CSci 5304, F'23 Solution keys to some exercises from: Set 1
(01) Solution of System $\left(\begin{array}{ccc}5 & 10 & 25 \\ 1 & 1 & 1 \\ 0 & 10 & 25\end{array}\right)\left(\begin{array}{l}x_{n} \\ x_{d} \\ x_{q}\end{array}\right)=\left(\begin{array}{c}145 \\ 12 \\ 125\end{array}\right)$

Solution: You will find: $x_{n}=4, \quad x_{d}=5, \quad x_{q}=3$.
Sol $\left(A^{T}\right)^{T}=? ? \quad$ Solution: $\left(A^{T}\right)^{T}=A$
($A B)^{T}=?$? Solution: $(A B)^{T}=B^{T} A^{T}$
(${ }^{5}\left(A^{H}\right)^{H}=$?? Solution: $\left(A^{H}\right)^{H}=A$
$\AA_{0}\left(A^{H}\right)^{T}=? ?$ Solution: $\left(A^{H}\right)^{T}=\bar{A}$
© $07(A B C)^{T}=$??
Solution: $(A B C)^{T}=C^{T} B^{T} A^{T}$

Q08 True/False: $(A B) C=A(B C)$ Solution: \rightarrow True
© 0 True/False: $\boldsymbol{A B}=\boldsymbol{B A}$ Solution: \rightarrow false in general
$\underbrace{}_{10}$ True/False: $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}=\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ Solution: \rightarrow false in general

Q12 Complexity? [number of multiplications and additions for ma-
trix multiply]
Solution: Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times p}$. Then the product $\boldsymbol{A B}$ requires $2 \boldsymbol{m n} \boldsymbol{p}$ operations (there are $\boldsymbol{m p}$ entries in all and each of them requires $2 n$ operations). \square
$\Delta_{0} 13$ What happens to these 3 different approches to matrix-matrix multiplication when B has one column $(p=1)$?

Solution: In the first: $C_{:, j}$ the $\boldsymbol{j = t h}$ column of \boldsymbol{C} is a linear combination of the columns of \boldsymbol{A}. This is the usual matrix-vector product.

In the second: $\boldsymbol{C}_{i, \text {, }}$ is just a number which is the inner product of the $\boldsymbol{i t h}$ row of \boldsymbol{A} with the column \boldsymbol{B}.

The 3rd formula will give the exact same expression as the first. \square
$\&_{0} 14$ Characterize the matrices $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$ and $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ when \boldsymbol{A} is of dimen$\operatorname{sion} n \times 1$.

Solution: When $\boldsymbol{A} \in \mathbb{R}^{n \times 1}$ then $\boldsymbol{A} \boldsymbol{A}^{T}$ is a rank-one $\boldsymbol{n} \times n$ matrix and $\boldsymbol{A}^{T} \boldsymbol{A}$ is a scalar: the inner product of the column \boldsymbol{A} with itself. \square

15 Show that for 2 vectors $\boldsymbol{u}, \boldsymbol{v}$ we have $\boldsymbol{v}^{\boldsymbol{T}} \otimes \boldsymbol{u}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$

Solution: The \boldsymbol{j}-th column of $\boldsymbol{v}^{\boldsymbol{T}} \otimes \boldsymbol{u}$ is just $\boldsymbol{v}_{\boldsymbol{j}} . \boldsymbol{u}$ This is also the j th column of $\boldsymbol{u} \boldsymbol{v}^{T}$. \square

R16 Show that $A \in \mathbb{R}^{m \times n}$ is of rank one iff [if and only if] there exist two nonzero vectors $\boldsymbol{u} \in \mathbb{R}^{m}$ and $\boldsymbol{v} \in \mathbb{R}^{n}$ such that

$$
A=u v^{T}
$$

What are the eigenvalues and eigenvectors of \boldsymbol{A} ?

Solution: (a: First part)
\leftarrow First we show that: When both \boldsymbol{u} and \boldsymbol{v} are nonzero vectors then the rank of a matrix of the matrix $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ is one. The range of \boldsymbol{A} is the set of all vectors of the form

$$
y=A x=u v^{T} x=\left(v^{T} x\right) u
$$

since \boldsymbol{u} is a nonzero vector, and not all vectors $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}$ are zero (because $\boldsymbol{v} \neq 0)$ then this space is of dimension 1.
\rightarrow Next we show that: If \boldsymbol{A} is of rank one than there exist nonzero vectors $\boldsymbol{u}, \boldsymbol{v}$ such that $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$. If \boldsymbol{A} is of rank one, then $\operatorname{Ran}(\boldsymbol{A})=$ $\operatorname{Span}\{u\}$ for some nonzero vector \boldsymbol{u}. So for every vector \boldsymbol{x}, the vector $\boldsymbol{A x}$ is a multiple of \boldsymbol{u}. Let $e_{1}, e_{2}, \cdots, e_{n}$ the vectors of the canonical basis of \mathbb{R}^{n} and let $\nu_{1}, \nu_{2}, \cdots, \nu_{n}$ the scalars such that
$A e_{i}=\nu_{i} u$. Define $v=\left[\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right]^{T}$. Then $A=u v^{T}$ because the matrices \boldsymbol{A} and $\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ have the same columns. (Note that the \boldsymbol{j}-th column of \boldsymbol{A} is the vector $\boldsymbol{A} \boldsymbol{e}_{j}$). In addition, $\boldsymbol{v} \neq \mathbf{0}$ otherwise $\boldsymbol{A}==0$ which would be a contradiction because $\operatorname{rank}(\boldsymbol{A})=1$.
(b: second part) Eigenvalues /vectors
Write $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$ then notice that this means $\left(\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}\right) \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{x}$ so either $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{\lambda}=\mathbf{0}$ or $\boldsymbol{x}=\boldsymbol{u}$ and $\boldsymbol{\lambda}=\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{u}$. Two eigenvalues: 0 and $\boldsymbol{v}^{T} \boldsymbol{x} \ldots \square$
\$0 17 Is it true that

$$
\operatorname{rank}(A)=\operatorname{rank}(\bar{A})=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}\left(A^{H}\right) ?
$$

Solution: The answer is yes and it follows from the fact that the ranks of \boldsymbol{A} and \boldsymbol{A}^{T} are the same and the ranks of \boldsymbol{A} and $\overline{\boldsymbol{A}}$ are also the same.

It is known that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$. We now compare the ranks of \boldsymbol{A} and $\overline{\boldsymbol{A}}$ (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly independent then so is its conjugate. [convince yourself of this by looking at material from 2033]. If \boldsymbol{A} has rank \boldsymbol{r} and for example its
first r columns are the basis of the range, the the same \boldsymbol{r} columns of \bar{A} are also linearly independent. So $\operatorname{rank}(\overline{\boldsymbol{A}}) \geq \operatorname{rank}(\boldsymbol{A})$. Now you can use a similar argument to show that $\operatorname{rank}(A) \geq \operatorname{rank}(\bar{A})$. Therefore the ranks are the same. \square
$\underbrace{}_{21}$ Eigenvalues of two similar matrices \boldsymbol{A} and \boldsymbol{B} are the same. What about eigenvectors?

Solution: If $\boldsymbol{A} u=\lambda u$ then $\boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{-1} u=\lambda u \rightarrow B\left(X^{-1} u\right)=$ $\boldsymbol{\lambda}\left(\boldsymbol{X}^{-1} \boldsymbol{u}\right) \rightarrow \boldsymbol{\lambda}$ is an eigenvalue of \boldsymbol{B} with eigenvector $\boldsymbol{X}^{-1} \boldsymbol{u}$ (note that the vector $\boldsymbol{X}^{-1} \boldsymbol{u}$ cannot be equal to zero because $\boldsymbol{u} \neq 0$.) \square
$\overbrace{22}$ Given a polynomial $\boldsymbol{p}(\boldsymbol{t})$ how would you define $\boldsymbol{p}(\boldsymbol{A})$?

Solution: If $p(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\cdots+\alpha_{k} t^{k}$ then

$$
\begin{gathered}
p(A)=\alpha_{0} I+\alpha_{1} A+\alpha_{2} A^{2}+\cdots+\alpha_{k} A^{k} \quad \text { where: } \\
A^{j}=\underbrace{A \times A \times \cdots \times A}_{j \text { times }}
\end{gathered}
$$

\square

23 Given a function $f(t)$ (e.g., e^{t}) how would you define $f(A) ?$ [You may limit yourself to the case when \boldsymbol{A} is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$
f(A)=f(0) I+\frac{f^{\prime}(0)}{1!} A+\frac{f^{\prime \prime}(0)}{2!} A^{2} \cdots \frac{f^{(k)}(0)}{k!} A^{k}+\cdots
$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful. We will revisit this in next set. \square

If \boldsymbol{A} is nonsingular what are the eigenvalues/eigenvectors of A^{-1} ?

Solution: Assume that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. Multiply both sides by the inverse of $\boldsymbol{A}: \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{A}^{-1} \boldsymbol{u}$ - then by the inverse of $\boldsymbol{\lambda}: \boldsymbol{\lambda}^{-1} \boldsymbol{u}=\boldsymbol{A}^{-1} \boldsymbol{u}$. Therefore, $1 / \boldsymbol{\lambda}$ is an eigenvalue and \boldsymbol{u} is an associated eigenvector. \square
\&25 What are the eigenvalues/eigenvectors of \boldsymbol{A}^{k} for a given integer power \boldsymbol{k} ?

Solution: Assume that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. Multiply both sides by \boldsymbol{A} and repeat \boldsymbol{k} times. You will get $\boldsymbol{A}^{k} \boldsymbol{u}=\boldsymbol{\lambda}^{k} \boldsymbol{u}$. Therefore, $\boldsymbol{\lambda}^{\boldsymbol{k}}$ is an eigenvalue of \boldsymbol{A}^{k} and \boldsymbol{u} is an associated eigenvector. \square
$\boxed{\Delta 26}$ What are the eigenvalues/eigenvectors of $\boldsymbol{p}(\boldsymbol{A})$ for a polyno-
mial p ?
Solution: Using the previous result you can show that $\boldsymbol{p}(\boldsymbol{\lambda})$ is an eigenvalue of $\boldsymbol{P}(\boldsymbol{A})$ and \boldsymbol{u} is an associated eigenvector. \square
27 What are the eigenvalues/eigenvectors of $f(\boldsymbol{A})$ for a function f ? [Diagonalizable case]

Solution: This will require using the diagonalized form of $\boldsymbol{A}: \boldsymbol{A}=$ $\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$. With this $f(\boldsymbol{A})=\boldsymbol{X} \boldsymbol{f}(\boldsymbol{D}) \boldsymbol{X}^{-1}$. It becomes clear that the eigenvalues are the diagonal entries of $f(D)$, i.e., the values $f\left(\lambda_{i}\right)$ for $i=1, \cdots, n$. As for the eigenvectors - recall that they are the columns of the \boldsymbol{X} matrix in the diagonalized form - And \boldsymbol{X} is the same for \boldsymbol{A} and $\boldsymbol{f}(\boldsymbol{A})$. So the eigenvectors are the same. \square
428 For two $\boldsymbol{n} \times \boldsymbol{n}$ matrices \boldsymbol{A} and \boldsymbol{B} are the eigenvalues of $\boldsymbol{A B}$ and $\boldsymbol{B A}$ the same?

Solution: We will show that if $\boldsymbol{\lambda}$ is an eigenvalue of $\boldsymbol{A} \boldsymbol{B}$ then it is also an eigenvalue of $\boldsymbol{B A}$. Assume that $\boldsymbol{A B u}=\boldsymbol{\lambda} \boldsymbol{u}$ and multiply both sides by \boldsymbol{B}. Then $\boldsymbol{B A B} \boldsymbol{B}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{u}$ - which we write in the form: $\boldsymbol{B A} \boldsymbol{v}=\lambda \boldsymbol{v}$ where $\boldsymbol{v}=\boldsymbol{B} \boldsymbol{u}$. In the situation when $\boldsymbol{v} \neq 0$, we clearly see that $\boldsymbol{\lambda}$ is a nonzero eigenvalue of $\boldsymbol{B} \boldsymbol{A}$ with the associated eigenvector \boldsymbol{v}. We now deal with the case when $\boldsymbol{v}=0$. In this case,
since $\boldsymbol{A B u}=\boldsymbol{\lambda} \boldsymbol{u}$, and $\boldsymbol{u} \neq 0$ we must have $\boldsymbol{\lambda}=0$. However, clearly $\boldsymbol{\lambda}=0$ is also an eigenvalue of $\boldsymbol{B} \boldsymbol{A}$ because $\operatorname{det}(\boldsymbol{B} \boldsymbol{A})=$ $\operatorname{det}(A B)=0$.

We can similarly show that any eigenvalue of $\boldsymbol{B} \boldsymbol{A}$ are also eigenvalues of $\boldsymbol{A B}$ by interchanging the roles of \boldsymbol{A} and \boldsymbol{B}. This completes the proof \square
α_{30} Trace, spectral radius, and determinant of $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)$.
Solution: Trace is 2 , determinant is -3 . Eigenvalues are $3,-1$ so $\rho(A)=3$. \square
\&031 What is the inverse of a unitary (complex) or orthogonal (real) matrix?

Solution: If Q is unitary then $Q^{-1}=Q^{H}$. \square
22 What can you say about the diagonal entries of a skew-symmetric (real) matrix?

Solution: They must be equal to zero. \square

2033 What can you say about the diagonal entries of a Hermitian (complex) matrix?

Solution: We must have $\boldsymbol{a}_{i i}=\overline{\boldsymbol{a}}_{i \boldsymbol{i}}$. Therefore $\boldsymbol{a}_{i i}$ must be real. \square

034 What can you say about the diagonal entries of a skew-Hermitian (complex) matrix?

Solution: We must have $a_{i i}=-\bar{a}_{i i}$. Therefore $a_{i i}$ must be purely imaginary.

3 Which matrices of the following type are also normal: real symmetric, real skew-symmetric, Hermitian, skew-Hermitian, complex symmetric, complex skew-symmetric matrices.

Solution: Real symmetric, real skew-symmetric, Hermitian, skew-Hermitian matrices are normal. Complex symmetric, complex skew-symmetric matrices are not necessarily normal. \square

437 Show that a triangular matrix that is normal is diagonal.

Solution: To simplify notation, we consider only the case of real matrices. We will use an induction argument on \boldsymbol{n} this size of the matrix. The case $n=1$ is trivial. Assume that the result is true for matrices of size $\boldsymbol{n}-1$ and let \boldsymbol{R} be an upper triang. matrix of size \boldsymbol{n} that is normal.

Since \boldsymbol{R} us normal we have $\boldsymbol{R}^{T} \boldsymbol{R}=\boldsymbol{R} \boldsymbol{R}^{T}$. Let \boldsymbol{C} be this product
and consider the term \boldsymbol{c}_{11}. Because $\boldsymbol{R}^{T} \boldsymbol{R}=\boldsymbol{R} \boldsymbol{R}^{T}$ we have on the one hand:

$$
c_{11}=r_{11}^{2}
$$

and on the other:

$$
c_{11}=r_{11}^{2}+r_{12}^{2}+r_{13}^{2}+\cdots+r_{1 n}^{2}
$$

By equating the two quantities we obtain:

$$
r_{12}^{2}+r_{13}^{2}+\cdots+r_{1 n}^{2}=0
$$

which implies that $r_{1 j}=0$ for $j>1$, i.e., the entries of the first row of \boldsymbol{R} - not including the diagonal - are all zero. The remaining matrix, namely $R_{1}=R(2: n, 2: n)$ in matlab notation is a matrix of size $n-1$ and it can be seen that it satisfies the relation $\boldsymbol{R}_{1}^{T} \boldsymbol{R}_{1}=\boldsymbol{R}_{1} \boldsymbol{R}_{1}^{T}$ - because of the fact that $r_{1 j}=0$ for $j>1$. Now our induction hypothesis will help us complete the proof since it implies that \boldsymbol{R}_{1} is diagonal. \square

What does the matrix-vector product Va represent?

Solution: If $\boldsymbol{a}=\left[a_{0}, a_{2}, \cdots, a_{n}\right]$ and $\boldsymbol{p}(t)$ is the \boldsymbol{n}-th degree polymomial:

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots a_{n} t^{n}
$$

then $V \boldsymbol{a}$ is a vector whose components are the values $p\left(x_{0}\right), p\left(x_{1}\right)$, $\cdots, p\left(x_{n}\right) . \square$

40 Interpret the solution of the linear system $\boldsymbol{V a}=\boldsymbol{y}$ where \boldsymbol{a} is the unknown. Sketch a 'fast' solution method based on this.

Solution: Given the previous exercise, the interpretation is that we are seeking a polynomial of degree n whose values at x_{0}, \cdots, x_{n} are the components of the vector \boldsymbol{y}, i.e., $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{n}$. This is known as polynomial interpolation (see csci 5302). The polynomial can be determined by, e.g., the Newton table in $\boldsymbol{O}\left(n^{2}\right)$ operations. \qquad

44 If C is circulant (real) and symmetric, what can be said about the $c_{i} s$?

Solution: By comparing the first row and 1st column of C, one can see that when C is symmetric then the 1 st row starting in position 2 , i.e., the row $c(2: n)=\left[c_{2}, \ldots, c_{n}\right]$ must be 'symmetric' in that $c_{2}=c_{n} ; c_{3}=c_{n-1} ; \cdots c_{j}=c_{n-j+2} ; . . \square$
$\&_{45}$ What is the result of multiplying \boldsymbol{S}_{5} by a vector? What are the powers of S_{5} ?

Solution: The vector $\boldsymbol{S}_{\mathbf{5}} \boldsymbol{v}$ results from \boldsymbol{v} by shifting \boldsymbol{v} cyclically upward. For the same reason, \boldsymbol{S}_{5}^{k} shifts the columns of $\boldsymbol{S}_{\boldsymbol{k}}$ upward cycli-
cally \boldsymbol{k} times. The inverse of \boldsymbol{S}_{5} corresponds to the inverse operation from 'shifting up', which is shifting down. The corresponding matrix, which is the inverse of S_{5}, is the transpose of S_{5}.

446 Show that

$$
C=c_{1} I+c_{2} S_{n}+c_{3} S_{3}^{2}+\cdots+c_{n} S_{n}^{n-1}
$$

As a result show that all circulant matrices of the same size commute.

Solution: The first term is indeed the diagonal of \boldsymbol{C}. The second term is the diagonal matrix $\boldsymbol{c}_{2} \boldsymbol{I}$ with entries shifted up (cyclically) by one position. The 3 rd term is the diagonal matrix $\boldsymbol{c}_{3} \boldsymbol{I}$ with entries shifted up (cyclically) by two positions, etc. This is indeed what is observed in C.

The product of two circulant matrices is a product like $\boldsymbol{p}\left(\boldsymbol{S}_{\boldsymbol{n}}\right) \boldsymbol{q}\left(\boldsymbol{S}_{n}\right)$ where $\boldsymbol{p}, \boldsymbol{q}$ are 2 polynomials of degree $\boldsymbol{n}-1$. It is easy to see that for any matrix \boldsymbol{A}, the products $\boldsymbol{p}(\boldsymbol{A}) \boldsymbol{q}(\boldsymbol{A})$ and $\boldsymbol{q}(\boldsymbol{A}) \boldsymbol{p}(\boldsymbol{A})$ are the same, which shows the result. \square

47 (Continuation) Use the result of the previous exercise to show that the product of two circulant matrices is circulant.

Solution: This is because $\boldsymbol{p}\left(\boldsymbol{S}_{\boldsymbol{n}}\right) \boldsymbol{q}\left(\boldsymbol{S}_{\boldsymbol{n}}\right)$ can be expressed as a polyno-
mial of degree $n-1$ of S_{n}. Indeed note that $S_{n}^{n}=I$ so all powers in the product can be reduced to a power $<\boldsymbol{n} . \square$

Basics on matrices [Csci2033 notes]

$>$ If \boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix (\boldsymbol{m} rows and \boldsymbol{n} columns) -then the scalar entry in the i th row and j th column of A is denoted by $a_{i j}$ and is called the (i, j)-entry of \boldsymbol{A}.

Column j

$>a_{i j}==i$ th entry (from the top) of the j th column
$>$ Each column of \boldsymbol{A} is a list of \boldsymbol{m} real numbers, which identifies a vector in \mathbb{R}^{m} called a column vector
$>$ The columns $a_{: 1} \ldots, a_{: n}$-denoted by $a_{1}, a_{2}, \cdots, a_{n}$ so $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$
$>$ The diagonal entries in an $m \times n$ matrix A are a_{11}, a_{22}, a_{33}. They form the main diagonal of \boldsymbol{A}.
$>$ A diagonal matrix is a matrix whose nondiagonal entries are zero
$>$ The $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix $\boldsymbol{I}_{\boldsymbol{n}}$ Example:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Matrix Multiplication

When a matrix \boldsymbol{B} multiplies a vector \boldsymbol{x}, it transforms \boldsymbol{x} into the vector $\boldsymbol{B} \boldsymbol{x}$.
$>$ If this vector is then multiplied in turn by a matrix \boldsymbol{A}, the resulting vector is $\boldsymbol{A}(\boldsymbol{B x})$.

$>$ Thus $\boldsymbol{A}(\boldsymbol{B} \boldsymbol{x})$ is produced from \boldsymbol{x} by a composition of mappings-the linear transformations induced by \boldsymbol{B} and \boldsymbol{A}.

Note: $\boldsymbol{x} \rightarrow \boldsymbol{A}(\boldsymbol{B x})$ is a linear mapping (prove this).
Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$
A(B x)=C \boldsymbol{x}
$$

$>$ Assume \boldsymbol{A} is $\boldsymbol{m} \times \boldsymbol{n}, \boldsymbol{B}$ is $\boldsymbol{n} \times \boldsymbol{p}$, and \boldsymbol{x} is in \mathbb{R}^{p}. Denote the columns of \boldsymbol{B} by b_{1}, \cdots, b_{p} and the entries in x by x_{1}, \cdots, x_{p}. Then:

$$
B x=x_{1} b_{1}+\cdots+x_{p} b_{p}
$$

By the linearity of multiplication by \boldsymbol{A} :

$$
\begin{aligned}
A(B x) & =A\left(x_{1} b_{1}\right)+\cdots+A\left(x_{p} b_{p}\right) \\
& =x_{1} A b_{1}+\cdots+x_{p} A b_{p}
\end{aligned}
$$

$>$ The vector $\boldsymbol{A}(\boldsymbol{B x})$ is a linear combination of $\boldsymbol{A b _ { 1 }}$, $\cdots, A b_{p}$, using the entries in \boldsymbol{x} as weights.
$>$ Matrix notation: this linear combination is written as

$$
A(B x)=\left[A b_{1}, A b_{2}, \cdots A b_{p}\right] \cdot x
$$

$>$ Thus, multiplication by $\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]$ transforms \boldsymbol{x} into $\boldsymbol{A}(\boldsymbol{B x})$.
$>$ Therefore the desired matrix C is the matrix

$$
C=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

Definition: If \boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and if \boldsymbol{B} is an $n \times p$ matrix with columns b_{1}, \cdots, b_{p}, then the product $\boldsymbol{A B}$ is the matrix whose p columns are $A b_{1}, \cdots, A b_{p}$. That is:

$$
A B=A\left[b_{1}, b_{2}, \cdots, b_{p}\right]=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

> Remeber

Multiplication of matrices corresponds to com-

 position of linear transformations.®Operation count: How many operations are required to perform product $A B$?
© Compute $A B$ when:

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

© Compute $A B$ when:

$$
A=\left[\begin{array}{llll}
2 & -1 & 2 & 0 \\
1 & -2 & 1 & 0 \\
3 & -2 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & -2 & 2 \\
2 & 1 & -2 \\
-1 & 3 & 2
\end{array}\right]
$$

(Can you compute $\boldsymbol{A B}$ when:

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 2 \\
1 & 3 \\
-1 & 4
\end{array}\right] ?
$$

Row-wise matrix product

> Recall what we did with matrix-vector product to compute a single entry of the vector $\boldsymbol{A x}$
$>$ Can we do the same thing here? i.e., How can we compute the entry $\boldsymbol{c}_{i j}$ of the product $\boldsymbol{A B}$ without computing entire columns?
Δ Do this to compute entry $(2,2)$ in the first example above.
\&Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of columnwise?

Properties of matrix multiplication

Theorem Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and let \boldsymbol{B} and \boldsymbol{C} have sizes for which the indicated sums and products are defined. Then:

- $A(B C)=(A B) C$ (associative law of multiplication)
- $A(B+C)=A B+A C$ (left distributive law)
- $(B+C) A=B A+C A$ (right distributive law)
- $\alpha(A B)=(\alpha A) B=A(\alpha B)$ for any scalar α
- $I_{m} \boldsymbol{A}=\boldsymbol{A} I_{n}=\boldsymbol{A}$ (product with identity)
(国|f $\boldsymbol{A B}=\boldsymbol{A C}$ then $\boldsymbol{B}=\boldsymbol{C}$ ('simplification') : TrueFalse?
\& If $\boldsymbol{A B}=\mathbf{0}$ then either $\boldsymbol{A}=0$ or $\boldsymbol{B}=0$: True or False?

囚 $A B=B A$: True or false??

Square matrices. Matrix powers

> Important particular case when $n=m$ - so matrix is $n \times n$
$>$ In this case if \boldsymbol{x} is in \mathbb{R}^{n} then $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ is also in \mathbb{R}^{n}
$>\boldsymbol{A A}$ is also a square $n \times n$ matrix and will be denoted by \boldsymbol{A}^{2}
$>$ More generally, the matrix A^{k} is the matrix which is the product of k copies of \boldsymbol{A} :

$$
A^{1}=A ; \quad A^{2}=A A ; \quad \cdots \quad A^{k}=\underbrace{A \cdots A}_{k \text { times }}
$$

For consistency define \boldsymbol{A}^{0} to be the identity: $\boldsymbol{A}^{0}=$ I_{n},
$\boldsymbol{A}^{l} \times A^{k}=A^{l+k}$ - Also true when k or l is zero.

Transpose of a matrix

Given an $m \times n$ matrix \boldsymbol{A}, the transpose of \boldsymbol{A} is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of \boldsymbol{A}.

Theorem : Let \boldsymbol{A} and \boldsymbol{B} denote matrices whose sizes are appropriate for the following sums and products. Then: $\bullet\left(A^{T}\right)^{T}=A$

- $(A+B)^{T}=A^{T}+B^{T}$
- $(\alpha A)^{T}=\alpha A^{T}$ for any scalar α
- $(A B)^{T}=B^{T} A^{T}$

More on matrix products

Recall: Product of the matrix \boldsymbol{A} by the vector x : $\left(a_{j}\right.$ $==\boldsymbol{j}$ th column of \boldsymbol{A})

$$
\left.\begin{array}{c}
y \\
{\left[\begin{array}{c}
\boldsymbol{\beta _ { 1 }} \\
\vdots \\
\boldsymbol{\beta}_{j} \\
\vdots \\
\boldsymbol{\beta}_{n}
\end{array}\right]=}
\end{array}=\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x \\
{\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{j} \\
\vdots \\
\alpha_{n}
\end{array}\right]} \\
\end{array}\right.
$$

- $\boldsymbol{x}, \boldsymbol{y}$ are vectors; \boldsymbol{y} is the result of $\boldsymbol{A} \times \boldsymbol{x}$.
- $a_{1}, a_{2}, \ldots, a_{n}$ are the columns of A
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the components of x [scalars]
- $\alpha_{1} a_{1}$ is the first column of \boldsymbol{A} multiplied by the scalar $\boldsymbol{\alpha}_{1}$ which is the first component of \boldsymbol{x}.
- $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{n} a_{n}$ is a linear combination of $a_{1}, a_{2}, \cdots, a_{n}$ with weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

This is the 'column-wise' form of the 'matvec'

Example:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] \quad x=\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right] \quad y=?
$$

Result:
$y=-2 \times\left[\begin{array}{l}1 \\ 0\end{array}\right]+1 \times\left[\begin{array}{c}2 \\ -1\end{array}\right]-3 \times\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{c}3 \\ -10\end{array}\right]$
$>$ Can get i-th component of the result y without the others: $\beta_{i}=\alpha_{1} a_{i 1}+\alpha_{2} a_{i 2}+\cdots+\alpha_{n} a_{i n}$

Example: In the above example extract $\boldsymbol{\beta}_{2}$

$$
\beta_{2}=(-2) \times 0+(1) \times(-1)+(-3) \times(3)=-10
$$

$>$ Can compute $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ in this way.
This is the 'row-wise' form of the 'matvec'

Matrix-Matrix product

> Recall:

When \boldsymbol{A} is $\boldsymbol{m} \times \boldsymbol{n}, \boldsymbol{B}$ is $\boldsymbol{n} \times \boldsymbol{p}$, the product $\boldsymbol{A B}$ of the matrices \boldsymbol{A} and \boldsymbol{B} is the $\boldsymbol{m} \times p$ matrix defined as

$$
A B=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

where $b_{1}, b_{2}, \cdots, b_{p}$ are the columns of B
$>$ Each $\boldsymbol{A} b_{j}==$ product of \boldsymbol{A} by the \boldsymbol{j}-th column of \boldsymbol{B}. Matrix $A B$ is in $\mathbb{R}^{m \times p}$
$>$ Can use what we know on matvecs to perform the product

1. Column form - In words: "The \boldsymbol{j}-th column of $A B$ is a linear combination of the columns of \boldsymbol{A}, with weights $b_{1 j}, b_{2 j}, \cdots, b_{n j}$ " (entries of j-th col. of B)

Example:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 \\
-3 & 2
\end{array}\right] \quad A B=?
$$

Result:

$$
\begin{aligned}
B & =\left[\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]\right] \\
& =\left[\begin{array}{cc}
3 & -6 \\
-10 & 8
\end{array}\right]
\end{aligned}
$$

First column has been computed before: it is equal to:
$(-2)^{*}(\mathrm{col} .1$ of $A)+(1)^{*}(\mathrm{col} .2$ of $A)+(-3)^{*}(\mathrm{col} .3$ of \boldsymbol{A})

Second column is equal to:
$(1)^{*}($ col. 1 of $A)+(-2)^{*}($ col. 2 of $A)+(2)^{*}($ col. 3 of A)
2. If we call C the matrix $C=A B$ what is $c_{i j}$? From above:
$c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}+\cdots+a_{i n} b_{n j}$

Fix j and run $i \longrightarrow$ column-wise form just seen
3. Fix i and run $j \longrightarrow$ row-wise form

Example: Get second row of $\boldsymbol{A B}$ in previous ex-

 ample.$$
c_{2 j}=a_{21} b_{1 j}+a_{22} b_{2 j}+a_{23} b_{3 j}, \quad j=1,2
$$

- Can be read as : $c_{2:}=a_{21} b_{1:}+a_{22} b_{2:}+a_{23} b_{3:}$, or in words:
row2 of $\mathrm{C}=a_{21}($ row1 of B$)+a_{22}($ row2 of B$)+a_{23}$ (row3 of B)
$=0($ row 1 of $B)+(-1)($ row2 of $B)+(3)($ row3
of B)

$$
=\left[\begin{array}{ll}
-10 & 8
\end{array}\right]
$$

