$\Delta_{2} 2$ Use the min-max theorem to show that $\|A\|_{2}=\sigma_{1}(A)$ - the largest singular value of \boldsymbol{A}.

Solution: This comes from the fact that:

$$
\begin{aligned}
\|A\|_{2}^{2} & =\max _{x \neq 0} \frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}} \\
& =\max _{x \neq 0} \frac{(A x, A x)}{(x, x)} \\
& =\max _{x \neq 0} \frac{\left(A^{T} \boldsymbol{A x}, \boldsymbol{A}\right)}{(x, x)} \\
& =\lambda_{\max }\left(A^{T} A\right) \\
& =\sigma_{1}^{2}
\end{aligned}
$$

\square
\& 03 Suppose that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ where \boldsymbol{L} is unit lower triangular, and \boldsymbol{D} diagonal. How many negative eigenvalues does \boldsymbol{A} have?

Solution: It has as many negative eigenvalues as there are negative entries in $\boldsymbol{D} \square$
$\Delta 4$ Assume that \boldsymbol{A} is tridiagonal. How many operations are required
to determine the number of negative eigenvalues of \boldsymbol{A} ?

Solution: The rough answer is $\boldsymbol{O}(\boldsymbol{n})$ - because an LU (and therefore LDLT) factorization costs $\boldsymbol{O}(\boldsymbol{n})$. Based on doing the LU factorization of a triagonal matrix, a more accurate answer is $3 n$ operations. \square
ψ_{5} Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.

Solution: Here is a matlab script:

```
    function [sigma] \(=\) bisect (d, b, i, tol)
\(\%\) function [sigma] \(=\) bisect(d, b, i, tol)
\% \% \(\quad=\) diagonal of \(T\)
\(\%\) b \(\quad\) b co-diagonal
응 i \(=\) compute i-th eigenvalue
\(\%\) tol \(=\) tolerance used for stopping
    \(\mathrm{b}(1)=0\);
    n = length(d);
\%\%--------------------- guershgorin
    tmin \(=d(n)\) - abs(b(n));
    tmax \(=d(n)+a b s(b(n)) ;\)
    for \(j=1: n-1\)
        rho = abs (b(j)) + abs (b(j+1));
        tmin \(=\) min(tmin, d(j)-rho);
        tmax \(=\max (\) tmax, \(d(j)+r h o) ;\)
    end
    tol \(=\) tol* (tmax-tmin) ;
    for iter=1:100
        sigma \(=0.5 *(t m i n+t m a x) ;\)
        count \(=\) sturm (d, b, sigma);
        if (count \(>=\) i)
        tmin \(=\) sigma;
        else
            tmax \(=\) sigma;
        end
        if (tmax - tmin) <tol
        break
        end
    end
```

\square
Δ_{0} What is the inertia of the matrix

$$
\left(\begin{array}{cc}
I & F \\
F^{T} & 0
\end{array}\right)
$$

where \boldsymbol{F} is $\boldsymbol{m} \times \boldsymbol{n}$, with $\boldsymbol{n}<\boldsymbol{m}$, and of full rank?
[Hint: use a block LU factorization]
Solution: We start with

$$
\begin{aligned}
\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & 0
\end{array}\right) & =\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
0 & -\boldsymbol{F}^{T} \boldsymbol{F}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
0 & -\boldsymbol{F}^{T} \boldsymbol{F}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
0 & I
\end{array}\right)^{2} \\
& =\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
0 & -\boldsymbol{F}^{T} \boldsymbol{F}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & 0 \\
\boldsymbol{F}^{T} & I
\end{array}\right)^{T}
\end{aligned}
$$

This is of the form $\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\boldsymbol{T}}$ where \boldsymbol{X} is invertible.. Therefore the inertia is the same as that of the block diagonal matrix which is: \boldsymbol{m} positive eigenvalues (block \boldsymbol{I}) and \boldsymbol{n} negative eigenvalues since $-\boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{F}$ is $n \times n$ and negative definite.

