Q1 Unitary matrices preserve the 2-norm.
Solution: The proof takes only one line if we use the result $(\boldsymbol{A x}, \boldsymbol{y})=$ ($x, A^{H} y$):
$\|Q x\|_{2}^{2}=(Q x, Q x)=\left(x, Q^{H} Q x\right)=(x, x)=\|x\|_{2}^{2}$.
-03 When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when $\boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{y}$, i.e., when they are colinear. \square
α_{4} Expand $(x+y, x+y)$ - What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the Cauchy-Schwarz inequality. \square.

- Proof of the Hölder inequality.

$$
|(x, y)| \leq\|x\|_{p}\|y\|_{q}, \text { with } \frac{1}{p}+\frac{1}{q}=1
$$

Proof: For any z_{i}, v_{i} all nonnegative we have, setting $\zeta=\sum \boldsymbol{z}_{i}$,

$$
\begin{aligned}
\left(\sum\left(z_{i} / \zeta\right) v_{i}\right)^{p} & \leq \sum\left(z_{i} / \zeta\right) v_{i}^{p}(\text { convexity }) \rightarrow \\
\left(\sum z_{i} v_{i}\right)^{p} & \leq\left[\sum\left(z_{i} / \zeta\right) v_{i}^{p}\right] \zeta^{p}=\left[\sum z_{i} v_{i}^{p}\right] \zeta^{p-1} \rightarrow \\
\sum z_{i} v_{i} & \leq\left[\sum z_{i} v_{i}^{p}\right]^{1 / p} \zeta^{(p-1) / p} \\
\sum z_{i} v_{i} & \leq\left[\sum z_{i} v_{i}^{p}\right]^{1 / p}\left[\sum z_{i}\right]^{1 / q}
\end{aligned}
$$

Now take $z_{i}=x_{i}^{q}$, and $v_{i}=y_{i} * x_{i}^{1-q}$. Then $z_{i} v_{i}=x_{i} y_{i}$ and:

$$
z_{i} v_{i}^{p}=x_{i}^{q} *\left(y_{i} * x_{i}^{1-q}\right)^{p}=y_{i}^{p} * x_{i}^{q+p-p q}=y_{i}^{p} * x_{i}^{0}==y_{i}^{p}
$$

*5 Second triangle inequality.
Solution: Start by invoking the triangle inequality to write:

$$
\|x\|=\|(x-y)+y\| \leq\|x-y\|+\|y\| \rightarrow\|x\|-\|y\| \leq\|x-y\|
$$

Next exchange the roles of \boldsymbol{x} and \boldsymbol{y} :

$$
\|y\|-\|x\| \leq\|y-x\|=\|x-y\|
$$

The two inequalities $\|x\|-\|y\| \leq\|x-y\|$ and $\|y\|-\|x\| \leq$ $\|x-y\|$ yield the result since they imply that

$$
-\|x-y\| \leq\|x\|-\|y\| \leq\|x-y\|
$$

\square
\propto_{0} Consider the metric $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})=\max _{\boldsymbol{i}}\left|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{y}_{i}\right|$. Show that any norm in \mathbb{R}^{n} is a continuous function with respect to this metric.

Solution: We need to show that we can make $\|\boldsymbol{y}\|$ arbitrarily close to $\|\boldsymbol{x}\|$ by making \boldsymbol{y} 'close' enough to \boldsymbol{x}, where 'close' is measured in terms of the infinity norm distance $d(x, y)=\|x-y\|_{\infty}$. Define $\boldsymbol{u}=\boldsymbol{x}-\boldsymbol{y}$ and write \boldsymbol{u} in the canonical basis as $\boldsymbol{u}=\sum_{i=1}^{n} \delta_{i} e_{i}$. Then:

$$
\|u\|=\left\|\sum_{i=1}^{n} \delta_{i} e_{i}\right\| \leq \sum_{i=1}^{n}\left|\delta_{i}\right|\left\|e_{i}\right\| \leq \max \left|\delta_{i}\right| \sum_{i=1}^{n}\left\|e_{i}\right\|
$$

Setting $M=\sum_{i=1}^{n}\left\|e_{i}\right\|$ we get

$$
\|u\| \leq M \max \left|\delta_{i}\right|=M\|x-y\|_{\infty}
$$

Let $\boldsymbol{\epsilon}$ be given and take $\boldsymbol{x}, \boldsymbol{y}$ such that $\|\boldsymbol{x}-\boldsymbol{y}\|_{\infty} \leq \frac{\epsilon}{\boldsymbol{M}}$. Then, by using the second triangle inequality we obtain:

$$
|\|x\|-\|y\|| \leq\|x-y\| \leq M \max \delta_{i} \leq M \frac{\epsilon}{M}=\epsilon
$$

This means that we can make $\|\boldsymbol{y}\|$ arbitrarily close to $\|\boldsymbol{x}\|$ by making \boldsymbol{y} close enough to \boldsymbol{x} in the sense of the defined metric. Therefore $\|\cdot\|$ is continuous. \square
ω_{0} In $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$ all norms are equivalent.

Solution: We will do it for $\phi_{1}=\|\cdot\|$ some norm, and $\phi_{2}=\|\cdot\|_{\infty}$ [and one can see that all other cases will follow from this one].

1. Need to show that for some α we have $\|x\| \leq \alpha\|x\|_{\infty}$. Express \boldsymbol{x} in the canonical basis of \mathbb{R}^{n} as $\boldsymbol{x}=\sum \boldsymbol{x}_{i} e_{i}$ [look up canonical basis e_{i} from your csci2033 class.] Then

$$
\|x\|=\left\|\sum x_{i} e_{i}\right\| \leq \sum\left|x_{i}\right|\left\|e_{i}\right\| \leq \max \left|x_{i}\right| \sum\left\|e_{i}\right\|=\|x\|_{\infty} \alpha
$$

where $\alpha=\sum\left\|e_{i}\right\|$.
2. We need to show that there is a β such that $\|x\| \geq \beta\|x\|_{\infty}$. Assume $\boldsymbol{x} \neq 0$ and consider $\boldsymbol{u}=\boldsymbol{x} /\|x\|_{\infty}$. Note that \boldsymbol{u} has infinity norm equal to one. Therefore it belongs to the closed and bounded set $S_{\infty}=\left\{v\|v\|_{\infty}=1\right\}$. Since norms are continuous (seen earlier), the minimum of the norm $\|u\|$ for all $\boldsymbol{u}^{\prime} s$ in \boldsymbol{S}_{∞} is reached, i.e., there is a $\boldsymbol{u}_{0} \in \boldsymbol{S}_{\infty}$ such that

$$
\min _{u \in S_{\infty}}\|u\|=\left\|u_{0}\right\| .
$$

Let us call $\boldsymbol{\beta}$ this minimum value, i.e., $\left\|u_{0}\right\|=\beta$. Note in passing that $\boldsymbol{\beta}$ cannot be equal to zero otherwise $\boldsymbol{u}_{0}=0$ which would contradict the fact that u_{0} belongs to \boldsymbol{S}_{∞} [all vectors in \boldsymbol{S}_{∞} have infinity norm
equal to one.] The result follows because $\boldsymbol{u}=\boldsymbol{x} /\|x\|_{\infty}$, and so, remembering that $u=x /\|x\|_{\infty}$, we obtain

$$
\left\|\frac{x}{\|x\|_{\infty}}\right\| \geq \beta \rightarrow\|x\| \geq \beta\|x\|_{\infty}
$$

This completes the proof \square
Sos Show that for any $x: \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1}$
Solution: For the right inequality, it is easy to see that $\|x\|_{2} \leq\|x\|_{1}$ because $\sum_{i} x_{i}^{2} \leq\left[\sum_{i}\left|x_{i}\right|\right]^{2}$

For the left inequality, we rely on Cauchy-Schwarz. If we call $\mathbf{1}$ the vector of all ones, then:

$$
\|x\|_{1}=\sum_{i}\left|x_{i}\right| \cdot 1 \leq\|x\|_{2}\|O n e\|_{2}=\sqrt{n}\|x\|_{2} \|
$$

© 9 Unit balls in \mathbb{R}^{2}.

Δ_{14} Show that $\rho(A) \leq\|A\|$ for any matrix norm.

Solution: Let $\boldsymbol{\lambda}$ be the largest (in modulus) eigenvalue of \boldsymbol{A} with associated eigenvector \boldsymbol{u}. Then

$$
A u=\lambda u \rightarrow \frac{\|A u\|}{\|u\|}=|\lambda|=\rho(A)
$$

This implies that

$$
\rho(A) \leq \max _{x \neq 0} \frac{\|A x\|}{\|x\|}=\|A\|
$$

\square
© 15 Is $\boldsymbol{\rho}(\boldsymbol{A})$ a norm?

Solution: This was answered in the notes.
α_{16} Given a function $f(t)$ (e.g., e^{t}) how would you define $f(A)$? [You may limit yourself to the case when \boldsymbol{A} is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$
f(A)=f(0) I+\frac{f^{\prime}(0)}{1!} A+\frac{f^{\prime \prime}(0)}{2!} A^{2} \cdots \frac{f^{(k)}(0)}{k!} A^{k}+\cdots
$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful.

In the simplest case where \boldsymbol{A} is diagonalizable you can write $\boldsymbol{A}=$ $\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$ and then consider the \boldsymbol{k}-term part of the Taylor series expression above:

$$
\begin{aligned}
F_{k} & =f(0) I+\frac{f^{\prime}(0)}{1!} A+\frac{f^{\prime \prime}(0)}{2!} A^{2}+\cdots+\frac{f^{(k)}(0)}{k!} A^{k} \\
& =X\left[f(0) I+\frac{f^{\prime}(0)}{1!} D+\frac{f^{\prime \prime}(0)}{2!} D^{2}+\cdots+\frac{f^{(k)}(0)}{k!} D^{k}\right] X^{-1} \\
& \equiv X D_{k} X^{-1}
\end{aligned}
$$

where \boldsymbol{D}_{k} is the matrix inside the brackets in line 2 of above equations. The $\boldsymbol{i} \boldsymbol{-} \boldsymbol{t h}$ diagonal entry of \boldsymbol{D}_{k} is of the form

$$
f_{k}\left(\lambda_{i}\right)=f(0)+\frac{f^{\prime}(0)}{1!} \lambda_{i}+\frac{f^{\prime \prime}(0)}{2!} \lambda_{i}^{2}+\cdots+\frac{f^{(k)}(0)}{k!} \lambda_{i}^{k},
$$

which is just the \boldsymbol{k}-term part of the Taylor series expansion of $\boldsymbol{f}\left(\boldsymbol{\lambda}_{\boldsymbol{i}}\right)$. Each of these will converge to $f\left(\boldsymbol{\lambda}_{i}\right)$. Now it is easy to complete the argument. If we call \boldsymbol{D}_{f} the diagonal matrix whose i th diagonal entry is $\boldsymbol{f}\left(\boldsymbol{\lambda}_{i}\right)$ and $\boldsymbol{f}_{\boldsymbol{A}}$ the matrix defined by

$$
f_{A}=X D_{f} X^{-1}
$$

then clearly

$$
\begin{aligned}
\left\|F_{k}-F_{A}\right\|_{2} & =\left\|X\left(D_{k}-D_{A}\right) X^{-1}\right\|_{2} \leq\|X\|_{2}\left\|X^{-1}\right\|_{2}\left\|D_{k}-D_{A}\right\|_{2} \\
& \leq\|X\|_{2}\left\|X^{-1}\right\|_{2} \max _{i}\left|f_{k}\left(\lambda_{i}\right)-f\left(\lambda_{i}\right)\right|
\end{aligned}
$$

which converges to zero as \boldsymbol{k} goes to infinity. \square
α_{17} The eigenvalues of $\boldsymbol{A}^{\boldsymbol{H}} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{H}}$ are real nonnegative.
Solution: Let us show it for $\boldsymbol{A}^{\boldsymbol{H}} \boldsymbol{A}$ [the other case is similar] If $\boldsymbol{\lambda}, \boldsymbol{u}$ is an eigenpair of $\boldsymbol{A}^{\boldsymbol{H}} \boldsymbol{A}$ then $\left(\boldsymbol{A}^{\boldsymbol{H}} \boldsymbol{A}\right) \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. Take inner products with \boldsymbol{u} on both sides. Then:

$$
\lambda(u, u)=\left(\left(A^{H} A\right) u, u\right)=(A u, A u)=\|A u\|^{2}
$$

Therefore, $\boldsymbol{\lambda}=\|\boldsymbol{A} u\|^{2} /\|u\|^{2}$ which is a real nonnegative number. \square
[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result $(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}, \boldsymbol{A}^{\boldsymbol{H}} \boldsymbol{y}\right)$. 2) The singular values of \boldsymbol{A} are the square roots of the eigenvalues of $\boldsymbol{A}^{\boldsymbol{H}} \boldsymbol{A}$ if $\boldsymbol{m} \geq \boldsymbol{n}$ or those of the eigenvalues of $\boldsymbol{A} \boldsymbol{A}^{H}$ if $\boldsymbol{m}<\boldsymbol{n}$. So there are always $\min (m, n)$ singular values. This is really just a preliminary definition as we need to refer to singular values often - but we will see singular values and the singular value decomposition in great detail later.]
\& 18 Prove that when $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ then $\|\boldsymbol{A}\|_{2}=\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}$.
Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$ where both \boldsymbol{u} and \boldsymbol{v} are in \mathbb{R}^{n}. From $\boldsymbol{A x}=\lambda \boldsymbol{x}$ we get:

$$
u v^{T} x=\lambda x \rightarrow\left(v^{T} x\right) u=\lambda x
$$

Notice that we did this because $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}$ is a scalar. We have 2 cases.

Case 1: $\boldsymbol{v}^{T} \boldsymbol{x}=0$. In this case it is clear that the equation $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$ is satisfied with $\boldsymbol{\lambda}=0$. So any vector that is orthogonal to \boldsymbol{v} is an eigenvector of \boldsymbol{A} associated with the eigenvalue $\boldsymbol{\lambda}=\boldsymbol{0}$. (It can be shown that the eigenvalue 0 is of multiplicity $n-1$).

Case 2: $\boldsymbol{v}^{T} \boldsymbol{x} \neq 0$. In this case it is clear that the equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{x}$ is satisfied with $\boldsymbol{\lambda}=\boldsymbol{v}^{T} \boldsymbol{u}$ and $\boldsymbol{x}=\boldsymbol{u}$. So \boldsymbol{u} is an eigenvector of \boldsymbol{A} associated with the eigenvalue $\boldsymbol{v}^{T} \boldsymbol{x}$.

In summary the matrix $\boldsymbol{u} \boldsymbol{v}^{T}$ has only two eigenvalues: 0 , and $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{u}$.
Going back to the original question, we consider now $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ and we are interested in the 2 -norm of \boldsymbol{A}. We have

$$
\|A\|_{2}^{2}=\rho\left(A^{T} A\right)=\rho\left(v u^{T} u v^{T}\right)=\|u\|_{2}^{2} \rho\left(v v^{T}\right)=\|u\|_{2}^{2}\|v\|_{2}^{2}
$$

The last relation comes from what was done above to determine the eigenvalues of $\boldsymbol{v} \boldsymbol{v}^{T}$. So in the end, $\|\boldsymbol{A}\|_{2}=\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2} . \square$

In this case what is $\|\boldsymbol{A}\|_{F}$?

Solution: Only the last part of the above answer changes (ρ is replaced by Tr) and you will find that actually the Frobenius norm of $\boldsymbol{u v ^ { T }}$ is again equal to $\|u\|_{2}\|v\|_{2} . \square$

Proof of Cauchy-Schwarz inequality:
 $$
|(x, y)|^{2} \leq(x, x)(y, y)
$$

Proof: We begin by expanding $(x-\lambda y, x-\lambda y)$ using properties of inner products:

$$
(x-\lambda y, x-\lambda y)=(x, x)-\bar{\lambda}(x, y)-\lambda(y, x)+|\lambda|^{2}(y, y)
$$

If $\boldsymbol{y}=0$ then the inequality is trivially satisfied. Assume that $\boldsymbol{y} \neq 0$ and take $\boldsymbol{\lambda}=(x, y) /(y, y)$. Then, from the above equality, $(x-$ $\lambda y, x-\lambda y) \geq 0$ shows that

$$
\begin{aligned}
0 \leq(x-\lambda y, x-\lambda y) & =(x, x)-2 \frac{|(x, y)|^{2}}{(y, y)}+\frac{|(x, y)|^{2}}{(y, y)} \\
& =(x, x)-\frac{|(x, y)|^{2}}{(y, y)}
\end{aligned}
$$

which yields the result. \square

