© 1 Exact solution of system

$$
\left(\begin{array}{ccc}
2 & 4 & 4 \\
1 & 5 & 6 \\
1 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
8
\end{array}\right)
$$

Solution: You will find $x=[1,3,-2]^{T}$. \square
\&2 Justify the column version of Back-subsitution algorithm.
Solution: The system $\boldsymbol{A x}=\boldsymbol{b}$ can be written in column form as follows:

$$
x_{1} a_{:, 1}+x_{2} a_{:, 2}+\cdots+x_{n} a_{:, n}=b
$$

In first step we compute $x_{n}=b_{n} / a_{n, n}$. Now move last term in lefthand side of above system to the right:

$$
x_{1} a_{:, 1}+x_{2} a_{:, 2}+\cdots+x_{n-1} a_{:, n-1}=b-x_{n} a_{:, n} \equiv b^{(1)}
$$

This is a new system of n equations that has $(n-1)$ unknowns and the right-hand-side $\boldsymbol{b}^{(1)}$. The last equation of this system is of the form $0=0$ and can therefore be ignored. Thus, we end up wih a system of
size $(n-1) \times(n-1)$ that is still upper triangular and we can repeat the above argument recursively. \square

E 3 Exact operation count for GE.

Solution:

$$
\begin{aligned}
T & =\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}(2(n-k)+3) \\
& =\sum_{k=1}^{n-1}(2(n-k)+3)(n-k) \\
& =2 \sum_{k=1}^{n-1}(n-k)^{2}+3 \sum_{k=1}^{n-1}(n-k) \\
& =2 \sum_{j=1}^{n-1} j^{2}+3 \sum_{j=1}^{n-1} j
\end{aligned}
$$

In the last step we made a change of variables $\boldsymbol{j}=\boldsymbol{n}-\boldsymbol{k}$. Now we know that $\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6$ and $\sum_{k=1}^{n} k=$ $n(n+1) / 2$ and so

$$
\begin{align*}
T & =2 \frac{(n-1)(n)(2 n-1)}{6}+3 \times \frac{n(n-1)}{2} \\
& =\cdots \\
& =n(n-1)\left(\frac{2 n}{3}+\frac{7}{6}\right) \tag{1}
\end{align*}
$$

Note in passing the remarkable fact that the above final expression is
always an integer (it has to be) no matter what (integer) value \boldsymbol{n} takes. \square
\& 4 Practical use: Show how to use the LU factorization to solve linear systems with the same matrix \boldsymbol{A} and different \boldsymbol{b} 's.

Solution: If we have the LU factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ available then we can solve the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by writing it as

$$
L \underbrace{(U x)}_{y}=b
$$

So we solve for $\boldsymbol{y}: L \boldsymbol{y}=\boldsymbol{b}$ then once \boldsymbol{y} is computed we solve for $\boldsymbol{x}: \boldsymbol{U} \boldsymbol{x}=\boldsymbol{y}$. This involves two triangular solves at the cost of \boldsymbol{n}^{2} each instead of the $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ cost of redoing everything with Gaussian elimination.
Lu5 LU factorization of the matrix $A=\left(\begin{array}{ccc}2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1\end{array}\right)$?
Solution: You will find

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
1 / 2 & 1 / 3 & 1
\end{array}\right) \quad U=\left(\begin{array}{ccc}
2 & 4 & 4 \\
0 & 3 & 4 \\
0 & 0 & -7 / 3
\end{array}\right)
$$

\square_{0} Determinant of \boldsymbol{A} ?

Solution: It is the determinant of U which is $\mathbf{- 1 2}$.
$\otimes_{07} 7$ True or false: "Computing the LU factorization of matrix \boldsymbol{A} involves more arithmetic operations than solving a linear system $\boldsymbol{A} \boldsymbol{x}=$ \boldsymbol{b} by Gaussian elimination".

Solution: The number of arithmetic operations is identical. (The LU factorization involves additional memory moves to store the factors but these are no floating point operations) \square

Q08 Operation count for Gauss-Jordan. Order of the cost? How does it compare with Gaussian Elimination?

Solution: From the notes:

$$
\begin{aligned}
T & \left.=\sum_{k=1}^{n-1} \sum_{i=1}^{n-1}[2(n-k)+3)\right]=\sum_{k=1}^{n-1}(n-1)[2(n-k)+3] \\
& =(n-1) \sum_{j=1}^{n-1}[2 j+3] \\
& =(n-1)[n(n-1)+3(n-1)] \\
& =(n-1)^{2}(n+3)=(n-1)^{3}+4(n-1)^{2}
\end{aligned}
$$

The bottom line is that the cost is $\approx n^{3}$ which is 50% more expensive than GE. This additional cost is not worth it in spite of the simplicity
of the algorithm. For this Gauss-Jordan is seldom used in practice. \square

What is the matrix $\boldsymbol{P} \boldsymbol{A}$ when

$$
P=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & -1 & 2 \\
-3 & 4 & -5 & 6
\end{array}\right) ?
$$

Solution: Instead of multiplying you just permute the row: row 1 in new matrix is row 3 of old matrix, row 2 is row 1 of old matrix, etc.

$$
P A=\left(\begin{array}{cccc}
9 & 0 & -1 & 2 \\
1 & 2 & 3 & 4 \\
-3 & 4 & -5 & 6 \\
5 & 6 & 7 & 8
\end{array}\right)
$$

$\$_{0} 10$ In the previous example where

Matlab gives $\operatorname{det}(A)=-896$. What is $\operatorname{det}(P A)$?
Solution: It changes sign so $\operatorname{det}(P A)=896$. This is because the permutation $\pi=[3,1,4,2]$ is made of 3 interchanges. \square

11 Given a banded matrix with upper bandwidth \boldsymbol{q} and lower bandwidth \boldsymbol{p}, what is the operation count (leading term only) for solving the linear system $\boldsymbol{A x}=\boldsymbol{b}$ with Gaussian elimination without pivoting? What happens when partial pivoting is used? Give the new operation count for the worst case scenario.

Solution: [Note: it is assumed that $\boldsymbol{p} \ll \boldsymbol{n}$ and $\boldsymbol{q} \ll \boldsymbol{n}$ but \boldsymbol{p} and q are not related]. The important observation here is that Gaussian elimination without pivoting for this band matrix will operate on a rectangle: at step \boldsymbol{k} only rows $\boldsymbol{k}+\mathbf{1}$ to $\boldsymbol{k}+\boldsymbol{p}$ are affected and columns $k+1$ to $k+q$ are affected.

In this rectangle each entry will be modified at the cost of 2 operations ${ }^{(*},+$). Total: $2 p q$ for each step. So Gaussian elimination without pivoting for this band matrix costs approximately $2 \boldsymbol{n p q}$ flops. Using band backward substitution to obtain the solution \boldsymbol{x} costs $\approx 2 \boldsymbol{n q}$ flops. The total operation count (leading term only): $\approx 2 n p q+2 n q=$ $2 n q(p+1)$. Note that when p is small the cost of susbstitution cannot be ignored.

For the Gaussian elimination with pivoting, the upper bandwidth of the resulting matrix will be $\boldsymbol{p}+\boldsymbol{q}$. In this case, the total operation count (leading term only) becomes: $\approx 2 n p(p+q)(p+1) . \square$

Additional notes on the LU factorization The lecture notes mention an 'algorithmic' approach to understanding the LU factorization. Here again is the illustration of the \boldsymbol{k}-th step of Gaussian Elimination (GE):

$$
\begin{aligned}
& \text { For } i=k+1: n \text { Do: } \\
& \qquad \begin{array}{l}
\operatorname{piv}=a(i, k) / a(k, k) \\
\operatorname{row}(i):=r o w(i)-\operatorname{piv}{ }^{\star} \operatorname{row}(k)
\end{array}
\end{aligned}
$$

We will focus on how the i-th row is transformed throughout the algorithm. In words: the i th row undergoes $i-1$ transformations (each indexed by k in the algorithm). After these $\boldsymbol{i}-\mathbf{1 G E}$ steps the row remains unchanged. Each of these $\boldsymbol{i}-1$ transformations - which corresponds to the steps $k=1,2, \cdots, i-1$, is as follows

$$
a_{i,:}=a_{i,:}-p i v * a_{k,:}
$$

We will need to make the following changes to the notation for better clarity. Once a row say $a_{j \text {,: }}$ no longer changes [i.e., when it undergoes no further transformations] we will call it $\boldsymbol{u}_{j,:}$ - reflecting the fact that this will end up in the final \boldsymbol{U} matrix of the LU factorization. In addition we will change 'piv' in the above equation into $l_{i k}$ which we recall is equal to $a_{i k} / a_{k k}$. Finally, we must also add a superscript to row \boldsymbol{i} to index the transformation number \boldsymbol{k}. With this, the above equation becomes

$$
a_{i,:}^{(k)}=a_{i,:}^{(k-1)}-l_{i k} * u_{k,:}
$$

Notice how $\boldsymbol{a}_{\boldsymbol{k}, \text { : }}$ has been changed to $\boldsymbol{u}_{\boldsymbol{k},:}$. Indeed the pivot row used for any elimination no longer changes. We will write the above relation for $\boldsymbol{k}=1,2, \cdots, i-1$. After these $i-1$ transformations $a_{i,:}^{(k)}$ is no longer changed and becomes the row \boldsymbol{u}_{k}, the \boldsymbol{k} th row of \boldsymbol{U}.

$$
\begin{gathered}
a_{i,:}^{(1)}=a_{i,:}-l_{i 1} * u_{1,:} \\
a_{i,:}^{(2)}=a_{i,:}^{(1)}-l_{i 2} * u_{2,:} \\
a_{i,:}^{(3)}=a_{i,:}^{(2)}-l_{i 3} * u_{2,:} \\
\cdots
\end{gathered}=\cdots-() *(\cdots),
$$

Notice that $\boldsymbol{a}_{i \text { : }}^{(0)}$ is just $\boldsymbol{a}_{i \text { : }}$. If you add all the equations on the left - things cancel out - and you will wind up with:

$$
a_{i:}^{(i-1)}=a_{i:}-\sum_{k=1}^{i-1} l_{i k} u_{k:}
$$

The row $a_{i:}^{(i-1)}$ is no longer modified.

Therefore, it should be change to \boldsymbol{u}_{i}. and so we get:

$$
u_{i:}=a_{i:}-\sum_{k=1}^{i-1} l_{i k} u_{k:} \quad \text { or } \quad a_{i:}=u_{i:}+\sum_{k=1}^{i-1} l_{i k} u_{k:}
$$

Next define the matrix L whose entries $\boldsymbol{l}_{i j}$'s are the same as above for $i>j$ (lower part), $\boldsymbol{l}_{i \boldsymbol{i}}=1$ (diagonal), and $\boldsymbol{l}_{i j}=0$ for $\boldsymbol{j}>\boldsymbol{i}$ (upper part). The above equation can now be rewritten as

$$
a_{i:}=u_{i:}+\sum_{k=1}^{i-1} l_{i k} u_{k:}=\sum_{k=1}^{n} l_{i k} u_{k:}
$$

This translates exactly the equation $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ written in row-form. \square

