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SUMMARY

A new approach is presented to compute the seismic normal modes of a fully
heterogeneous, rotating planet. Special care is taken to separate out the essential
spectrum in the presence of a liquid outer core. The relevant elastic-gravitational
system of equations, including the Coriolis force, is subjected to a mixed finite-
element method, while self gravitation is accounted for with the fast multipole
method (FMM). To solve the resulting quadratic eigenvalue problem (QEP), the
approach utilizes extended Lanczos vectors forming a subspace computed in a non-
rotating planet — with the shape of boundaries of a rotating planet and accounting
for the centrifugal potential — to reduce the dimension of the original problem
significantly. The subspace is guaranteed being contained in the space of functions

to which the seismic normal modes belong. The reduced system can further be
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solved with a standard eigensolver. The computational accuracy is illustrated
using all the modes with relative small meshes, and also tested against standard
perturbation calculations relative to a standard Earth model. The algorithm and
code is used to compute the point spectra of eigenfrequencies in several Mars

models studying the effects of heterogeneity on a large range of scales.

1 INTRODUCTION

Planetary normal modes are instrumental for studying the dynamic response to sources
including earthquakes along faults and meteorite impacts as well as tidal forces (Dahlen &
Tromp]||1998; Lognonné 2005). For a review of Earth’s free oscillations, we refer to

house & Deuss (2007)). The low-lying eigenfrequencies contain critical information about

the planet’s large-scale structure and provide constraints on heterogeneity in composition,
temperature, and anisotropy. Rotation constrains the shapes and possible density distribu-
tions of planets. The effect of rotation on the point spectrum is well understood and has

been observed for decades (Park et al. 2005 Fig.1).

Early studies of normal modes of a rotating, elliptical Earth utilized Rayleigh’s princi-

ple to approximate the associated eigenfrequencies (Backus & Gilbert|[1961; Dahlen|[1968).

Later, perturbation theory (Dahlen & Sailor|1979)) was developed and utilized the eigenfunc-

tions of a spherically symmetric Earth model to estimate first- and second-order Coriolis

splitting, splitting due to rotation and ellipticity (Dahlen & Tromp|1998, Chapter 14.2 and
p g, Sp g p Yy p D

Appendix D.4). Spectral perturbation theory initially was based on self-coupling or group-
coupling approaches, while later full-mode coupling scheme have been considered
[1968] [1969; [Woodhouse & Dahlen [1978; [Woodhouse|[1980} [Park|[1986} [Park & Gilbert|/1986}
[Park|[1990; Romanowicz|[1987; [Lognonné & Romanowicz/[1990; Hara et al. [1991], [1993; [Um
let al. 1991} [Lognonné [1991; [Deuss & Woodhouse [2001}, 2004; |Al-Attar et al.|2012}; Yang &
. The issue with these coupling approaches is that the basis used does not lie

in the space of normal modes of a rotating planet which is important, in particular, in the

presence of a liquid outer core.

In our previous work (Shi et al. 2019)), we separated the essential spectrum and in-

troduce the mixed finite-element method for fully heterogeneous non-rotating planets. In

a separate paper (Shi et al.|2018), we introduced a highly parallel algorithm for solving
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the resulting generalized eigenvalue problem using a polynomial filtering Lanczos method
(Li et al.||2016). Here, we extend our previous work and include rotation in the elastic-
gravitational system through the Coriolis force as well as the centrifugal potential with the
appropriate constraints on the shapes of the (fluid-solid) boundaries. We utilize extended
Lanczos vectors computed in a non-rotating planet — with the shapes of boundaries of a
rotating planet and accounting for the centrifugal potential — as a truncated basis to reduce
one of the equivalent linear forms of the quadratic eigenvalue problem (QEP). The normal
modes computed are guaranteed lying in the appropriate space of functions. The reduced
system can be solved with a standard eigensolver. The proposed method is accurate as we
demonstrate in our computational experiments using a full mode expansion in relatively
small models. We also test our computations against standard perturbation calculations

relative to a standard Earth model.

We apply our algorithm and code to studying Mars models through point spectra
of eigenfrequencies. This is motivated by the InSight (Interior exploration using Seismic
Investigations, Geodesy and Heat Transport) (Banerdt et al. 2013; Lognonné et al. 2019)
mission to Mars. It is expected that a set of eigenfrequencies is observable (Panning et al.
2017; Bissig et al. 2018)). Here, we select one Mars model (Khan et al. 2016) from the
set of blind tests (Clinton et al. [2017; van Driel et al.|2019) and combine it with the
topography (Zuber et al.|1992; Smith et al.[1999) and a three-dimensional crust (Belleguic
et al. 2005; |(Goossens et al.[2017)) to create a realistic Mars model. We compute the low-lying

eigenfrequencies and study the general effects of rotation and heterogeneity combined.

The outline of this paper is as follows. In Section [2] we revisit the form and physics
of the elastic-gravitational system of a rotating planet and establish the weak formulation
of the system with a separation of the essential spectrum. In Section [3| we discuss the
hydrostatic equilibrium of a rotating liquid outer core in the presence of the gravitational
and the centrifugal forces. In Section [4] we develop the matrix form of the resulting QEP
and review various approaches to solve it. We then introduce our subspace method to reduce
the dimension of the equivalent linear form of the QEP using extended Lanczos vectors.
In Section |5, we illustrate the computational accuracy of our proposed method. We also
show several computational experiments for different planetary models, including standard

Earth and Mars models. In Section [6] we discuss the significance of our results.
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2 THE ELASTIC-GRAVITATIONAL SYSTEM WITH ROTATION

In this section, we briefly discuss the weak formulation associated with the elastic-gravitational
system of a rotating planet. In Subsection we revisit the basic equations in the strong
form. In Subsection [2.2] we illustrate the rotation and the centrifugal acceleration of a Mars
model. In Subsection we present the weak formulation to compute the normal modes

associated with the seismic point spectrum.

2.1 The basic equations

Given the reference density p° and the gravitational constant G, we let ®° denote the

gravitational potential which satisfies,),
AP = 47GpY, (1)

and S(u) denote the Eulerian perturbation of the Newtonian potential associated with the

displacement, u,
AS(u) = —47GV - (p'u). (2)
To include the centrifugal force, we let 1 to be the centrifugal potential
L 622 2
bia) = —5 (%% - (- 2)?], (3)
where ) € R? is the angular velocity of rotation. We form the geopotential and its gradient,
g = —V(@" + ). (4)
Under the hydrostatic assumption,
w?plu — 2iwp’Rou = =V - (¢: Vu) = V(p’u - ¢') + V - (p%u)g’ + p°VS(u), (5)

where w denotes the angular frequency and ¢ denotes the elastic stiffness tensor; Rou =
Q) x u. The boundary conditions for the system governing a hydrostatic planet are
shown in (Dahlen & Tromp (1998, Table 3.4).
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Figure 1. Illustration of (a) the topography and (b) the crust-mantle interface of the Mars using
MOLA and gravity data (Zuber et al. 1992} |[Smith et al.[1999; |Goossens et al.|[2017)).

2.2 Illustration of the geometry and physics using a Mars model

We utilize a flexible, fully unstructured tetrahedral mesh to model multiple complicated
discontinuities associated with different geological and geodynamical features. The major

discontinuities are discretized using triangulated surfaces that are generated via distmesh

(Persson & Strang 2004). We then build up the planetary model using an unstructured
tetrahedral mesh via TetGen (]S 2015). Here, we use a Mars model as an example to

illustrate our construction of a terrestrial planet. The topography of Mars was measured by

the Mars Orbiter Laser Altimeter (MOLA) (Zuber et al. 1992; [Smith et al.[1999)) with high

accuracy. The thickness and density of the Martian crust from the topography and gravity
data were constrained by works of Belleguic et al. (2005); Goossens et al. (2017). In Fig.
(a), we illustrate the topography of Mars using data from MOLA (Smith et al. |1999); in
Fig. |1 (b), we show the crust-mantle interface of Mars using data provided by

(2017). In Figs. |2 (a)-(c), we illustrate Vp, Vs and p° of Mars integrating a radial
model (Khan et al.[2016) with a three-dimensional crust as shown in Fig. 1l In Figs. |3 (a)
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Figure 2. Illustration of (a) Vp, (b) Vs, and (c) p° of our Mars
crust shown in Fig.
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model with a three-dimensional



6 ShilJ., et al

- Acc.
L, \,{\;\\ % llme—m
A\

0.0128

. ‘ % ) "' .
U 4 %) )
A e W S 0.00855
P 4 l‘\\‘g\ 000427
WA R A ‘
0.0000+00

(a) The axial spin mode, Q x x (m/s) (b) Centrifugal acceleration, —V1) (m/s?)

Figure 3. Illustration of (a) the axial spin mode, Q x x, and (b) the centrifugal acceleration, —V1,
of the Mars model shown in Fig.

and (b), we illustrate the axial spin mode, 2 x x, and the centrifugal acceleration, —V1),

of the Mars model, respectively.

2.3 The weak formulation

Since we study a general planet with non-smooth coefficients, it is natural to utilize the

weak form of the relevant system of equations. Following the notation in |[de Hoop et al.

(2015), a bounded set X C R? is used to represent the interior of the planet, with Lipschitz

continuous exterior boundary X . The exterior boundary X contains fluid (ocean) surfaces
X and solid surfaces X5. We subdivide the set X into solid regions Q° and fluid regions

QOF. We use ¥ to represent the interfaces between these subregions. In summary,
X=0uU0"UuzuaXx, axX =oXx5uaxr.

The interior interfaces can further be subdivided into three categories: interfaces between

EFF

two fluid regions , interfaces between two solid regions 55, and interfaces between fluid

and solid regions 5. This regions, interfaces and boundaries are illustrated in (Shi et al.

2019, Subsection 2.1).

In (de Hoop et al. [2019; |Shi et al. 2019), we discuss the decomposition of the function

space, H = LQ(X, p%dz) into components H; and Ho, that is,
H=H, @ Hy. (6)

We let u* and uf be the displacements in the solid and fluid regions, respectively, and enforce
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that u/ lies in H; by augmenting the system of equations and introducing an additional

variable, p, according to
—p t =V ul 4+ p%7g - wf in QF. (7)

Here, k signifies the compressibility of the fluid. Imposing the fluid-solid boundary condition
[Vf_” cul =l us] ‘EFS = 0, we obtain the weak form for ,

0= —/ wPpr 1t dx + / [(va) cuf =P (g uf)poli_l] dx — / P (/7% u®)de
QF QF

»FS

=: ¢cg([u, pl, vP) (8)

f=s denotes the normal vector at

for all the test functions vP with v?| axr = 0, where v
the fluid-solid boundary pointing from the fluid to the solid side. The same short-hand

notation, c4([u, p],vP) in (8) was introduced in (Shi et al. 2019, (16)).

For the weak formulation, we let v* and v/ be the test functions for the displacement
fields in the solid and fluid regions, Q5 and QF, respectively. To restrict the system to
the computational domain, we obtain the complete formula for the rotating hydrostatic

planetary model

. p. S o) = [ (V6): (e Vatydo k[ 8(@ )0 w) ) b
Qs $FS
[ @ pas s [ (TR ) (V) w3t (99°) - s
YFS 0S
T — VT ” 01+ _ Vf—>s‘55 u 01s
- [ s [ @ m)s@ptas- [ e msely e
02 (g - T)(g - u) —f — ok de
*/QFPN i o+ [ 7 T dee e

- [ Ps@de [ eehS@iptas - [T sl ds,
QOF SFFUSXF »FS

and

by, v) = /Qs(us )" da + /QF(vf )P0 da, (10)

and

er(u,v) = / 7% (Q x u®)p’dx —I—/ o (Q x uf)p’ da, (11)
Qs QOF
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where N2 = (Vp°/p? — ¢'p°/k) - ¢ signifies the square of the Brunt-Viisili frequency;
v*2F denotes the normal vector at the fluid-solid boundary pointing from the solid to
the fluid side; the symmetrization operation & as in [de Hoop et al.| (2015) is defined as
S{L(u,v)} := 3(L(u,v) + L(v,u)), for any bilinear form L(u,v). We note that as and by
in (9) and are analogue of (Shi et al. 2019} (26) and (7)), respectively. We obtain the
quadratic eigenvalue problem from , , @ and :

an(lu W], v) = by (u,v) — 2iwe (u,v
2([u, p, S(u)], v) br (u,v) = Ziwer(u, v), (12)

Cg<[u7p]7?)p) =0.

A matrix representation can be derived from ((12). In practice, we replace p in ag by

p(u’, uies) via solving the constraint cg([u,p], v?) =0 in (8) and obtain
as([u, p(u’ uies), S(u)],v) = w?bp (u,v) — 2iwe (u, v). (13)

The corresponding orthonormality condition is that, for an eigenpair (w(;), u(i)), where ()

denotes the index, any other eigenpair (w(j),u(j)) satisfies
bar (ul?, ul)) = 2i(wg! + w)er (), ul?)) = 65, (14)

which is consistent with (Dahlen & Tromp 1998, (4.82)).

Following standard theoretical analysis (de Hoop et al.|[2019), we define
F(w) = —w?Id + 2iwRg,.
and consider the quadratic operator pencil
L(w) = F(w) + Aa,

where Ay is defined as aa(u, v) = (Au, v). The decomposition in (6) implies a decomposition

of L(w),

L11 (w) ng(w)
L21 (w) L22 (w)

In the above, the matrix system corresponds with Lj;(w), while the essential spectrum
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coincides with the essential spectrum of Los(w). Asymptotically, the seismic point spectrum

corresponds with the spectrum of L1 (w).

3 HYDROSTATIC EQUILIBRIUM OF THE LIQUID CORE WITH
ROTATION

In this section, we discuss the hydrostatic equilibrium with rotation and how it constrains
the shape of boundaries and density distribution in planets. Rotating fluids have been
extensively studied (Greenspan |1968; |(Chandrasekhar||2013; Zhang & Liao|2017). The outer
core’s properties have been studied through seismic normal modes since the 1970s (Gilbert
& Dziewonski|[1975; [Dziewonski et al. [1975; Dziewonski & Anderson (1981), but also with
body waves (Morelli & Dziewonski 1993; Kennett et al. [1995). Much more recently, an
alternative radial outer core model has been proposed using the parametrization of the
equation of state for liquid iron alloys at high pressures and temperatures, inferred from
eigenfrequency observations (Irving et al.2018). We furthermore mention models for the
outer core of the Moon (Weber et al. 2011) and the core of Mars (Rivoldini et al.| 2011}
Khan et al.|2016]) albeit ignoring rotation.

To reach the hydrostatic equilibrium, the prepressure p° satisfies
v’ =0, (15)
where ¢’ is defined in . Well-posedness requires that
Vel g || VP’ inQF and ¢ || v along ZFSUOXT; (16)

see (de Hoop et al.[2015, Lemma 2.1) for details about the functional properties of p°, p°
and ¢’. We provide various approaches forcing , in general, in Appendix lé yielding the
shapes of boundaries of rotating planets.

The computation greatly simplifies upon making an Ansatz for the density distribution,
namely, that its level sets are spheroidal. The early study by Clairaut (1743)) was based on
this Ansatz. We briefly summarize Clairaut’s equation for determining the mentioned level
sets assuming the ellipticity is small. We let a and €(a) be the mean radius and ellipticity of

the density contours of p° = p°(a), where p%(a) is the value of the density of a spherically
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parameters  Q (s7!) 7. (km) g(.y (m/s?) é(re) e?‘zed) e(()ﬁ’:)
Earth 7.2921e—5  6371.0 9.80 3.05e—5>0 3.34e—3 3.35e—3
Mars 7.0882e—5  3389.5 3.71 -8.98e—5 < 0 N/A 5.89e—3

Table 1. Bulk parameters of Earth and Mars; é(r.) denotes the derivative of € at a = re, and e?fed)

and 6?,?:) denote the computed hydrostatic ellipticity and observed ellipticity, respectively.

symmetric analogue. The ellipticity, €, solves Clairaut’s equation,

d%e o 1 ( de -1 -2
12 +81Gp g, (da +a 6) —6a ‘e =0, (17)
supplemented with the boundary values
de de 1 (5927“@ >
JE— =0, _— = ’]"e - 26 Te 3 18
da a=0 da a=Te 29(7,6) ( ) ( )

where g(q) is the value of the reference gravitational field in the radial direction, and r,
is the mean surface radius. The derivation of Clairaut’s equation, and the Radau approx-
imation, are put in the context of a general scheme imposing in Appendix The
bulk parameters of Earth and Mars are listed in Table [1} While the hydrostatic assumption
seems to apply to Earth with reasonable accuracy, é(r.) of the Mars appears to be negative,
whence this assumption fails to hold (Dollfus/|1972; Bills & Ferrari [1978).

In Appendix we propose an optimization scheme to constrain the density distri-
bution in the presence of rotation in accordance with . With the assumption that the
level sets of the density distribution are spheroids, we will recover the solution of Clairaut’s
equation since will be satisfied. A refined model is the two-layer Maclaurin spheroid
(Kong et al. 2010).

4 THE RESULTING QUADRATIC EIGENVALUE PROBLEMS

In this section, we present the matrix representation and solution of the QEP for a rotating
planet. In Subsection [4.1} we derive the two matrix forms for a rotating planet with and
without fluid regions. The fluid regions often indicate the fluid outer core or the entire
core. In Subsection we study various numerical approaches to solve the resulting QEP.
In Subsection we present two different subspace methods to provide solutions for the

equivalent linear form of the resulting QEP.
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operations physical relations corresponding formulae
/ Voy, : (e Vug)de
s
+ [ e{@ 0 e fas
SFS

(05)" Az solid stiffness matrix with gravity +/S 6{(V (g up)p°
—uj - (Vg') Wipél— uj, - (Voy,) ~g’p°} dw

(" Aa® Brunt-Viiséld frequency /Q . °N ZW dz
(") A, p fluid potential - ~vhppktda
(1) Aggp fluid stiffness matrix with gravity /F [ﬁ£ (Vpp) — (@£ : g')phpofs_l] dz
(T/p)HAggaf constraint with gravity - [(V@ﬁ)u{b — (g u{L)pO,fl] dz
(*)"Epgp  fluid-solid boundary condition /EFS @5, - v pp ds
(?P)"Efga!  fluid-solid boundary condition , —oh (W7 ) dY

b

()M’ solid mass matrix S(Ei ) p® da
(@A Mpal fluid mass matrix - (ﬁfL . ui)po dz

Table 2. Implicit definition of the matrices for Cowling approximation (cf. (Shi et al.|[2019] Table
3)).

4.1 The matrix forms

Following our previous work (Shi et al.|[2019)), we utilize the mixed finite-element method
and FMM (Greengard & Rokhlin 1997; |Gimbutas & Greengard 2011} [Yokota 2013) to

discretize the elastic-gravitational system. It is natural to utilize a mixed finite-element

discretization to model the rotation. We use uj, ui and pp, to be the finite-element repre-

sentation of the dispacement for the solid regions, fluid regions and the pressure, p, respec-
f

tively. Similarly, vy, v; and vﬁ are the finite-element representations of corresponding test

functions. Following the work of |Shi et al.‘ (]2019[), we write @, @/ and p for the vectors

defining uj, u£ and pp, and 9%, 97 and o for the vectors defining v}, v}: and UZ- In Tables

and |3 we list the submatrices corresponding to the different terms in ((12]).
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operations physical relations corresponding formulae
| V- (Puias,
0s
/ (Vf—>s ) [po]s dz,
FSs
Csu® N bodies in QS /: (v-up) [pO]J_r dz

__________________________________ o [ V- |

X |z — 2/
v(@') - up(2")[p" ()] 4o’
_________________________________ ox ___ Mz=2___ .

V- (p°75)S (up) dz
s

+ [ @Sl da

(@*)HCT(SCa) incremental gravitational field in QS + (@ v)S(up)[p°)F da

>FS
(ﬁs)HC’}(SC’ﬁ) incremental gravitational field in QF + (03, v)S(up)[p°]F dz
__________________________________ SFFUOXE _ _ _ _ _______.
(o°)" Ryu® rotation in Q5 /S - (Q x up)p° da
(@M Ryaf rotation in QF f @{L (2 x u{b)po dz
QF

Table 3. Implicit definition of the matrices for self gravitation and rotation (cf. (Shi et al.|2019|
Table 4)).

4.1.1 Planets with fluid regions

Following our previous work (Shi et al. [2019), for the planets with fluid regions, we have

the matrix representation

w?Mi — 2iwRgi — (Ag — EgA,'EL — CTSC)i = 0, (19)
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with
Agsg O . Rs O Ers
AG = g 5 RQ = 3 G — )
0 A 0 Ry Adg
M, 0 i @
M = y C = < Cs Cf ) N u = ,
0 Mf o f

where all the submatrices are shown in Tables [2| and |3, We note that is the matrix
representation of .

4.1.2  Planets without fluid regions

For a purely solid planet, simplifies and we obtain the QEP,
W Myi® — 2iwRa® — (Agy — CJ S0 = 0. (20)

We note that A4, Cs and C;,r are shown in Tables [2| and 3| and do not include any terms

related to the fluid-solid boundaries.

4.2 Solution of the quadratic eigenvalue problem

To simply and without any loss of the generality, we let 4 be the solution vector
u® for or @ for (19) and derive a standard form for the QEP,

WMt — 2iwRqi — At = 0, (21)

where A represents either Ayy — C;FS’SCS in or Ag — EgAlleg —CTSC in . We
also note that Rg = —RJ.

It is challenging to solve the resulting QEP directly; see [Tisseur & Meerbergen (2001])
for a review and Bai et al. (2000) for a practical guide. The standard QEP takes the form
of

(WM +wC+ K)i =0,

where C = —2iRg with ¢ = €M and K = —A with K = K" while comparing with our
problem . The eigenfrequencies are real and come in pairs (w, —w). To solve the QEP

of the original form, the QEP is often projected onto a properly chosen low-dimensional
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subspace to facilitate the reduction to a QEP directly with lower dimension, such as the
Jacobi-Davidson method (Sleijpen et al. 1996a/b). The reduced QEP can then be solved by a
standard dense matrix technique. Both Arnoldi- and Lanczos-type processes (Hoffnung et al.
2006) were developed to build projections of the QEP. A subspace approximation method
(Holz et al.|2004) was presented using perturbation theory of the QEP. A second-order
Arnoldi procedure for generating an orthonormal basis has been developed for solving a
large-scale QEP directly (Bai & Su |2005). However, the above-mentioned methods typically
utilize a shift-and-invert scheme to solve for the interior eigenpairs. In practice, solving
shifted linear systems often leads to a computational bottleneck, especially, on a highly
parallel supercomputer with distributed memory using a direct solver. We examplify this

issue in Shi et al. (2018).

Alternatively, the QEP can be transformed into an equivalent linear problem. Possible

options are the following (Saad 2011, Chapter 9.3)

0 I U I 0 U
. =lw : (22)
—A —2Rq iwu 0 M iwu
0 A U A 0 U
5 =iw , (23)
A 2Rg iwu 0 —M iwu
0 I U I 0 U
. =w ; (24)
A 2iRq wit 0 M wi
A 0 i —2iRq M il
=w , (25)
0 M wi M 0 Wi
0 A U A 0 U
. =w . (26)
A 2iRq wi 0 M Wi
The orthonormality condition (cf. (14)) implies
~H ~ ; —1~H p _~
gy M) =21 (w6 +w)) g Ratg) = i, (27)

where (i), (7) are indices of the two eigenvectors. In Table 4| we list the features of the
different forms while solving the QEP. We will work with .
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systems Hermitian or not concerns
22 a real non-Hermitian system non-Hermitian & orthonormality
3 a real non-Hermitian system the non-positive “new” mass matrix
4 a complex non-Hermitian system non-Hermitian & orthonormality
25 a complex Hermitian system the non-positive “new” mass matrix
26 a complex Hermitian system the non-positive “new” mass matrix

Table 4. List of features of different linear forms.

4.3 Subspace approximation

Following (Shi et al. 2018| |2019) using x as an alternative notation for the displacement

vector of a non-rotating planet, we first solve for the eigenpairs in
Ax = w[22]M:c, (28)

where wpy denotes the eigenfrequency for the linear real Hermitian problem. Polynomial
filtering techniques (Saad 2006} |[Fang & Saad [2012; [Li et al. [2016) are appealing as they do
not involve solving linear systems with highly indefinite shifted matrices. Instead, the bulk
of the computations are carried out in the form of matrix-vector multiplications, which are
generally much easier to be parallelized than solving the indefinite linear systems. For a
generalized eigenvalue problem, Ax = AMx with both real Hermitian A and M, the base

form of filtering is
(M1 A)z = p(\)e,

where p(-) denotes the filter function (Li et al.|2016; Shi et al.|[2018]). Multiplying both sides
by M yields the following problem

Kox = p(\)Mz, with Ky = Mp(M~'A).

We apply the Lanczos algorithm to matrix pencil (K2, M). In the polynomial filtered non-
restart Lanczos algorithm, each step of the iterative process consists of a Lanczos step with

K27
Bit1zit1 = Kovy — oz — Bizi—1,

followed by a full reorthogonalization against all the previous vectors {v} using modified
Gram-Schmidt iterations with z is defined as z = Mv. A test for convergence is implemented

for every Ncycle steps after the first Niegt iterations. We check if the sum of the Ritz values
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that are greater than the threshold 7 no longer vary in several consecutive checks. Finally, a
computed Ritz pair (\;, x;) is accepted if \; is in the desired interval and its residual norm
is smaller than a given tolerance. We note that vectors v and z are real and their inner
product is (v,z) = vTz. Since Ky and M are real Hermitian, o and 8, in the tridiagonal
matrix Tk, say, are real. The details of the algorithm are provided in Algorithm [1/from line
1 to 12.

In the above, {v} contains the extended Lanczos vectors. These generate a large sub-
space, spanned by eigenvectors, associated with a target interval. In Subsections and
4.3.2, we utilize the computed extended Lanczos vectors to reduce the dimension of the

equivalent form of the QEP.

4.3.1 FEaxtended Lanczos vectors spanning the subspace

Instead of using the computed Ritz vectors directly, we utilize extended Lanczos vectors and
obtain more Ritz vectors through the polynomial filtering method. We then approximate

the solution % using the basis computed from
AX, = M XA, (29)

where X, denotes the Ritz vectors of the linear system and A, denotes a diagonal matrix
whose diagonal is a collection of w[QQ}. We take m, eigenvectors spanning a subspace and let

e = XeYe tO approximate o in , where . is complex. Applying

X o
0o XxJ

to both sides of and making use of X;'—AXe = A., we can then rewrite as

0 A Ae 0
‘ S IO Sy (30)
A 2iX]RoX. Wele 0 I WeYe

We note that 21X eT RQXG is dense with size of m. X m,. and complex Hermitian. We can
further simplify to a standard eigenvalue problem,
0 AY? A%y A%y

AY? 2iXTRo X, WeYe o wene
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It is apparent that if R = 0, we have we = wpg) = Aé/ %2 The system can be solved

via the standard eigensolver that was implemented in LAPACK (Anderson et al.|1999). The

details are provided in lines 13 to 20 in Algorithm

Algorithm 1 A subspace method for the resulting QEP

e e e e e o = T

=
©

[\~
o

. |we, Ye] = eig(Ae), where A, =

Input: A and M, filter function p, Ky = p(A) and target interval [f1, fo]
Initialization: zy := 0, initial vector vy with ||vi||ar = 1, and 21 := Moy
for i =1,..., NMaxits dO
z = Kov; — Bizi—1, o = (2,0i), 2 1= 2 — ;%
zi=2— ) (2 v5)z for j <1 (full reortho.)
vi= M1z, Bi+1 = (U,Z)l/Q, Vi1 = v/Bit1, ziv1 = 2/Biy1
if i < Niest and  mod (i — Nyest, Neyele) = 0 then
told = tnew and tnew = »_ 0; for ; > 7, where 6; is the Ritz value
if (|tnew — told| < tolp) break; end if

end if
end for
: Obtain all the Lanczos vectors V' = [v1,...,vp,]
. [©4,Qa] = eig(T4), where Ty = VAVT
:fori=1,...,m; do

T; — VQA<:,i), €Ty = xz/szHM and )\i = (sz,xl)
if (A > & and ||Az; — AiMz;|| /| \i| < tola) Accept (N, z;); end if

: end for
: Obtain X, = [z1,...,Tm,.] and Ae = [A1, ..., Am.]

0 A2
AY? 2i XTRo X,

. Collect all the eigenfrequencies in [f1, f2] as well as the corresponding eigenvectors

4.8.2  Extended Lanczos vectors in the Cowling approximation spanning the subspace

The computation of the incremental gravitational potential using the FMM is quite costly.

To avoid this computation one may invoke the Cowling approximation. Then we solve the

generalized eigenvalue problem

Acx = w%Ma:,

where

Ac=A+CTSC,

for a planet containing fluid regions (cf. (19)) and

Ac = A+ CTS,Cs,
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for an entirely solid planet (cf. ), while we denotes the eigenfrequencies in the Cowling
approximation. We collect all the computed Lanczos vectors and obtain Vo = [v1, ..., v, ],
where m;, is the number of computed Lanczos vectors. We calculate the extended Ritz
vectors X, = [z1,...,%m.], where m, is the number of Ritz vectors, for the original system

without rotation via
AX,. = MX_.A.,

where A. denotes a diagonal matrix. The solution @ of can now be approximated by
e = XcYe, where y. is complex. The counterpart of is obtained upon projecting
onto the proposed subspace X,

0 Ai/2 Ai/2yc Ai/2yc
1/2 cvT D w
A, 21 Xc Ro X, Wele WelYe

In Algorithm [2| we provide the details of our proposed algorithm.

Algorithm 2 A subspace method using Lanczos vectors of Cowling approximation

1: Input: Ag, A and M, filter function p, Ko = p(A¢) and target interval [fi, fa
2: Initialization: zy := 0, initial vector v; with ||v1]ar = 1, and z; := Muv;
3: Perform filtered Lanczos algorithm £;112i41 = Kcov; — aizi — Bizi—1 (cf. Algorithm
4: Obtain all the Lanczos vectors Vo = [v1,...,0m, ]
5: [90, Qc] = eig(TC), where TC = V(—;'I—ACVC
6: fori=1,...,m, do
7 XT; = VQc(:,i), T = xl/”fL’ZHM and )\i = (Aa;z,xz)
8: if (A > & and ||Az; — AiMx;|| /| \i| < tols) Accept (N, z;); end if
9: end for
10: Obtain X, = [1,...,Zm,] and A = [A1,..., Am.]
Y, = eig(A.), where A 0 A
11: [we, Ye] = eig(A;), where A, AL2 21 XT fip X,
12: Collect all the eigenfrequencies in [f, f2] as well as the corresponding eigenvectors

4.8.8 Summary and comparison with other approaches

In our proposed method, the key is to find a good subspace to project the full QEP onto
preserving accuracy. The subspaces X, X, are contained in H; up to discretization errors.

Several competing approaches were studied during the past several decades. The pertur-
bation theory (Dahlen & Sailor [1979) utilizes the eigenfunctions of a spherically symmetric

Earth model to estimate first- and second-order Coriolis splitting, splitting due to rotation
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model # of elm. size of A, sizeof A size of S [f1, fo] (mHz)
Constant (C3kpl) 3,129 0 1.821 3521 0.35,0.85]
Earth (E3kpl) 3,330 392 2,760 4,242 [0.3,0.86]
Mars (M2kp1) 1,887 145 1,677 2,539 [0.4,1.14]
Mars (M8kp1) 8,020 152 7557 12,436 0.4, 1.14]
Earth (E40kpl) 42 828 3,171 30,384 51,000 [0.1,1.5]

Table 5. Numerical parameter values pertaining to the testing of computational accuracy and
estimating the cost in different models.

and ellipticity (Dahlen & Tromp (1998, Chapter 14.2 and Appendix D.4). There are two
limitations in the perturbation theory: First, the basis from a spherically symmetric model
does not lie in H1, in general, if the shapes of the fluid-solid boundaries are not spherical;
secondly, the calculation relies on the fact that the rotation frequency must be much smaller
than the eigenfrequencies. The self-coupling and group-coupling approaches, and the later
implemented full-mode coupling method (Deuss & Woodhouse [2001, |2004; |Al-Attar et al.
2012; Yang & Tromp 2015; Akbarashrafi et al. 2017) have the drawback that their underly-
ing basis fundamentally does not lie in H; which is particularly important in the presence
of fluid-solid boundaries. As an aside, our approach allows high rotation rates. Nonetheless,
our approach based on extended Lanczos vectors is not entirely dissimilar from a full-mode

coupling concept.

5 COMPUTATIONAL EXPERIMENTS

In this section, we first show the computational accuracy of tour proposed approach on dif-
ferent small planetary models when the computation of the full mode expansion is feasible.
We then illustrate computational experiments yielding planetary normal modes with the
use of two supercomputers, Stampede2 (an Intel cluster) at the Texas Advanced Computing
Center and Abel (a Cray XC30 cluster) at Petroleum Geo-Services. We study the spectra
of two models: Earth 1066A (Gilbert & Dziewonski|1975) and a Mars model (Khan et al.
2016)). We use 23.9345 hours (Allen (1973) and 24.6229 hours (Lodders & Fegley|[1998) as

Earth’s and Mars’ rotation periods, respectively.

5.1 Computational accuracy

For small models, we are able to compute the full mode expansion associated with the point
spectrum using . In Table [5, we list the numerical parameter values pertaining to the

testing of computational accuracy and estimating the cost in different models: The number
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Figure 4. Tests with three different small models for the low-lying seismic eigenfrequencies.

numerical parameters of the tests are given in Table

differences (mHz)

The

of elements (labeled as # of elm.), size of A, size of A, size of S and the target frequency

interval in milliHertz (labeled as [f1, f2] (mHz)).

In Figs. [4] (a)—(c), we illustrate the computational accuracy of tests in three different

models C3kpl, E3kpl and M2kp1, respectively, on the lowest seismic eigenfrequencies using

P1 elements. We compare the differences in the eigenfrequencies between the full mode

expansion and a 200 mode expansion using Algorithm |1 The differences are about 5 x 1076

mHz, which is two digits below the accuracy of common normal mode measurements.

In Figs. 5| (a) and (b), we show the computational accuracy of M8kpl on [0.4, 1.14]

mHz as well as the error distribution. In Fig. 5| (a), we show that even with a 100 mode

expansion, the differences are as low as 1 x 107° mHz. In Fig. [5| (b), we show that with a

1000 mode expansion, the differences are further reduced to about 1 x 1076 mHz.
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Methods pol. deg. # of iter. t-Mw (s) t-FMM (s) total times (s) rel. errs

Algorithm 1 167 831 1.8e—4 5.4e—1 79274.0 5.e—7
Algorithm [2 108 771 1.7e—4 5.5e—1 1761.0 2.e—6

—

Table 6. Comparison between two methods on experiment E40kpl in Table |5/ on 4 computing
nodes.

5.2 Computational cost

Here, we compare the computational costs of Algorithms 1 and 2. In Table [6] we list the
parameters used in running the two algoritms on experiment E40kpl: Polynomial degree
(labeled as pol. deg.), number of iterations (labeled as # of iter.), average time of one
M multiplication with a vector (labeled as t-Mwv), average time of one FMM operation
(labeled as t-FMM), total time and relative error that are calculated via ||w? M@ —21iwRqi—
Adl||/||w||. Both tests are performed on 4 Intel Knights Landing nodes using P1 elements.
We note that the computational cost of one FMM operation is much longer than this of
the sparse matrix-vector multiplication. In this test, Algorithms[1]and [2] perform 167x831
= 138,777 FMM operations and 771 FMM operations, respectively. The cost savings in the

Cowling approximation are significant indeed.

5.3 Benchmark experiments for Earth models

Here, we perform a benchmark experiment of Earth model 1066A (Gilbert & Dziewon-
ski [1975) against a perturbation calculation (Dahlen & Sailor [1979). In the perturbation

calculation, the eigenfrequency perturbations dw,, have a following form
Swm = wo(a +bm +em?), —1<m<I, (33)

where wgy denotes the eigenfrequency of the unperturbed spherically symmetric model, [
denotes the angular order in the spherical harmonic expansion, and a, b and ¢ are the
relevant coefficients. The values of a, b and ¢ for different radial modes can be found in
(Dahlen & Tromp 1998, Table 14.1). In Table [7| we list the numerical parameters of the
Earth models in the benchmark test. Models E1Mpl and E2Mp2 used to compute wy
represent spherically symmetric Earth models without rotation. Experiments EE1Mpl and
EE2Mp2 represent elliptic Earth models and are used to compute eigenfrequencies of our
proposed method via Algorithm [2| The ellipticity of the Earth models are computed by

solving Clairaut’s equation in Section |3| Since the eigenfrequencies of the Slichter modes
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Exp. # of elm. size of A, sizeof A size of S [f1, fo] (mHz)
Earth (EIMpl) 1,011,073 31,849 537,198 L074577  [0.04,1.5)
Earth (E2Mp2) 2,015,072 530,721 8,569,197 2,165,360 [0.2,1.5]
Earth (EE1Mpl) 1,003,065 31,688 533,064 1,065,629 [0.04,1.5]
Earth (EE2Mp2) 2,002,581 528,124 8,520,432 2,153,109 [0.2,1.5]

Table 7. Numerical parameters of the Earth models used in the benchmark experiments.

(Slichter|1961)) are close to the upper bound of the essential spectrum and the convergence of
the proposed algorithm is relatively slow, we set f; = 0.04 mHz and use experiments E1Mpl
and EE1Mpl to compute the Slichter modes using P1 elements. Experiments E2Mp2 and
EE2Mp2 are used to compute other modes using P2 elements. It is expected that rotation
through Coriolis coupling of low-frequency modes is the dominant mechanism (Ziirn et al.
2000). In Fig. @, we show the comparison between the perturbation and our proposed
method. The values of the computed eigenfrequenies of the proposed method agree with
the perturbation results in as much as that the relative differences are commonly less than

0.3 uHz. The degree of agreement is, of course, model dependent.

5.4 Mars models

Here, we present our computational results for Mars models. The interiors of the Mars
models are based on mineral physics calculations (Khan et al.||2016). In Table |8 we list
three Mars models labeled as M2Mp2, EM2Mp2 and TM2Mp2 which represent a spherically
symmetric Mars model without rotation, a spheroidal Mars model with rotation, and a
spheroidal Mars model with a three-dimensional crust and rotation using P2 elements.
The shape of the spheroidal Mars model’s core-mantle boundary is computed by solving
Clairaut’s equation. Since Mars presumably is not hydrostatic as discussed in Section [3] its
solid region is estimated via a linear interpolation using the ellipticities of the core-mantle
boundary (¢ = 4.19x 1073) and the surface (¢ = 5.89 x 10~3). Model TM2Mp?2 is illustrated
in Fig.

In Fig. |7, we show eigenfrequencies computed in different Mars models listed in Ta-

ble[8] Symbols e, o and x represent the eigenfrequencies computed in Mars models M2Mp?2,

Exp. # of elm. size of A, sizeof A sizeof S [f1, fo] (mHz)
Mars (M2Mp2) 1,996,773 579,338 8,967,684 2,257,801 [0.2,2.0]
Mars (EM2Mp2) 2,001,619 579,667 8,984,532 2,262,143 0.2,2.0]
Mars (TM2Mp2) 2,008,654 323,810 8,289,927 2,158,366 [0.2,2.0]

Table 8. Numerical parameters for the Mars models.
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EM2Mp2 and TM2Mp2 (cf. Table . The horizontal dashed lines represent the eigenfre-

quencies of a spherically symmetric Mars model computed with a one-dimensional solver

(Masters et al. [2011} [Ye [2018). Mode splitting is apparent due to ellipticity, rotation and

heterogeneity in three dimensions. The three-dimensional crust does not have a clear influ-
ence on the lowest eigenfrequencies associated with gSo, o752, 151, 053, 013, 152 and ¢S54 in
Fig. [7| (a). The three-dimensional crust has a noticeable effect on the surface wave modes,

such as o715, 017, 013, 056, 057 and ¢Sg, as expected. In Fig. [8] we show the eigenfrequencies
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Figure 7. Eigenfrequencies of different Mars models. (a), (b), (¢) and (d) illustrate eigenfrequen-
cies in different frequency windows. Symbols e, o and x represent the eigenfrequencies computed
from Mars models M2Mp2, EM2Mp2 and TM2Mp2 in Table [§] respectively. The horizontal dashed
lines represent the eigenfrequencies of a spherically symmetric Mars model computed with a one-
dimensional solver.

in a subinterval of the interval used in Fig. |7/ (d). Here, we note the splitting of modes 254,
0Ss and ¢Tg and highlight the effects of the three-dimensional crust. The maximum differ-
ence among the eigenfrequencies in Fig. |8]is 5.2 pyHz, which, in principle, can be detected.
There is no mode-coupling observed in these experiments. In Fig. [0, we plot the branch

15; as well as the corresponding incremental gravitational fields V.S(u). We anticipate that
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Figure 8. Illustration of a subinterval in Fig. d). Splitting of modes 254, ¢Ss and (7T due to the
three-dimensional crust. The maximum difference among the eigenfrequencies is 5.2 pHz.

both the seismic and gravity measurements of these modes could help to estimate the size

of Martian core.

6 CONCLUSION

In this work, we propose a method to compute the normal modes of a fully heterogeneous
rotating planet. We apply the mixed finite-element method to the elastic-gravitational
system of a rotating planet and utilize the FMM to calculate the self gravitation. We
successfully separate out the essential spectrum by introducing an additional constraint
equation. Thus, we are able to compute the normal modes associated with seismic point
spectrum. To solve the relevant QEP, we utilize extended Lanczos vectors computed in a
non-rotating planet — with the shape of boundaries of a rotating planet and accounting for
the centrifugal potential — spanning a subspace to reduce the dimension of an equivalent
linear form of the QEP. The reduced system can be solved with a standard eigensolver. We
demonstrate our ability to compute the seismic normal modes with rotation accurately. We
then study the computational accuracy and cost of our proposed method and use a standard
Earth model to perform a benchmark test against a perturbation calculation. We carry out
computational experiments on various Mars models and illustrate mode splitting due to
rotation, ellipticity and heterogeneity of the crust. The use of modern supercomputers
enables us to capture normal modes associated with the seismic point spectrum of a fully
heterogeneous planet accurately. The computational cost can further be reduced using

accelerating techniques.
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APPENDIX A: SHAPES OF A ROTATING PLANET

In this appendix, we revisit the derivation of Clairaut’s equation in the context of condition

associated with the well-posedness and hydrostatic equilibrium .

A1 Derivation of Clairaut’s equation

We start with the equation in the co-rotating frame,
Vp =p"g = —p"V(®° + ),

where ®°, U and ¢’ are defined in , and , respectively. Hence, transforming

into polar coordinates, the centrifugal potential takes form of

v Q2T2

[Py(cosf) — 1],

where P(cos) = (3 cos?§ —1)/2 denotes the second-order Legendre polynomial. Equation
directly implies

Vol x g = -V’ x V(®° + &) = 0.

We now assume that the level sets of the density p° are spheroidal with mean radii, a,
and ellipticities, €(a). We note that the ellipticity will be a function of mean radius. The

level sets can be written in polar coordinates as
2
r=rq.0)=all-— ge(a)Pg(cos 0)| .

Then
p°(r4(8),0) = const, =: p°(a).

The density can be written as
o
P°(r,0) = pn(r) Palcos ),
n=0

where

pn(r) =(n+1/2) /Oﬂ p°(a)P,(cosf) sinf db, (A1)
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and P, (cos#) denotes the Legendre polynomial. To first order in |e|, we have
2
a=r [1 + ge(r)Pg(cos 0)] ,

and substitute (A.1) into

2 ~0
e e(r )PQ(COSQ):| . (cos ) sin 6 d6.

pn(7“)=(n+1/2)/07r [ﬁ)(ng -

We note that

2r dp?

polr) =), palr) = 5T

e(r),
with all of the other p,(r) zeros. To first order in |e|, we have

. 2r dp°
po(r, 0) = po(r) + gd—pe( r)Pa(cosf),

With this density profile, we solve in polar coordinates and obtain the expansion
®Y(r,0) = ®o(r) + Po(r) Pa(cos b), (A.2)
where
o(r) = —4nG [i /Orﬁo(r’)r’z dr' + /oo (') dr’] ,
r

oo 170
@2(7“)2—% [:3 ; TP " dr’ 4 / dp e(T’)dr’]

15 dr’ dr!

To first order in e[, we obtain
% (a,0) = ®)(a) + Ph(a)Py(cosh),

where
1 e.¢]
P/ 47rG’[ / p°(a)a’? dd’ +/ P(a )ada],
a a

#y(0) = 58 [4 [iararan - L [" P deran) -5 [ p) aian).

To match the level sets of p°(a), to the same order in |e| with (A.2)), we simply must have
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the cancellation,

= 0. (A.3)

Equation (A.3) implies

a a a5 ) 2@5
o [ P ad - ¢ [P - F [ o)) = g

Differentiating (A.3)) with respect to a twice, we obtain

d?e 6p0 de
2
e —_ A4
a 22 6e—|—<a a—l—e) 0, (A4)

where the average density

— 3 1/0 N 12 /739((1)
(a)—ag/op(a)a da_47TGa'

Equation is exactly the Clairaut’s equation . The derivation of the boundary
conditions (cf. (18)) can be obtained from taking the limit of the differentiation of with
respect to a; see (Dahlen & Tromp||[1998, (14.12)) for details. Clairaut’s equation determines
the ellipticities of the level sets. Through the hydrostatic equilibrium, we automatically

guarantee that the level sets of p coincide with the ones of the geopotential.

The Radau approximation (Radau |1885]) is commonly used via introducing

_ ade
M= eda

Substituting e by 7, we can rewrite (A.4) or

d
. <a4g(a) V1+ 77) = 5g(wa’ f(n), (A.5)

where

_ 1+n/2-7*/10
Vit

The range of the dimensionless independent variable is 1) < 1 < 7, where

f(n)

5927“2’

Nre) = 726(TE)GM6 — 2.

() = 0,

Given a small ellipticity, f(n) is quite close to one. Hence, the Radau’s approximation is
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commonly made to replace ((A.5) by

d

T < 4g(a)\/1 + 77) ~ 5g(a)a3.

We can then obtain the approximate solution of

€(a) = €,y exp (—/ ) na' ™1 da/> , (A.6)

where
50273 10Q%rg /GM*
€(r) = ~ .
") = 3 + 2)GMe 4+ 25[1 — 31/ (Mer2)/2]?

More details about hydrostatic ellipticity and Clairaut’s equation can be found in (Dahlen

& Tromp|/1998, Chapter 14.1).

A2 More general density profiles

To overcome the limitation of ellipsoidal assumption, we model the density of the fully
heterogeneous planet and the shape of the liquid core due to the effects of the centrifugal
force. Since ¢’ needs to be parallel to Vp°, to find the satisfactory p° in , we form a

related optimization

1 1
win £(0) =5 [ (X0 ~ (¢ VoPl o5 [ (g - (g v s
p 2 QOF 2 SFSUOXF
(A.7)
subjects to constraints on conservation of mass,
/ p’dx = M¢, (A.8)
X
and conservation of the moment of inertia,
/~ 1Q72[Q%2? — (- 2)?]p0 dz = / —2|Q|2p® da = I°. (A.9)
X X

where M€ and I¢ denote mass and moment of inertia, respectively; ¢’ is a function of the
density p. We note that g’ depends on p° through Poisson’s equation (cf. ) while we need

to align the gradient of p® and ¢’ at the same time.
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We note that if p* is a local solution,

d *\
d—pg(p ) =0. (A.10)

w00 = [ (o 520) T2+ @790 V0 as
[ @ o (S0 T d 0| @

s o) (e )|

The combination of (A.8), (A.9) and (A.10) yields the Karush-Kuhn-Tucker conditions,
or KKT conditions for short (Nocedal & Wright| 2006)). Given a perturbation dp* near p*

satisfies
/ dp*dr =0, and / —2|Q|2ép* dur,
X X

the fact that

d * *

implies that
g'(p") x Vp* =0, and [¢'(p") X V]|grs gzr = 0.

Equation is then satisfied.
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