▲2 If $A \in \mathbb{R}^{m \times n}$ what are the dimensions of A^{\dagger} ?, $A^{\dagger}A$?, AA^{\dagger} ?

Solution: The dimension of $A^{\dagger}A$ is $n \times m$ and so $A^{\dagger}A$? is of size $n \times n$. Similarly, AA^{\dagger} is of size $m \times m$.

Show that $A^{\dagger}A$ is an orthogonal projector. What are its range and null-space?

Solution: One way to do this is to use the rank-one expansion: $A = \sum \sigma_i u_i v_i^T$. Then $A^{\dagger} = \sum \frac{1}{\sigma_i} v_i u_i^T$ and therefore,

$$A^{\dagger}A = \left[\sum_{i=1}^r rac{1}{\sigma_i} v_i u_i^T
ight] imes \left[\sum_{j=1}^r \sigma_j u_j v_j^T
ight] = \sum_{j=1}^r v_j v_j^T$$

which is a projector.

Solution: In this case we have

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

which is an orthogonal projector.

⁴ Same question for AA^{\dagger} ..

65 Consider the matrix:

$$A = egin{pmatrix} 1 & 0 & 2 & 0 \ 0 & 0 & -2 & 1 \end{pmatrix}$$

• Compute the singular value decomposition of *A*

Solution: The nonzero singular values of *A* are the square roots of the eigenvalues of ,

$$AA^T = egin{pmatrix} 5 & -4 \ -4 & 5 \end{pmatrix}$$

These eigenvalues are 5 ± 4 and so $\sigma_1 = 3, \sigma_2 = 1$.

The matrix \boldsymbol{U} of the left singular vectors is the matrix

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix}$$

If $A = U\Sigma V^T$, then $U' * A = \Sigma V^T$. Therefore to get V we use the relation: $V^T = \Sigma^{-1} * U' * A$. We have

$$U'*A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 4 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \to V^T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1/3 & 0 & 4/3 & -1/3 \\ 1 & 0 & 0 & 1 \end{pmatrix} \to$$

• Find the matrix B of rank 1 which is the closest to A in 2-norm

sense.

Solution: This is obtained by setting σ_2 to zero in the SVD - or equivalently as $B = \sigma_1 u_1 v_1^T$. You will find

$$B = egin{pmatrix} 1/2 & 0 & 2 & -1/2 \ -1/2 & 0 & -2 & 1/2 \end{pmatrix}$$

6 Show that r_{ϵ} equals the number sing. values that are $>\epsilon$

Solution: This result is based on the following easy-to-prove extension of the Young=Eckhart theorem:

$$\min_{rank(B)\leq k}\|A-B\|_2=\|A-A_k\|_2=\sigma_{k+1}$$

which implies that if $\|A - B\|_2 < \sigma_{k+1}$ then rank(B) must be > k - or equivalently:

$$\|A - B\|_2 < \sigma_k
ightarrow rank(B) \geq k.$$

Let k be the number that satisfies $\sigma_{k+1} \leq \epsilon < \sigma_k$ – which is the number of sing. values that are $> \epsilon$. Then we see from the above that $||A - B||_2 \leq \epsilon$ implies that $rank(B) \geq k$. The smallest possible rank for B is precisely the integer k defined above.