these experiments. In Fig. 9, we plot the branch

1Sl as well as the corresponding incremental gravitational fields rS(u). We anticipate that
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Figure 8. Illustration of a subinterval in Fig. 7(d). Splitting of modes 2S4, 0S8 and 0T8 due to the
three-dimensional crust. The maximum di↵erence among the eigenfrequencies is 5.2 µHz.

both the seismic and gravity measurements of these modes could help to estimate the size

of Martian core.

6 CONCLUSION

In this work, we propose a method to compute the normal modes of a fully heterogeneous

rotating planet. We apply the mixed finite-element method to the elastic-gravitational

system of a rotating planet and utilize the FMM to calculate the self gravitation. We

successfully separate out the essential spectrum by introducing an additional constraint

equation. Thus, we are able to compute the normal modes associated with seismic point

spectrum. To solve the relevant QEP, we utilize extended Lanczos vectors computed in a

non-rotating planet – with the shape of boundaries of a rotating planet and accounting for

the centrifugal potential – spanning a subspace to reduce the dimension of an equivalent

linear form of the QEP. The reduced system can be solved with a standard eigensolver. We

demonstrate our ability to compute the seismic normal modes with rotation accurately. We

then study the computational accuracy and cost of our proposed method and use a standard

Earth model to perform a benchmark test against a perturbation calculation. We carry out

computational experiments on various Mars models and illustrate mode splitting due to

rotation, ellipticity and heterogeneity of the crust. The use of modern supercomputers

enables us to capture normal modes associated with the seismic point spectrum of a fully

heterogeneous planet accurately. The computational cost can further be reduced using

accelerating techniques.
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Figure 9. Visualization of 1Sl branch of a Mars model with a three-dimensional crust and rotation
from TM2Mp2 experiment. The light ball indicates the position of the core-mantle boundary. (a1)–
(a6) present the modes 1S1 to 1S6, respectively. The unit in the color of (a1) - (a6) is meter. (b1)–(b6)
present the perturbed gravitational field rS(u) of the modes 1S1 to 1S6, respectively. The unit in
the colorbar of (b1)–(b6) is millimeter.
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Khan, A., van Driel, M., Böse, M., Giardini, D., Ceylan, S., Yan, J., Clinton, J., Euchner, F.,
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Lognonné, P., 1991. Normal modes and seismograms in an anelastic rotating Earth, Journal of

Geophysical Research: Solid Earth, 96(B12), 20309–20319.
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APPENDIX A: SHAPES OF A ROTATING PLANET

In this appendix, we revisit the derivation of Clairaut’s equation in the context of condition

(16) associated with the well-posedness and hydrostatic equilibrium (15).

A1 Derivation of Clairaut’s equation

We start with the equation (15) in the co-rotating frame,

rp = ⇢
0
g
0 = �⇢0r(�0 + ),

where �0,  and g
0 are defined in (1), (3) and (4), respectively. Hence, transforming (3)

into polar coordinates, the centrifugal potential takes form of

 =
⌦2

r
2

3
[P2(cos ✓)� 1],

where P2(cos ✓) = (3 cos2 ✓�1)/2 denotes the second-order Legendre polynomial. Equation

(16) directly implies

r⇢0 ⇥ g
0 = �r⇢0 ⇥r(�0 + ) = 0.

We now assume that the level sets of the density ⇢0 are spheroidal with mean radii, a,

and ellipticities, ✏(a). We note that the ellipticity will be a function of mean radius. The

level sets can be written in polar coordinates as

r = ra(✓) = a


1� 2

3
✏(a)P2(cos ✓)

�
.

Then

⇢
0(ra(✓), ✓) = consta =: b⇢0(a).

The density can be written as

⇢
0(r, ✓) =

1X

n=0

⇢n(r)Pn(cos ✓),

where

⇢n(r) = (n+ 1/2)

Z
⇡

0
b⇢0(a)Pn(cos ✓) sin ✓ d✓, (A.1)
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and Pn(cos ✓) denotes the Legendre polynomial. To first order in |✏|, we have

a = r


1 +

2

3
✏(r)P2(cos ✓)

�
,

and substitute (A.1) into

⇢n(r) = (n+ 1/2)

Z
⇡

0


b⇢0(r) + 2r

3

db⇢0

dr
✏(r)P2(cos ✓)

�
Pn(cos ✓) sin ✓ d✓.

We note that

⇢0(r) = b⇢0(r), ⇢2(r) =
2r

3

db⇢0

dr
✏(r),

with all of the other ⇢n(r) zeros. To first order in |✏|, we have

⇢
0(r, ✓) = b⇢0(r) +

2r

3

db⇢0

dr
✏(r)P2(cos ✓),

With this density profile, we solve (1) in polar coordinates and obtain the expansion

�0(r, ✓) = �0(r) + �2(r)P2(cos ✓), (A.2)

where

�0(r) = �4⇡G


1

r

Z
r

0
b⇢0(r0)r02 dr0 +

Z 1

r

b⇢0(r0)r0 dr0
�
,

�2(r) = �8⇡G

15


1

r3

Z
r

0

db⇢0

dr0
r
05 dr0 + r

2
Z 1

r

db⇢0

dr0
✏(r0) dr0

�
.

To first order in |✏|, we obtain

�0(a, ✓) = �0
0(a) + �

0
2(a)P2(cos ✓),

where

�0
a = �4⇡G


1

a

Z
a

0
b⇢0(a0)a02 da0 +

Z 1

a

b⇢0(a0)a0 da0
�
,

�0
2(a) = �8⇡G

3


✏(a)

a

Z
a

0
b⇢0(a0)a02 da0 � 1

5a3

Z
a

0
b⇢0(a0) d[✏(a0)(a05)]� a

2

5

Z 1

a

b⇢(a0) d[✏(a0)]
�
.

To match the level sets of b⇢0(a), to the same order in |✏| with (A.2), we simply must have
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the cancellation,

�0
2(a) +

⌦2
a
2

3
= 0. (A.3)

Equation (A.3) implies

✏(a)a2
Z

a

0
b⇢0(a0)a02 da0 � 1

5

Z
a

0
b⇢0(a0) d[✏(a0)(a05)]� a

5

5

Z 1

a

b⇢(a0) d[✏(a0)] = ⌦2
a
5

8⇡G
.

Di↵erentiating (A.3) with respect to a twice, we obtain

a
2 d2✏

da2
� 6✏+

6b⇢0

b⇢0

✓
a
d✏

da
+ ✏

◆
= 0, (A.4)

where the average density

b⇢0(a) = 3

a3

Z 1

0
b⇢0(a0)a02 da0 =

3g(a)
4⇡Ga

.

Equation (A.4) is exactly the Clairaut’s equation (17). The derivation of the boundary

conditions (cf. (18)) can be obtained from taking the limit of the di↵erentiation of (A.3) with

respect to a; see (Dahlen & Tromp 1998, (14.12)) for details. Clairaut’s equation determines

the ellipticities of the level sets. Through the hydrostatic equilibrium, we automatically

guarantee that the level sets of p0 coincide with the ones of the geopotential.

The Radau approximation (Radau 1885) is commonly used via introducing

⌘ =
a d✏

✏ da
.

Substituting ✏ by ⌘, we can rewrite (A.4) or (17)

d

da

⇣
a
4
g(a)

p
1 + ⌘

⌘
= 5g(a)a

3
f(⌘), (A.5)

where

f(⌘) =
1 + ⌘/2� ⌘

2
/10p

1 + ⌘
.

The range of the dimensionless independent variable is ⌘(0) 6 ⌘ 6 ⌘(re), where

⌘(0) = 0, ⌘(re) =
5⌦2

r
3
e

2✏(re)GM e
� 2.

Given a small ellipticity, f(⌘) is quite close to one. Hence, the Radau’s approximation is
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commonly made to replace (A.5) by

d

da

⇣
a
4
g(a)

p
1 + ⌘

⌘
⇡ 5g(a)a

3
.

We can then obtain the approximate solution of (17)

✏(a) ⇡ ✏(re) exp

✓
�
Z

re

a

⌘
0
a
0�1 da0

◆
, (A.6)

where

✏(re) =
5⌦2

r
3
e

2(⌘(re) + 2)GM e
⇡ 10⌦2

r
3
e/GM

e

4 + 25[1� 3Ie/(M er2e)/2]
2
.

More details about hydrostatic ellipticity and Clairaut’s equation can be found in (Dahlen

& Tromp 1998, Chapter 14.1).

A2 More general density profiles

To overcome the limitation of ellipsoidal assumption, we model the density of the fully

heterogeneous planet and the shape of the liquid core due to the e↵ects of the centrifugal

force. Since g
0 needs to be parallel to r⇢0, to find the satisfactory ⇢0 in (16), we form a

related optimization

min
⇢

E(⇢) = 1

2

Z

⌦F

⇥
(g0)2(r⇢)2 � (g0 ·r⇢)2

⇤
dx+

1

2

Z

⌃FS[@X̃F

⇥
(g0)2⌫2 � (g0 · ⌫)2

⇤
d⌃,

(A.7)

subjects to constraints on conservation of mass,

Z

X̃

⇢
0 dx = M

e
, (A.8)

and conservation of the moment of inertia,

Z

X̃

|⌦|�2[⌦2
x
2 � (⌦ · x)2]⇢0 dx =

Z

X̃

�2|⌦|�2
 ⇢

0 dx = I
e
. (A.9)

where M
e and I

e denote mass and moment of inertia, respectively; g0 is a function of the

density ⇢. We note that g0 depends on ⇢0 through Poisson’s equation (cf. (1)) while we need

to align the gradient of ⇢0 and g
0 at the same time.
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We note that if ⇢⇤ is a local solution,

d

d⇢
E(⇢⇤) = 0. (A.10)

where

d

d⇢
E(⇢)(·) =

Z

X̃F

✓
g
0 · dg0

d⇢
(·)
◆
(r⇢)2 + (g0)2r⇢ ·r(·)

�
dx

�
Z

X̃F


(g0 ·r⇢)

✓
dg0

d⇢
(·) ·r⇢+ g

0 ·r(·)
◆�

dx

+

Z

⌃FS[@X̃F

✓
g
0 · dg0

d⇢
(·)
◆
⌫
2 � (g0 · ⌫)

✓
dg0

d⇢
(·) · ⌫

◆�
d⌃.

The combination of (A.8), (A.9) and (A.10) yields the Karush-Kuhn-Tucker conditions,

or KKT conditions for short (Nocedal & Wright 2006). Given a perturbation �⇢⇤ near ⇢⇤

satisfies
Z

X̃

�⇢
⇤ dx = 0, and

Z

X̃

�2|⌦|�2
 �⇢

⇤ dx,

the fact that

d

d⇢
E(⇢⇤)�⇢⇤ = 0,

implies that

g
0(⇢⇤)⇥r⇢⇤ = 0, and [g0(⇢⇤)⇥ ⌫]|⌃FS[@X̃F = 0.

Equation (16) is then satisfied.
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