$\Delta_{0} 1$ Show that each $\boldsymbol{A}_{\boldsymbol{k}}[\boldsymbol{A}(1: k, 1: k)$ in matlab notation $]$ is SPD.
Solution: Let \boldsymbol{x} be any vector in \mathbb{R}^{k} and consider the vector \boldsymbol{y} of \mathbb{R}^{n} obtained by stacking x followed by $n-k$ zeros. Then it can be easily seen that : $\left(\boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{x}, \boldsymbol{x}\right)=(\boldsymbol{A} \boldsymbol{y}, \boldsymbol{y})$ and since \boldsymbol{A} is SPD then $(A y, y)>0$ and therefore $\left(A_{k} x, x\right)>0$ for any x in \mathbb{R}^{k}. Hence $\boldsymbol{A}_{\boldsymbol{k}}$ is SPD. \square
\&2 Consequence $\operatorname{det}\left(A_{k}\right)>0$
Solution: This is because the determinant is the product of the eigenvalues which are real positive (see notes). \square
\&03 If \boldsymbol{A} is SPD then for any $\boldsymbol{n} \times \boldsymbol{k}$ matrix \boldsymbol{X} of rank \boldsymbol{k}, the matrix $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{X}$ is SPD.

Solution: For any $\boldsymbol{v} \in \mathbb{R}^{k}$ we have $\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{X} \boldsymbol{v}, \boldsymbol{v}\right)=(\boldsymbol{A} \boldsymbol{X} \boldsymbol{v}, \boldsymbol{X} \boldsymbol{v})$. In addition, since \boldsymbol{X} is of full rank, then $\boldsymbol{X} \boldsymbol{v}$ cannot be zero if \boldsymbol{v} is nonzero. Therefore we have $(\boldsymbol{A X} \boldsymbol{v}, \boldsymbol{X} \boldsymbol{v})>0$. \square
$\Delta 4$ Show that if $\boldsymbol{A}^{T}=\boldsymbol{A}$ and $(\boldsymbol{A x}, \boldsymbol{x})=0 \forall x$ then $\boldsymbol{A}=0$.

Solution: The condition implies that for all x, y we have $(A(x+$ $\boldsymbol{y}), \boldsymbol{x}+\boldsymbol{y})=\mathbf{0}$. Now expand this as: $(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x})+(\boldsymbol{A} \boldsymbol{y}, \boldsymbol{y})+$ $2(A x, y)=0$ for all x, y which shows that $(A x, y)=0 \forall x, y$. This implies that $A=0$ (e.g. take $\left.x=e_{j}, y=e_{i}\right) \ldots \square$

Show: A nonzero matrix \boldsymbol{A} is indefinite iff:

$$
\exists x, y:(A x, x)(A y, y)<0 .
$$

Solution:

\leftarrow Trivial. The matrix cant be PSD or NSD under the conditon
\rightarrow Need to prove: If \boldsymbol{A} is indefinite then there exist such that $\boldsymbol{x}, \boldsymbol{y}$: $(A x, x)(A y, y)<0$. Assume contrary is true, i.e.,

$$
\forall x, y(A x, x)(A y, y) \geq 0
$$

. There is at least one x_{0} such that $\left(A x_{0}, x_{0}\right)$ is nonzero, otherwise $\boldsymbol{A}=0$ from previous question. Assume $\left(\boldsymbol{A} \boldsymbol{x}_{0}, \boldsymbol{x}_{0}\right)>0$. Then $\forall y\left(A x_{0}, x_{0}\right)(A y, y) \geq 0$. which implies $\forall y:(A y, y) \geq 0$, i.e., \boldsymbol{A} is positive semi-definite. This contradicts the assumption that \boldsymbol{A} is neither positive nor negative semi-defininte \square
α_{0} The (standard) LU factorization of an SPD matrix \boldsymbol{A} exists.

Solution: This is an immediate consequence of the main theorem on existence (Lec. notes. set \#5) and Exercise 1 in this set which showed that $\operatorname{det}\left(A_{k}\right)>0$ for $k=1, \cdots, n$. \square Example:

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 5 & 0 \\
2 & 0 & 9
\end{array}\right)
$$

$\Delta_{0} 7$ Is \boldsymbol{A} symmetric positive definite?
Solution: Answer is yes because $\operatorname{det}\left(\boldsymbol{A}_{k}\right)>0$ for $k=1,2,3$.
Q08 What is the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization of \boldsymbol{A} ?

Solution: The LU factorizatis is:

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 1 / 2 & 1
\end{array}\right) \quad U=\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 4 & 2 \\
0 & 0 & 4
\end{array}\right)
$$

Therefore $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ where \boldsymbol{L} is as given above and

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \square
$$

W0 What is the Cholesky factorization of \boldsymbol{A} ?
Solution: From the above LDLT factorization we have $A=G G^{T}$ with

$$
G=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 2 & 0 \\
2 & 1 & 2
\end{array}\right)
$$

Gradient of $\psi(\boldsymbol{x})=(\boldsymbol{A x}, \boldsymbol{x})$

In practice exercise \# 6 it is asked: Let \boldsymbol{A} be symmetric and $\psi(x)=$ $(\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x})$. What is the partial derivative $\frac{\partial \psi(x)}{\partial x_{k}}$? What is the gradient of ψ ?

Solution: First note that

$$
\psi(x)=\sum_{i=1}^{n} x_{i}\left[\sum_{j=1}^{n} a_{i j} x_{j}\right]
$$

and so, using basic rules for derivatives of products:

$$
\begin{aligned}
\frac{\partial \psi(x)}{\partial x_{k}} & =\sum_{i=1}^{n} \frac{\partial x_{i}}{\partial x_{k}}\left[\sum_{j=1}^{n} a_{i j} x_{j}\right]+\sum_{i=1}^{n} x_{i}\left[\frac{\partial x_{i}}{\partial x_{k}} \sum_{j=1}^{n} a_{i j} x_{j}\right] \\
& =\sum_{j=1}^{n} a_{k j} x_{j}+\sum_{i=1}^{n} x_{i} a_{i k} \\
& =2 \sum_{j=1}^{n} a_{k j} x_{j}
\end{aligned}
$$

which is nothing but twice the k-th component of $\boldsymbol{A x}$ or $\frac{\partial \psi(x)}{\partial x_{k}}=$ $2(A x)_{k}$. Therefore the gradient of ψ is

$$
\nabla \psi(x)=2 A x
$$

A somewhat simpler solution for finding the gradient is to expand $\psi(x+\delta)=(A(x+\delta),(x+\delta))=\ldots$ and to write that the
linear term should be of the form $[\nabla \psi]^{T} \delta . \square$

