CSci 5304, F'23 Solution keys to some exercises from: Set 12

Δ_{0} Consider

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

Eigenvalues of \boldsymbol{A} ? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Solution: The eigenvalues of \boldsymbol{A} are 1, and 2. The algebraic multiplicity of 1 is 2 . To get the geometric multiplicity of the eigenvalue $\boldsymbol{\lambda}=1$ we need to eigenvectors. For this we need to solve:

$$
\left(\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right) u=0
$$

There is only one solution vector (up to a product by a scalar) namely:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

So the geometric multiplicity is one. \square
Δ_{2} Same questions if a_{33} is replaced by one.
Solution: The matrix become

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

and now we have one eigenvalue algebraic multiplicity 3 .

To get the geometric multiplicity of the eigenvalue $\boldsymbol{\lambda}=1$ we need to eigenvectors. For this we need to solve:

$$
\left(\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) u=0
$$

we still get a geometric mult. of 1 . \square

43 Same questions if in addition a_{12} is replaced by zero.

Solution: Solution: The matrix become

$$
A=\left(\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

and we also have one eigenvalue with algebraic multiplicity 3 . The
geometric multiplicity increases to 2 . \square

44 Show that there is at least one eigenvalue and eigenvector of \boldsymbol{A} :
$\boldsymbol{A x}=\lambda \boldsymbol{x}$, with $\|x\|_{2}=1$

Solution: This comes from the fact that the equation $\boldsymbol{P}_{\boldsymbol{A}}(\boldsymbol{\lambda})=\operatorname{det}(\boldsymbol{A}-$ $\boldsymbol{\lambda I})=0$ is a polynomial equation and as such it must have at least one root - a well-known result. \square
ω_{0} There is a unitary transformation \boldsymbol{P} such that $\boldsymbol{P} \boldsymbol{x}=\boldsymbol{e}_{1}$. How do you define \boldsymbol{P} ?

Solution: This is just the Householder transform.. See Lecture notes set number 8 . \square

| $\varkappa_{0} 6$ |
| :--- | :--- |
| Show that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{H}=\left(\begin{array}{l\|l}\boldsymbol{\lambda} & * * \\ \hline 0 & A_{2}\end{array}\right)$.....$~$ |

Solution: This is equivalent to showing that $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{H} \boldsymbol{e}_{1}=\lambda e_{1}$. We have

$$
P A P^{H} e_{1}=P A P e_{1}=P(A x)=P(\lambda x)=\lambda P x=\lambda e_{1}
$$

\square

Another proof altogether: use Jordan form of \boldsymbol{A} and QR factor-
ization Solution: Jordan form:

$$
A=X J X^{-1}
$$

Let $\boldsymbol{X}=\boldsymbol{Q} \boldsymbol{R}_{0}$ then:

$$
A=Q R_{0} J R_{0}^{-1} Q^{H} \equiv Q R Q^{H} \quad \text { with } \quad R=R_{0} J R_{0}^{-1}
$$

10 Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
-1 & -2 & -3 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & -4
\end{array}\right)
$$

Solution: Use Gershgorin's theorem. There are 4 disks:

$$
\begin{array}{ll}
D_{1}=D(1,1) ; & D_{2}=D(2,1) \\
D_{3}=D(-3,4) ; & D_{4}=D(-4,1)
\end{array}
$$

The last disk is included in the 3 rd . The spectrum is included in the union of the 3 other disks. \square

Additional notes.

In discussing Gerschgorin theorem it was stated:
$>$ Refinement: if disks are all disjoint then each of them contains one eigenvalue

Question: Why?

Solution:

Consider the matrix $\boldsymbol{A}(\boldsymbol{t})=\boldsymbol{D}+\boldsymbol{t}(\boldsymbol{A}-\boldsymbol{D})$ where \boldsymbol{D} is the diagonal of \boldsymbol{A}. Note $\boldsymbol{A}(0)=\boldsymbol{D}, \boldsymbol{A}(\mathbf{1})=\boldsymbol{A}$. Consider the \boldsymbol{n} disks as \boldsymbol{t} varies from $t=0$ to $t=1$. When $t=0$ each disk contains exactly one eigenvalue. As t increases (in a continuous way) fom 0 to one - each disk will still contain one eigenvalue - by a continuity argument [you
cannot have an eigenvalue jump suddently - from one disk to anotherthis would be a dicontinuous behavior]. The argument can be adapted to the case where two disks touch each other at one point (only): it is now possible to have two eigenvalues at the intersection of the disks coming from each of the t 2 o disks.

