Δ_{0} Show that $\left(I-\beta \boldsymbol{v} \boldsymbol{v}^{T}\right) \boldsymbol{x}=\alpha e_{1}$ when $v=x-\alpha e_{1}$ and $\alpha= \pm\|x\|_{2}$.

Solution: Equivalent to showing that

$$
x-\left(\beta x^{T} v\right) v=\alpha e_{1} \quad \text { i.e., } \quad x-\alpha e_{1}=\left(\beta x^{T} v\right) v
$$

but recall that $v=x-\alpha e_{1}$ so we need to show that

$$
\beta x^{T} v=1 \quad \text { i.e., that } \frac{2}{\left\|x-\alpha e_{1}\right\|_{2}^{2}}\left(x^{T} v\right)=1
$$

$>$ Denominator $=\|x\|_{2}^{2}+\alpha^{2}-2 \alpha e_{1}^{T} x=2\left(\|x\|_{2}^{2}-\alpha e_{1}^{T} x\right)$
$>$ Numerator $=2 x^{T} v=2 x^{T}\left(x-\alpha e_{1}\right)=2\left(\|x\|_{2}^{2}-\alpha x^{T} e_{1}\right)$

Numerator/ Denominator $=1$. \square

* 2 2 $\boldsymbol{w}=$?

Solution: $P w=-w$
\square
*3 Cost of Householder QR?

Solution: Look at the algorithm: each step works in rectangle $\boldsymbol{X}(\boldsymbol{k}$: $m, k: n)$. Step $k:$ twice $2(m-k+1)(n-k+1)$

$$
\begin{aligned}
T(n) & =\sum_{k=1}^{n} 4(m-k+1)(n-k+1) \\
& =4 \sum_{k=1}^{n}[(m-n)+(n-k+1)](n-k+1) \\
& =4\left[(m-n) * \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}\right] \\
& \approx(m-n) * 2 n^{2}+4 n^{3} / 3 \\
& =2 m n^{2}-\frac{2}{3} n^{3}
\end{aligned}
$$

Recall that for Gram-Scmidt we had a cost of $\approx 2 m n^{2}$. The difference can be significant (Householder faster) when \boldsymbol{n} is not that small relative with m. \square
\&4 Suppose you know the norms of each column of \boldsymbol{X} at the start. What happens to each of the norms of $\boldsymbol{X}(2: m, j)$ for $j=2, \cdots, n$?

Generalize this to step \boldsymbol{k} and obtain a procedure to inexpensively compute the desired norms at each step.

Solution: The trick that is used is that the 2-norm of each column does not change thoughout the algorithm. This is simple to see because
each column is multiplied by a Householder transformation $\boldsymbol{P}_{\boldsymbol{k}}$ at each step. These Householder transformations are unitary and preserve the length. The square of the 2-norm of $\boldsymbol{X}(\boldsymbol{k}: \boldsymbol{n}, \boldsymbol{j})$ (solid red lines in Figure) is the original square of the 2-norm of $X(\boldsymbol{k}: n, \boldsymbol{j})$ minus the square of the 2-norm of $X(1: k-1, j)$ (dashed red lines in Figure). (solid red lines in Figure) In order to update $\|\boldsymbol{X}(\boldsymbol{k}: \boldsymbol{n}, \boldsymbol{j})\|^{2}-$ all we have to do is subtract $|X(k-1, j)|^{2}$ at each step k. This costs very little. \square

$\operatorname{Ln}_{5} 5$ Consider the mapping that sends any point \boldsymbol{x} in \mathbb{R}^{2} into a point \boldsymbol{y} in \mathbb{R}^{2} that is rotated from \boldsymbol{x} by an angle $\boldsymbol{\theta}$. Find the matrix representing the mapping. [Hint: observe how the canonical basis is transformed.] Show an illustration. What is the mapping correspoding to an angle $-\theta$?

Solution: The vector $e_{1}=\binom{1}{0}$ is transformed to $\binom{\cos \theta}{\sin \theta}$. The
vector $e_{2}=\binom{0}{1}$ is transformed to $\binom{-\sin \theta}{\cos \theta}$.
These are the first and second columns of the mapping! So the matrix representing the rotation is

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

An illustration is shown in the fig-

ure.
A Givens rotation performs a rotation of angle $\boldsymbol{- \theta}$.

