
CSci 5304, F’23 Solution keys to some exercises from: Set 1

-1 Solution of System


5 10 25

1 1 1

0 10 25



xn

xd

xq

 =


145

12

125


Solution: You will find: xn = 4, xd = 5, xq = 3.

-3 (AT )T =?? Solution: (AT )T = A

-4 (AB)T =?? Solution: (AB)T = BTAT

-5 (AH)H =?? Solution: (AH)H = A

-6 (AH)T =?? Solution: (AH)T = Ā

-7 (ABC)T =?? Solution: (ABC)T = CTBTAT

-8 True/False: (AB)C = A(BC) Solution:→ True

-9 True/False: AB = BA Solution:→ false in gen-

eral

-10 True/False: AAT = ATA Solution:→ false in

general

-12 Complexity? [number of multiplications and additions for ma-
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trix multiply]

Solution: Let A ∈ Rm×n and B ∈ Rn×p. Then the product AB

requires 2mnp operations (there are mp entries in all and each of

them requires 2n operations).

-13 What happens to these 3 different approches to matrix-matrix

multiplication whenB has one column (p = 1)?

Solution: In the first: C:,j the j=th column of C is a linear combina-

tion of the columns ofA. This is the usual matrix-vector product.

In the second: Ci,: is just a number which is the inner product of the

ith row ofA with the columnB.

The 3rd formula will give the exact same expression as the first.

-14 Characterize the matricesAAT andATA whenA is of dimen-

sion n× 1.

Solution: When A ∈ Rn×1 then AAT is a rank-one n × n matrix

and ATA is a scalar: the inner product of the column A with itself.

-15 Show that for 2 vectors u, v we have vT ⊗ u = uvT
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Solution: The j−th column of vT ⊗ u is just vj.u This is also the

jth column of uvT .

-16 Show that A ∈ Rm×n is of rank one iff [if and only if] there

exist two nonzero vectors u ∈ Rm and v ∈ Rn such that

A = uvT .

What are the eigenvalues and eigenvectors ofA?

Solution: (a: First part)

← First we show that: When both u and v are nonzero vectors then

the rank of a matrix of the matrixA = uvT is one. The range ofA is

the set of all vectors of the form

y = Ax = uvTx = (vTx)u

since u is a nonzero vector, and not all vectors vTx are zero (because

v 6= 0) then this space is of dimension 1.

→Next we show that: IfA is of rank one than there exist nonzero vec-

tors u, v such that A = uvT . If A is of rank one, then Ran(A) =

Span{u} for some nonzero vector u. So for every vector x, the

vector Ax is a multiple of u. Let e1, e2, · · · , en the vectors of the

canonical basis of Rn and let ν1, ν2, · · · , νn the scalars such that
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Aei = νiu. Define v = [ν1, ν2, · · · , νn]T . Then A = uvT

because the matrices A and uvT have the same columns. (Note that

the j-th column ofA is the vectorAej). In addition, v 6= 0 otherwise

A == 0 which would be a contradiction because rank(A) = 1.

(b: second part) Eigenvalues /vectors

Write Ax = λx then notice that this means (vTx)u = λx so either

vTx = 0 and λ = 0 or x = u and λ = vTu. Two eigenvalues: 0

and vTx...

-17 Is it true that

rank(A) = rank(Ā) = rank(AT ) = rank(AH) ?

Solution: The answer is yes and it follows from the fact that the ranks

ofA andAT are the same and the ranks ofA and Ā are also the same.

It is known that rank(A) = rank(AT ). We now compare the

ranks ofA and Ā (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly

independent then so is its conjugate. [convince yourself of this by

looking at material from 2033]. If A has rank r and for example its
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first r columns are the basis of the range, the the same r columns of

Ā are also linearly independent. So rank(Ā) ≥ rank(A). Now

you can use a similar argument to show that rank(A) ≥ rank(Ā).

Therefore the ranks are the same.

-21 Eigenvalues of two similar matrices A and B are the same.

What about eigenvectors?

Solution: If Au = λu then XBX−1u = λu → B(X−1u) =

λ(X−1u) → λ is an eigenvalue of B with eigenvector X−1u (note

that the vectorX−1u cannot be equal to zero because u 6= 0.)

-22 Given a polynomial p(t) how would you define p(A)?

Solution: If p(t) = α0 + α1t+ α2t
2 + · · ·+ αkt

k then

p(A) = α0I + α1A+ α2A
2 + · · ·+ αkA

k where:

Aj = A×A× · · · ×A︸ ︷︷ ︸
jtimes

-23 Given a function f(t) (e.g., et) how would you define f(A)?

[You may limit yourself to the case whenA is diagonalizable]
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Solution: The easiest way would be through the Taylor series expan-

sion..

f(A) = f(0)I +
f ′(0)

1!
A+

f ′′(0)

2!
A2 · · ·

f (k)(0)

k!
Ak + · · ·

However, this will require a justification: Will this expression ‘con-

verge’ as the number of terms goes to infinity? This is where norms

are useful. We will revisit this in next set.

-24 If A is nonsingular what are the eigenvalues/eigenvectors of

A−1?

Solution: Assume thatAu = λu. Multiply both sides by the inverse

of A: u = λA−1u - then by the inverse of λ: λ−1u = A−1u.

Therefore, 1/λ is an eigenvalue and u is an associated eigenvector.

-25 What are the eigenvalues/eigenvectors ofAk for a given integer

power k?

Solution: Assume that Au = λu. Multiply both sides by A and

repeat k times. You will get Aku = λku. Therefore, λk is an

eigenvalue ofAk and u is an associated eigenvector.

-26 What are the eigenvalues/eigenvectors of p(A) for a polyno-
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mial p?

Solution: Using the previous result you can show that p(λ) is an

eigenvalue of p(A) and u is an associated eigenvector.

-27 What are the eigenvalues/eigenvectors of f(A) for a function

f? [Diagonalizable case]

Solution: This will require using the diagonalized form of A: A =

XDX−1. With this f(A) = Xf(D)X−1. It becomes clear that

the eigenvalues are the diagonal entries of f(D), i.e., the values f(λi)

for i = 1, · · · , n. As for the eigenvectors - recall that they are the

columns of the X matrix in the diagonalized form – And X is the

same forA and f(A). So the eigenvectors are the same.

-28 For two n × n matrices A and B are the eigenvalues of AB

andBA the same?

Solution: We will show that if λ is an eigenvalue ofAB then it is also

an eigenvalue of BA. Assume that ABu = λu and multiply both

sides by B. Then BABu = λBu – which we write in the form:

BAv = λv where v = Bu. In the situation when v 6= 0, we

clearly see that λ is a nonzero eigenvalue of BA with the associated

eigenvector v. We now deal with the case when v = 0. In this case,
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since ABu = λu, and u 6= 0 we must have λ = 0. However,

clearly λ = 0 is also an eigenvalue of BA because det(BA) =

det(AB) = 0.

We can similarly show that any eigenvalue ofBA are also eigenvalues

of AB by interchanging the roles of A and B. This completes the

proof

-30 Trace, spectral radius, and determinant ofA =

2 1

3 0

 .
Solution: Trace is 2, determinant is −3. Eigenvalues are 3,−1 so

ρ(A) = 3.

-31 What is the inverse of a unitary (complex) or orthogonal (real)

matrix?

Solution: IfQ is unitary thenQ−1 = QH .

-32 What can you say about the diagonal entries of a skew-symmetric

(real) matrix?

Solution: They must be equal to zero.

-33 What can you say about the diagonal entries of a Hermitian

(complex) matrix?
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Solution: We must have aii = āii. Therefore aii must be real.

-34 What can you say about the diagonal entries of a skew-Hermitian

(complex) matrix?

Solution: We must have aii = −āii. Therefore aii must be purely

imaginary.

-35 Which matrices of the following type are also normal: real

symmetric, real skew-symmetric, Hermitian, skew-Hermitian, com-

plex symmetric, complex skew-symmetric matrices.

Solution: Real symmetric, real skew-symmetric, Hermitian, skew-Hermitian

matrices are normal. Complex symmetric, complex skew-symmetric

matrices are not necessarily normal.

-37 Show that a triangular matrix that is normal is diagonal.

Solution: To simplify notation, we consider only the case of real ma-

trices. We will use an induction argument on n this size of the matrix.

The case n = 1 is trivial. Assume that the result is true for matrices

of size n − 1 and let R be an upper triang. matrix of size n that is

normal.

Since R us normal we have RTR = RRT . Let C be this product
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and consider the term c11. Because RTR = RRT we have on the

one hand:

c11 = r2
11

and on the other:

c11 = r2
11 + r2

12 + r2
13 + · · ·+ r2

1n

By equating the two quantities we obtain:

r2
12 + r2

13 + · · ·+ r2
1n = 0,

which implies that r1j = 0 for j > 1, i.e., the entries of the first row

ofR - not including the diagonal - are all zero. The remaining matrix,

namely R1 = R(2 : n, 2 : n) in matlab notation is a matrix of size

n− 1 and it can be seen that it satisfies the relationRT
1R1 = R1R

T
1

- because of the fact that r1j = 0 for j > 1. Now our induction

hypothesis will help us complete the proof since it implies that R1 is

diagonal.

-39 What does the matrix-vector product V a represent?

Solution: If a = [a0, a2, · · · , an] and p(t) is the n-th degree poly-

momial:

p(t) = a0 + a1t+ a2t
2 + · · · antn
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then V a is a vector whose components are the values p(x0), p(x1),

· · · , p(xn).

-40 Interpret the solution of the linear system V a = y where a is

the unknown. Sketch a ‘fast’ solution method based on this.

Solution: Given the previous exercise, the interpretation is that we are

seeking a polynomial of degree n whose values at x0, · · · , xn are

the components of the vector y, i.e., y0, y1, · · · , yn. This is known

as polynomial interpolation (see csci 5302). The polynomial can be

determined by, e.g., the Newton table inO(n2) operations.

-44 If C is circulant (real) and symmetric, what can be said about

the cis?

Solution: By comparing the first row and 1st column of C, one can

see that when C is symmetric then the 1st row starting in position 2,

i.e., the row c(2 : n) = [c2, ..., cn] must be ‘symmetric’ in that

c2 = cn; c3 = cn−1; · · · cj = cn−j+2; ..

-45 What is the result of multiplying S5 by a vector? What are the

powers of S5?

Solution: The vector S5v results from v by shifting v cyclically up-

ward. For the same reason, Sk5 shifts the columns of Sk upward cycli-
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cally k times. The inverse of S5 corresponds to the inverse operation

from ‘shifting up’, which is shifting down. The corresponding matrix,

which is the inverse of S5, is the transpose of S5.

-46 Show that

C = c1I + c2Sn + c3S
2
3 + · · ·+ cnS

n−1
n

As a result show that all circulant matrices of the same size commute.

Solution: The first term is indeed the diagonal ofC. The second term

is the diagonal matrix c2I with entries shifted up (cyclically) by one

position. The 3rd term is the diagonal matrix c3I with entries shifted

up (cyclically) by two positions, etc. This is indeed what is observed

in C.

The product of two circulant matrices is a product like p(Sn)q(Sn)

where p, q are 2 polynomials of degree n−1. It is easy to see that for

any matrix A, the products p(A)q(A) and q(A)p(A) are the same,

which shows the result.

-47 (Continuation) Use the result of the previous exercise to show

that the product of two circulant matrices is circulant.

Solution: This is because p(Sn)q(Sn) can be expressed as a polyno-
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mial of degree n − 1 of Sn. Indeed note that Snn = I so all powers

in the product can be reduced to a power< n.
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Basics on matrices [Csci2033 notes]

ä If A is an m × n matrix (m rows and n columns)
–then the scalar entry in the ith row and jth column of
A is denoted by aij and is called the (i, j)-entry of A.

Column j

↓

Row i→


a11 · · · a1j · · · a1n

... ... ...
ai1 · · · aij · · · ain
... ... ...
am1 · · · amj · · · amn

 = A

↑ ↑ ↑
a:1 a:j a:n

ä aij == ith entry (from the top) of the jth column

ä Each column of A is a list of m real numbers, which
identifies a vector in Rm called a column vector

ä The columns a:1..., a:n - denoted by a1, a2, · · · , an
so A = [a1, a2, · · · , an]

ä The diagonal entries in an m × n matrix A are
a11, a22, a33. They form the main diagonal of A.
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ä A diagonal matrix is a matrix whose nondiagonal en-
tries are zero

ä The n× n identity matrix In Example:

I3 =

 1 0 0

0 1 0

0 0 1



1-15 – – –
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Matrix Multiplication

ä When a matrix B multiplies a vector x, it transforms
x into the vector Bx.

ä If this vector is then multiplied in turn by a matrix A,
the resulting vector is A(Bx).

x

Product by B Product by A

A(Bx)Bx

ä Thus A(Bx) is produced from x by a composition
of mappings–the linear transformations induced by B
and A.

ä Note: x→ A(Bx) is a linear mapping (prove this).

Goal: to represent this composite mapping as a mul-
tiplication by a single matrix, call it C for now, so that

A(Bx) = Cx

.

1-16 – – –
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x

Product by B Product by A

Bx
A(Bx)

C 

ä Assume A is m × n, B is n × p , and x is in Rp.
Denote the columns ofB by b1, · · · , bp and the entries
in x by x1, · · · , xp. Then:

Bx = x1b1 + · · ·+ xpbp

ä By the linearity of multiplication by A:

A(Bx) = A(x1b1) + · · ·+A(xpbp)

= x1Ab1 + · · ·+ xpAbp

ä The vector A(Bx) is a linear combination of Ab1,
· · · , Abp, using the entries in x as weights.

ä Matrix notation: this linear combination is written as

A(Bx) = [Ab1, Ab2, · · ·Abp].x

ä Thus, multiplication by [Ab1, Ab2, · · · , Abp] trans-
forms x into A(Bx).

1-17 – – –
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ä Therefore the desired matrix C is the matrix

C = [Ab1, Ab2, · · · , Abp]

Definition: If A is an m × n matrix, and if B
is an n × p matrix with columns b1, · · · , bp, then
the product AB is the matrix whose p columns are
Ab1, · · · , Abp. That is:

AB = A[b1, b2, · · · , bp] = [Ab1, Ab2, · · · , Abp]

ä Remeber

Multiplication of matrices corresponds to com-
position of linear transformations.

1-18 – – –
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- Operation count: How many operations are required
to perform product AB?

- Compute AB when:

A =

[
2 −1

1 3

]
B =

[
0 2 −1

1 3 −2

]

- Compute AB when:

A =

2 −1 2 0

1 −2 1 0

3 −2 0 0

 B =


1 −1 −2

0 −2 2

2 1 −2

−1 3 2


- Can you compute AB when:

A =

[
2 −1

1 3

]
B =

 0 2

1 3

−1 4

?

1-19 – – –
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Row-wise matrix product

ä Recall what we did with matrix-vector product to com-
pute a single entry of the vector Ax

ä Can we do the same thing here? i.e., How can we
compute the entry cij of the product AB without com-
puting entire columns?

- Do this to compute entry (2, 2) in the first example
above.

- Operation counts: Is more or less expensive to per-
form the matrix-vector product row-wise instead of column-
wise?

1-20 – – –
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Properties of matrix multiplication

Theorem LetA be anm×nmatrix, and letB andC
have sizes for which the indicated sums and products
are defined. Then:
• A(BC) = (AB)C (associative law of multiplica-
tion)
• A(B + C) = AB +AC (left distributive law)
• (B + C)A = BA+ CA (right distributive law)
• α(AB) = (αA)B = A(αB) for any scalar α
• ImA = AIn = A (product with identity)

- If AB = AC then B = C (’simplification’) : True-
False?

- If AB = 0 then either A = 0 or B = 0 : True or
False?

- AB = BA : True or false??

1-21 – – –
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Square matrices. Matrix powers

ä Important particular case when n = m - so matrix
is n× n

ä In this case if x is in Rn then y = Ax is also in Rn

ä AA is also a square n × n matrix and will be de-
noted by A2

ä More generally, the matrix Ak is the matrix which is
the product of k copies of A:

A1 = A; A2 = AA; · · · Ak = A · · ·A︸ ︷︷ ︸
k times

ä For consistency define A0 to be the identity: A0 =

In,

- Al ×Ak = Al+k – Also true when k or l is zero.

1-22 – – –
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Transpose of a matrix

Given an m × n matrix A, the transpose of A is the
n × m matrix, denoted by AT , whose columns are
formed from the corresponding rows of A.

Theorem : Let A and B denote matrices whose
sizes are appropriate for the following sums and
products. Then: • (AT )T = A

• (A+B)T = AT +BT

• (αA)T = αAT for any scalar α
• (AB)T = BTAT

1-23 – – –
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More on matrix products

ä Recall: Product of the matrix A by the vector x: (aj
== jth column of A)

y A x
β1
...
βj
...
βn

 =


a11 · · · a1j · · · a1n

... ... ...
ai1 · · · aij · · · ain
... ... ...
am1 · · · amj · · · amn




α1
...
αj
...
αn


= α1a1 + α2a2 + · · ·+ αnan

• x, y are vectors; y is the result of A× x.

• a1, a2, ..., an are the columns of A

• α1, α2, ..., αn are the components of x [scalars]

• α1a1 is the first column of A multiplied by the scalar
α1 which is the first component of x.

• α1a1 + α2a2 + · · · + αnan is a linear combination
of a1, a2, · · · , an with weights α1, α2, ..., αn.

ä This is the ‘column-wise’ form of the ‘matvec’
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Example:

A =

[
1 2 −1

0 −1 3

]
x =

−2

1

−3

 y =?

ä Result:

y = −2×
[
1

0

]
+ 1×

[
2

−1

]
− 3×

[
−1

3

]
=

[
3

−10

]

ä Can get i-th component of the result y without the
others: βi = α1ai1 + α2ai2 + · · ·+ αnain

Example: In the above example extract β2

β2 = (−2)× 0 + (1)× (−1) + (−3)× (3) = −10

ä Can compute β1, β2, · · · , βm in this way.

ä This is the ‘row-wise’ form of the ‘matvec’

1-25 – – –
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Matrix-Matrix product

ä Recall:

ä When A is m× n, B is n× p, the product AB of
the matrices A and B is the m× p matrix defined as

AB = [Ab1, Ab2, · · · , Abp]

where b1, b2, · · · , bp are the columns of B

ä Each Abj == product of A by the j-th column of B.
Matrix AB is in Rm×p

ä Can use what we know on matvecs to perform the
product

1. Column form – In words: “The j-th column of
AB is a linear combination of the columns of A, with
weights b1j, b2j, · · · , bnj ” (entries of j-th col. of B)

Example:

A =

[
1 2 −1

0 −1 3

]
B =

−2 1

1 −2

−3 2

 AB =?
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ä Result:

B =

[1 2 −1

0 −1 3

] −2

1

−3

 ,

[
1 2 −1

0 −1 3

]  1

−2

2




=

[
3 −6

−10 8

]

ä First column has been computed before: it is equal
to:
(−2)*(col. 1 of A) + (1)*(col. 2 of A) + (−3)*(col. 3
of A)

ä Second column is equal to:
(1)*(col. 1 of A) + (−2)*(col. 2 of A) + (2)*(col. 3 of
A)

2. If we callC the matrixC = AB what is cij? From
above:

cij = ai1b1j + ai2b2j + · · ·+ aikbkj + · · ·+ ainbnj

ä Fix j and run i −→ column-wise form just seen

3. Fix i and run j −→ row-wise form

1-27 – – –
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Example: Get second row ofAB in previous ex-
ample.

c2j = a21b1j + a22b2j + a23b3j, j = 1, 2

• Can be read as : c2: = a21b1: + a22b2: + a23b3: , or
in words:

row2 of C = a21 (row1 of B) + a22 (row2 of B) + a23

(row3 of B)
= 0 (row1 of B) + (-1) (row2 of B) + (3) (row3

of B)
= [−10 8]

1-28 – – –
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